Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-328
Authors: AghaKouchak, Amir
Title: Simulation of remotely sensed rainfall fields using copulas
Other Titles: Simulation von Fernerkundungsdaten des Niederschlages mit Copulas
Issue Date: 2010
metadata.ubs.publikation.typ: Dissertation
Series/Report no.: Mitteilungen / Institut für Wasser- und Umweltsystemmodellierung, Universität Stuttgart;188
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-51323
http://elib.uni-stuttgart.de/handle/11682/345
http://dx.doi.org/10.18419/opus-328
ISBN: 978-3-933761-92-7
Abstract: Rainfall is a major input in hydrological and meteorological models. Quantification of rainfall and its spatial and temporal variability is extremely important for reliable hydrologic and meteorological modeling. Hydrological and climate studies have long relied on rain gauge measurements. While rain gauge measurements do not provide reasonable areal representation of rainfall, remotely sensed precipitation estimates offer much higher spatial resolution. Recent technological advances in the field of remote sensing have led to an increase in available rainfall data on a regional and global scale. However, the advantages of remotely sensed data are limited by complications related to the indirect nature of remotely sensed estimates. Previous studies confirm that remotely sensed rainfall estimates are subject to various errors, and for future use in hydrologic and climate studies, efforts are required to determine the accuracy of data and their associated uncertainties. Despite extensive research, however, uncertainties associated with remotely sensed rainfall estimates are not yet well quantified. Radar rainfall estimates, for example, are associated with several different error types that arise from various factors such as beam over-shooting, partial beam filling, non-uniformity in vertical profiles of reflectivity (VPR), inappropriate $Z-R$ relationship, spatial sampling pattern, hardware calibration and random sampling error. It is expected that uncertainties in rainfall input data will propagate into predictions from hydrologic and meteorologic models; therefore, accurate characterization and quantification of such errors in radar data and the induced uncertainties in hydrologic applications is an extremely important, yet challenging issue. So far, a multitude of approaches and extensive research efforts have been undertaken to develop an uncertainty model for remotely sensed rainfall estimates. In order to assess rainfall uncertainties, one can simulate an ensemble of precipitation fields that consists of a large number of realizations, each of which represents a possible rainfall event that can occur. Subsequent runs of a hydrological or meteorological model using simulated ensembles of rainfall estimates would then allow an assessment of uncertainty propagation due to the precipitation input. One way to generate an ensemble of rainfall estimates is to stochastically simulate random error fields and impose them on radar estimates. This study intends to develop different stochastic techniques for simulation of radar-based rainfall fields through simulating random error fields and imposing them over remotely sensed rainfall estimates. Four different models are developed and discussed in this work. In the first and second models, two elliptical copulas, Gaussian and t-copula, are used to describe the dependence structure of radar rainfall error and to simulate multivariate rainfall error fields. In the third model, an asymmetrical v-transformed copula is employed for error simulations. In the fourth model, rainfall fields are generated by perturbing rainfall estimates with two normally distributed error terms: a purely random component and a component proportional to the magnitude of the rainfall rates. In the first three models, having described the dependencies using copulas, the empirical distribution function of observed rainfall error is numerically approximated and applied to the simulated error fields so that the simulated realizations are similar to those of the observed in terms of the distribution function. In the fourth model, however, the error is assumed to be normally distributed. In all the models, available observations of radar rainfall error (the differences between radar estimates and rain gauge measurements) are used to condition the simulated fields on observations. In order to examine reliability and performance of the developed models, several case studies are presented over a small watershed in Mississippi, USA, and a large watershed in Oklahoma, USA. Both radar reflectivity data (Level II) as well as Stage IV Next Generation Weather Radar (NEXRAD) multi-sensor precipitation estimates are used as input to the models. The simulated rainfall fields obtained from different models are compared with original radar estimates with respect to statistical properties, extreme values and spatio-temporal dependencies. Moreover, a physically based model is used to demonstrate the application of the presented rainfall field generators in streamflow analysis. In subsequent chapters, after introducing the models, their strong and weak points are highlighted and discussed in detail.
Durch die Entwicklung von Wetter-Radarsystem, Satelliten und Techniken der Fernerkundung sind in den letzten Jahren Niederschlagsinformationen in höherer räumlicher wie zeitlicher Auflösung verfügbar geworden, als es Niederschlagsmesser liefern können. Dadurch haben Daten aus der Fernerkundung in den letzten Jahrzehnten verstärkt Einzug in hydrologische und meteorologische Vorhersagen gefunden. Verglichen mit Messwerten von Niederschlagsmessern bieten diese Daten eine höhere räumliche und zeitliche Auflösung. Allerdings bergen sie auch verschiedene Fehlerquellen wie den Effekt, dass der Strahl durch die Erdkrümmung immer weiter über das Gebiet hinaus schießt und er nur teilweise ausgefüllt wird. Hinzu kommen Gerätefehler und Unsicherheiten, Ungleichmäßigkeiten im Höhenprofil der Reflektivität (VPR - verticale profiles of reflectivity), unzulängliche Z-R-Beziehungen, räumliche Abtastmuster, Hardware-Kalibrierung und zufällige Abtastfehler. Darüber hinaus nimmt auch das Wettergeschehen Einfluss auf die Radar-Messwerte. Beispielhaft seien hier große räumliche Ausbreitung von Niederschlagsereignissen in eine Richtung oder der thermodynamische Zustand der Niederschlagskörper, die die Radarschätzungen beeinflussen können, erwähnt. Die durch Fernerkundung erfassten Niederschlags-Daten sind bislang - trotz ausgiebiger Forschung - nicht gut quantifiziert worden. Eine Möglichkeit, diese räumlichen wie zeitlichen Unsicherheiten bezüglich des Niederschlagsverhaltens einzuschätzen, ist die Simulierung eines Ensembles an Niederschlagsfeldern. Diese bestehen aus einer großen Anzahl an Realisationen, von denen jede ein möglicherweise eintretendes Niederschlagsereignis repräsentiert. Stochastisch generierter Niederschlag kann dann als Eingangsgröße für hydrologische und meteorologische Modelle verwendet werden, um die Unsicherheiten der Modellvorhersagen abzuschätzen. Es sind große Anstrengungen unternommen worden, stochastische Modelle zur Simulierung multivariater Regenfelder (Regenmesser, Radar, Satelliten, etc.) zu entwickeln. Eine Alternative, um ein Ensemble von Regenfeldern zu erhalten, ist es, Felder von Fehlern zu simulieren und damit die gemessenen Niederschlagsdaten zu überlagern. Diese Arbeit soll der Untersuchung und Entwicklung verschiedener stochastischer Methoden zur Nachbildung radarbasierter Regenfelder auf Grundlage von Niederschlagsschätzungen aus der Fernerkundung, die mit simulierten Zufallsfehlerfeldern überlagert werden, dienen. Vier unterschiedliche Ansätze werden in dieser Veröffentlichung entwickelt und besprochen. In den ersten beiden Modellen kommen zwei elliptische Copulas - Gaussian- und t-Copula - zur Beschreibung der Abhängigkeitsstrukturen von Radar-Niederschlagsfehlern und zur Simulierung multivariater Niederschlagsfehler-Felder zum Einsatz. Im dritten Modell wird eine asymmetrische v-transformierte Copula zur Fehlersimulation verwendet. Mit dieser können asymmetrisch Abhängigkeiten über die Copulaparameter beschrieben werden. Im vierten Modell werden Regenfelder dadurch erzeugt, dass Niederschlagsschätzungen mit zwei normalverteilten Fehlertermen modifiziert werden: ein absolut unabhängiger Anteil und einer, der dem Ausmaß des Niederschlags proportional ist. Bei den ersten drei Modellen, bei denen die Abhängigkeiten mit Copulas beschrieben wurden, wird die empirische Verteilungsfunktion der beobachteten Niederschlagsfehler numerisch approximiert und auf die simulierten Fehlerfelder angewendet, sodass die simulierten Realisierungen in Hinblick auf die Verteilungsfunktion den beobachteten ähneln. Im vierten Modell wird hingegen angenommen, dass die Fehler normalverteilt sind. Bei allen Modellen werden vorhandene Beobachtungen der Radarniederschlagsfehler (die Differenzen zwischen Radarschätzungen und Messwerten der Regenmesser) herangezogen, um die simulierten Felder auf die Beobachtungen zu konditionieren.
Appears in Collections:02 Fakultät Bau- und Umweltingenieurwissenschaften

Files in This Item:
File Description SizeFormat 
DISS_AMIR_Print.pdf8,68 MBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.