A multiscale method for two-component, two-phase flow with a neural network surrogate

Thumbnail Image

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the interface. We consider the sharp-interface motion of the compressible two-component flow and propose a heterogeneous multiscale method (HMM) to describe the flow fields accurately. The multiscale approach combines a hyperbolic system of balance laws on the continuum scale with molecular-dynamics (MD) simulations on the microscale level. Notably, the multiscale approach is necessary to compute the interface dynamics because there is-at present-no closed continuum-scale model. The basic HMM relies on a moving-mesh finite-volume method and has been introduced recently for the compressible one-component flow with phase transitions by Magiera and Rohde in (J Comput Phys 469: 111551, 2022). To overcome the numerical complexity of the MD microscale model, a deep neural network is employed as an efficient surrogate model. The entire approach is finally applied to simulate droplet dynamics for argon-methane mixtures in several space dimensions. To our knowledge, such compressible two-phase dynamics accounting for microscale phase-change transfer rates have not yet been computed.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as CC BY