On elementary properties of crossed modules
dc.contributor.author | Truong, Monika | |
dc.date.accessioned | 2025-07-04T08:16:02Z | |
dc.date.issued | 2015 | |
dc.description.abstract | A group models a connected CW-space X where only π_1(X) is allowed to be nontrivial. A crossed module in the sense of Whitehead models a connected CW-space X, where only π_1(X) and π_2(X) are allowed to be nontrivial. We show some elementary assertions for crossed modules that are inspired by concepts from group theory: a Jordan-Hölder Theorem for crossed modules, a Zassenhaus lemma, sometimes called "butterfly lemma", and an orbit lemma for crossed modules. Moreover, we describe the simple crossed modules. | en |
dc.identifier.other | 1929793944 | |
dc.identifier.uri | http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-166680 | de |
dc.identifier.uri | https://elib.uni-stuttgart.de/handle/11682/16668 | |
dc.identifier.uri | https://doi.org/10.18419/opus-16649 | |
dc.language.iso | en | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.subject.ddc | 510 | |
dc.title | On elementary properties of crossed modules | en |
dc.type | bachelorThesis | |
ubs.fakultaet | Mathematik und Physik | |
ubs.institut | Fakultät Mathematik und Physik (Institutsübergreifend) | |
ubs.publikation.seiten | 92 | |
ubs.publikation.typ | Abschlussarbeit (Bachelor) | |
ubs.unilizenz | OK |