Design for reliability in advanced technologies using machine learning

dc.contributor.advisorAmrouch, Hussam (Prof. Dr.-Ing.)
dc.contributor.authorKlemme, Florian
dc.date.accessioned2025-04-29T12:50:28Z
dc.date.issued2024de
dc.description.abstractThis thesis focuses on the standard cell library, which is one of the core entities in the digital circuit design flow, to demonstrate the challenges and opportunities of advanced technology nodes. The standard cell library serves as a technology interface between the foundry and the circuit designer, enabling automatic mapping of high-level circuit descriptions to the technology of the foundry through the process of logic synthesis. In the past decade, the standard cell library has been continuously adapted to keep up with the demands of shrinking process nodes. This includes, e.g., the integration of more accurate timing models, process variation, or signal integrity for cross-talk and noise in the circuit. This thesis takes this development to the next level and presents approaches to bring machine learning and transistor self-heating into the standard cell library.en
dc.identifier.other1923958305
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-162990de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16299
dc.identifier.urihttps://doi.org/10.18419/opus-16280
dc.language.isoende
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc004de
dc.titleDesign for reliability in advanced technologies using machine learningen
dc.typedoctoralThesisde
ubs.bemerkung.extern© 2024 IEEE, for all graphics, tables, and text passages reprinted in this thesis, with permission, from our first-author publications.de
ubs.dateAccepted2024-11-22
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.institutInstitut für Technische Informatikde
ubs.publikation.seitenxv, 200de
ubs.publikation.typDissertationde
ubs.thesis.grantorInformatik, Elektrotechnik und Informationstechnikde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
Dissertation Florian Klemme.pdf
Size:
8.71 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: