Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-15233
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBrandhofer, Sebastian-
dc.contributor.authorBraun, Daniel-
dc.contributor.authorDehn, Vanessa-
dc.contributor.authorHellstern, Gerhard-
dc.contributor.authorHüls, Matthias-
dc.contributor.authorJi, Yanjun-
dc.contributor.authorPolian, Ilia-
dc.contributor.authorBhatia, Amandeep Singh-
dc.contributor.authorWellens, Thomas-
dc.date.accessioned2024-11-08T15:36:46Z-
dc.date.available2024-11-08T15:36:46Z-
dc.date.issued2022de
dc.identifier.issn1570-0755-
dc.identifier.issn1573-1332-
dc.identifier.other1909749842-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-152525de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15252-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15233-
dc.description.abstractWe present a detailed study of portfolio optimization using different versions of the quantum approximate optimization algorithm (QAOA). For a given list of assets, the portfolio optimization problem is formulated as quadratic binary optimization constrained on the number of assets contained in the portfolio. QAOA has been suggested as a possible candidate for solving this problem (and similar combinatorial optimization problems) more efficiently than classical computers in the case of a sufficiently large number of assets. However, the practical implementation of this algorithm requires a careful consideration of several technical issues, not all of which are discussed in the present literature. The present article intends to fill this gap and thereby provides the reader with a useful guide for applying QAOA to the portfolio optimization problem (and similar problems). In particular, we will discuss several possible choices of the variational form and of different classical algorithms for finding the corresponding optimized parameters. Viewing at the application of QAOA on error-prone NISQ hardware, we also analyse the influence of statistical sampling errors (due to a finite number of shots) and gate and readout errors (due to imperfect quantum hardware). Finally, we define a criterion for distinguishing between ‘easy’ and ‘hard’ instances of the portfolio optimization problem.en
dc.description.sponsorshipMinisterium für Wirtschaft, Arbeit und Wohnungsbau Baden-Württembergde
dc.language.isoende
dc.relation.uridoi:10.1007/s11128-022-03766-5de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc004de
dc.titleBenchmarking the performance of portfolio optimization with QAOAen
dc.typearticlede
dc.date.updated2024-10-30T09:03:52Z-
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Technische Informatikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten27de
ubs.publikation.sourceQuantum information processing 22 (2023), No. 25de
ubs.publikation.typZeitschriftenartikelde
Appears in Collections:05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Files in This Item:
File Description SizeFormat 
s11128-022-03766-5.pdf1,66 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons