Model-based vibration control for optical lenses

Thumbnail Image

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

This work presents a contribution to the active image stabilization of optical systems, involving model development, control design, and the hardware setup. A laboratory experiment is built, which demonstrates the vibration sensitivity of a mechanical-optical system. In order to stabilize the undesired image motion actively, a model-based compensation of the image vibration is developed, realized and tested. Beside a linear actuator motion system, a force sensor system and a position sensor system are introduced and analyzed. In particular, various low-cost hardware components of the Arduino platform are used, which support the deployment of the controller software based on Matlab-Simulink. The remaining image motion is measured with a high-speed vision sensor system and the performance of the overall system is assessed.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess