Application of data-driven surrogate models for active human model response prediction and restraint system optimization

dc.contributor.authorHay, Julian
dc.contributor.authorSchories, Lars
dc.contributor.authorBayerschen, Eric
dc.contributor.authorWimmer, Peter
dc.contributor.authorZehbe, Oliver
dc.contributor.authorKirschbichler, Stefan
dc.contributor.authorFehr, Jörg
dc.date.accessioned2023-05-23T10:10:13Z
dc.date.available2023-05-23T10:10:13Z
dc.date.issued2023de
dc.date.updated2023-05-11T06:51:19Z
dc.description.abstractSurrogate models are a must-have in a scenario-based safety simulation framework to design optimally integrated safety systems for new mobility solutions. The objective of this study is the development of surrogate models for active human model responses under consideration of multiple sampling strategies. A Gaussian process regression is chosen for predicting injury values based on the collision scenario, the occupant's seating position after a pre-crash movement and selected restraint system parameters. The trained models are validated and assessed for each sampling method and the best-performing surrogate model is selected for restraint system parameter optimization.en
dc.identifier.issn2297-4687
dc.identifier.other1846240174
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-130731de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/13073
dc.identifier.urihttp://dx.doi.org/10.18419/opus-13054
dc.language.isoende
dc.relation.uridoi:10.3389/fams.2023.1156785de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleApplication of data-driven surrogate models for active human model response prediction and restraint system optimizationen
dc.typearticlede
ubs.fakultaetKonstruktions-, Produktions- und Fahrzeugtechnikde
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Technische und Numerische Mechanikde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten16de
ubs.publikation.sourceFrontiers in applied mathematics and statistics 9 (2023), No.1156785de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
fams-09-1156785.pdf
Size:
3.13 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: