Coordination isomerism in pentamethylcyclopentadienyl-substituted iminophosphanes: from classical structures to a π-complexed iminophosphenium ion

Abstract

Novel iminophosphanes of the type (Me5C5)P=NR [R = C6H2tBu3 (5a), Si-i-Pr3 (5b), SiMe3 (5c)] are prepared via either thermolytic or base-promoted elimination reactions and characterized by analytical and spectroscopic methods. The x-ray crystal structures of 5a,b establish the presence of coordination isomerism of the cyclopentadienyl ring, which at the same time strongly alters the characteristics of the P-N multiple bond. For 5a, η1-attachment of the Me5C5 moiety to the phosphorus and a localized phosphorus-carbon σ-bond are found, and the P-N double bond compares to that of alkylated iminophosphanes (rPN = 155.1 (8) pm). 5b exhibits η2-coordination of the cyclopentadienyl ring leading to increased P-N triple-bond character, as evidenced by shortening of the P-N distance (153.3 (3) pm) and the remarkable opening of the nitrogen valence angle (153.3 (2)°). The structure is discussed as an intramolecular π-complex between a formal cyclopentadienyl anion and an iminophosphenium cation. The 1H and 13C NMR spectra show that rapid elementotropic rearrangements around the five-membered ring take place both in solution and in the solid state. The unique temperature dependence of δ31P in solution together with the considerable differences in δ 31P between the solution and solid states are interpreted in a model assuming a "haptotropic" mechanism for the fluxionality involving dynamic η1/η2-coordination isomerizations in solution. As expected, nucleophilic displacement of the Me5C5 moiety takes place in the reaction of 5b,c with LiC6H2tBu3, yielding the iminophosphanes tBu3H2C6P=NR (R = Si-i-Pr3 (8b), SiMe3 (c)) as products.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By