On elementary properties of crossed modules

dc.contributor.authorTruong, Monika
dc.date.accessioned2025-07-04T08:16:02Z
dc.date.issued2015
dc.description.abstractA group models a connected CW-space X where only π_1(X) is allowed to be nontrivial. A crossed module in the sense of Whitehead models a connected CW-space X, where only π_1(X) and π_2(X) are allowed to be nontrivial. We show some elementary assertions for crossed modules that are inspired by concepts from group theory: a Jordan-Hölder Theorem for crossed modules, a Zassenhaus lemma, sometimes called "butterfly lemma", and an orbit lemma for crossed modules. Moreover, we describe the simple crossed modules.en
dc.identifier.other1929793944
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-166680de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16668
dc.identifier.urihttps://doi.org/10.18419/opus-16649
dc.language.isoen
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subject.ddc510
dc.titleOn elementary properties of crossed modulesen
dc.typebachelorThesis
ubs.fakultaetMathematik und Physik
ubs.institutFakultät Mathematik und Physik (Institutsübergreifend)
ubs.publikation.seiten92
ubs.publikation.typAbschlussarbeit (Bachelor)
ubs.unilizenzOK

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
truong_bachelor.pdf
Size:
456.36 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: