Fractional calculus for distributions

dc.contributor.authorHilfer, Rudolf
dc.contributor.authorKleiner, Tillmann
dc.date.accessioned2025-06-14T08:55:51Z
dc.date.issued2024
dc.date.updated2025-01-26T22:36:48Z
dc.description.abstractFractional derivatives and integrals for measures and distributions are reviewed. The focus is on domains and co-domains for translation invariant fractional operators. Fractional derivatives and integrals interpreted as -convolution operators with power law kernels are found to have the largest domains of definition. As a result, extending domains from functions to distributions via convolution operators contributes to far reaching unifications of many previously existing definitions of fractional integrals and derivatives. Weyl fractional operators are thereby extended to distributions using the method of adjoints. In addition, discretized fractional calculus and fractional calculus of periodic distributions can both be formulated and understood in terms of -convolution.en
dc.description.sponsorshipProjekt DEAL
dc.identifier.issn1314-2224
dc.identifier.issn1311-0454
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-166000de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16600
dc.identifier.urihttps://doi.org/10.18419/opus-16581
dc.language.isoen
dc.relation.uridoi:10.1007/s13540-024-00306-z
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc530
dc.subject.ddc510
dc.titleFractional calculus for distributionsen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetMathematik und Physik
ubs.institutFakultät Mathematik und Physik (Institutsübergreifend)
ubs.publikation.noppnyesde
ubs.publikation.seiten2063-2123
ubs.publikation.sourceFractional calculus and applied analysis 27 (2024), S. 2063-2123
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
13540_2024_Article_306.pdf
Size:
1.16 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: