Please use this identifier to cite or link to this item: http://dx.doi.org/10.18419/opus-5176
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPeters, Jochende
dc.contributor.authorTrebin, Hans-Rainerde
dc.date.accessioned2015-12-15de
dc.date.accessioned2016-03-31T08:37:02Z-
dc.date.available2015-12-15de
dc.date.available2016-03-31T08:37:02Z-
dc.date.issued1991de
dc.identifier.other456657754de
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-104412de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/5193-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-5176-
dc.description.abstractCurrent model networks for amorphous Ge contain five-membered rings and pentagonal dodecahedra to explain why in the radial distribution function the third peak of the diamond structure is missing. By presenting an algorithm based on a decoration of the three-dimensional Penrose quasilattice, we prove that this local pentagonal symmetry can be extended globally to an icosahedral quasicrystalline tetracoordinated network. Its structural elements and topological properties coincide with previous hand-built models of random networks. Thus it is suitable for simulating bulk properties of amorphous semiconductors.en
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.classificationHalbleiter , Quasikristall , Tetrakoordinierte Verbindungende
dc.subject.ddc530de
dc.titleTetracoordinated quasicrystalsen
dc.typearticlede
ubs.fakultaetFakultät Mathematik und Physikde
ubs.institutInstitut für Theoretische und Angewandte Physik (aufgelöst)de
ubs.opusid10441de
ubs.publikation.sourcePhysical review B 43 (1991), S. 1820-1823. URL http://dx.doi.org/10.1103/PhysRevB.43.1820de
ubs.publikation.typZeitschriftenartikelde
Appears in Collections:08 Fakultät Mathematik und Physik

Files in This Item:
File Description SizeFormat 
tre53.pdf7,64 MBAdobe PDFView/Open


Items in OPUS are protected by copyright, with all rights reserved, unless otherwise indicated.