Technical note: an approach for handling multiple temporal frequencies with different input dimensions using a single LSTM cell

Abstract

Long short-term memory (LSTM) networks have demonstrated state-of-the-art performance for rainfall-runoff hydrological modelling. However, most studies focus on predictions at a daily scale, limiting the benefits of sub-daily (e.g. hourly) predictions in applications like flood forecasting. Moreover, training an LSTM network exclusively on sub-daily data is computationally expensive and may lead to model learning difficulties due to the extended sequence lengths. In this study, we introduce a new architecture, multi-frequency LSTM (MF-LSTM), designed to use input of various temporal frequencies to produce sub-daily (e.g. hourly) predictions at a moderate computational cost. Building on two existing methods previously proposed by the co-authors of this study, MF-LSTM processes older inputs at coarser temporal resolutions than more recent ones. MF-LSTM gives the possibility of handling different temporal frequencies, with different numbers of input dimensions, in a single LSTM cell, enhancing the generality and simplicity of use. Our experiments, conducted on 516 basins from the CAMELS-US dataset, demonstrate that MF-LSTM retains state-of-the-art performance while offering a simpler design. Moreover, the MF-LSTM architecture reported a 5 times reduction in processing time compared to models trained exclusively on hourly data.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as CC BY