Quantum nonlinear spectroscopy of single nuclear spins
dc.contributor.author | Meinel, Jonas | |
dc.contributor.author | Vorobyov, Vadim | |
dc.contributor.author | Wang, Ping | |
dc.contributor.author | Yavkin, Boris | |
dc.contributor.author | Pfender, Mathias | |
dc.contributor.author | Sumiya, Hitoshi | |
dc.contributor.author | Onoda, Shinobu | |
dc.contributor.author | Isoya, Junichi | |
dc.contributor.author | Liu, Ren-Bao | |
dc.contributor.author | Wrachtrup, Jörg | |
dc.date.accessioned | 2025-04-22T09:39:33Z | |
dc.date.issued | 2022 | |
dc.date.updated | 2024-11-26T08:17:26Z | |
dc.description.abstract | Conventional nonlinear spectroscopy, which use classical probes, can only access a limited set of correlations in a quantum system. Here we demonstrate that quantum nonlinear spectroscopy, in which a quantum sensor and a quantum object are first entangled and the sensor is measured along a chosen basis, can extract arbitrary types and orders of correlations in a quantum system. We measured fourth-order correlations of single nuclear spins that cannot be measured in conventional nonlinear spectroscopy, using sequential weak measurement via a nitrogen-vacancy center in diamond. The quantum nonlinear spectroscopy provides fingerprint features to identify different types of objects, such as Gaussian noises, random-phased AC fields, and quantum spins, which would be indistinguishable in second-order correlations. This work constitutes an initial step toward the application of higher-order correlations to quantum sensing, to examining the quantum foundation (by, e.g., higher-order Leggett-Garg inequality), and to studying quantum many-body physics. | en |
dc.description.sponsorship | Deutsche Forschungsgemeinschaft (German Research Foundation) | |
dc.description.sponsorship | European Research Council | |
dc.description.sponsorship | Max Planck Society | |
dc.description.sponsorship | Projekt DEAL | |
dc.identifier.issn | 2041-1723 | |
dc.identifier.other | 1926692853 | |
dc.identifier.uri | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-162710 | de |
dc.identifier.uri | https://elib.uni-stuttgart.de/handle/11682/16271 | |
dc.identifier.uri | https://doi.org/10.18419/opus-16252 | |
dc.language.iso | en | |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/820394 | |
dc.relation | info:eu-repo/grantAgreement/EC/H2020/742610 | |
dc.relation.uri | doi:10.1038/s41467-022-32610-8 | |
dc.rights | CC BY | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject.ddc | 530 | |
dc.title | Quantum nonlinear spectroscopy of single nuclear spins | en |
dc.type | article | |
dc.type.version | publishedVersion | |
ubs.fakultaet | Mathematik und Physik | |
ubs.fakultaet | Fakultäts- und hochschulübergreifende Einrichtungen | |
ubs.fakultaet | Externe wissenschaftliche Einrichtungen | |
ubs.fakultaet | Fakultätsübergreifend / Sonstige Einrichtung | |
ubs.institut | 3. Physikalisches Institut | |
ubs.institut | Stuttgart Research Centre of Photonic Engineering (SCoPE) | |
ubs.institut | Zentrum für integrierte Quantenwissenschaft und -technologie (IQST) | |
ubs.institut | Max-Planck-Institut für Festkörperforschung | |
ubs.institut | Fakultätsübergreifend / Sonstige Einrichtung | |
ubs.publikation.seiten | 9 | |
ubs.publikation.source | Nature communications 13 (2022), No. 5318 | |
ubs.publikation.typ | Zeitschriftenartikel |