Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-15221
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKönig, Wolfgang-
dc.contributor.authorMöhring, Hans-Christian-
dc.date.accessioned2024-11-08T09:40:40Z-
dc.date.available2024-11-08T09:40:40Z-
dc.date.issued2022de
dc.identifier.issn1863-7353-
dc.identifier.issn0944-6524-
dc.identifier.other1909643394-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-152408de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15240-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15221-
dc.description.abstractEffective monitoring of the tool wear condition within a machining process can be very challenging. Depending on the sensors used, often only a part of the relevant wear information can be detected. In the case of milling processes data acquisition is made even more difficult by the fact that the process working point is inaccessible for sensor applications due to the physical tool, the machining process itself, the chipping and used cooling-lubricants. By using a variety of sensors and different measuring principles, sensor data fusion strategies can counteract this problem. An approach to this is the eigenface algorithm. This approach, a face recognition technique, is tested for its suitability on tool condition monitoring in milling processes by using multi-sensor process data.en
dc.description.sponsorshipOpen Access funding enabled and organized by Projekt DEAL.de
dc.description.sponsorshipOtto-von-Guericke-Universität Magdeburgde
dc.language.isoende
dc.relation.uridoi:10.1007/s11740-022-01132-zde
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleCutting tool condition monitoring using eigenfaces : tool wear monitoring in millingen
dc.typearticlede
dc.date.updated2024-10-21T07:44:35Z-
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Werkzeugmaschinende
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten753-768de
ubs.publikation.sourceProduction engineering 16 (2022), S. 753-768de
ubs.publikation.typZeitschriftenartikelde
Appears in Collections:07 Fakultät Konstruktions-, Produktions- und Fahrzeugtechnik

Files in This Item:
File Description SizeFormat 
s11740-022-01132-z.pdf3,55 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons