Realization of a classical Ruddlesden Popper type bilayer nickelate in Sr3Ni-xAlxO7-δ with unusual Ni4+

dc.contributor.authorYilmaz, Hasan
dc.contributor.authorKüster, Kathrin
dc.contributor.authorStarke, Ulrich
dc.contributor.authorClemens, Oliver
dc.contributor.authorIsobe, Masahiko
dc.contributor.authorPuphal, Pascal
dc.date.accessioned2025-07-16T14:05:42Z
dc.date.issued2024
dc.date.updated2025-01-27T18:06:00Z
dc.description.abstractThe discovery of 80 K superconductivity in bilayer La3Ni2O7 at pressures greater than 14 GPa presents a unique opportunity to study a novel class of high-temperature superconductors. Therefore, other bilayer nickelates following the classical (T4+) Ruddlesden-Popper (RP) series of Sr3Ni2O7 would present an interesting new candidate. In this work, we study the stabilization of RP n = 2 phase in Sr3Ni2-xAlxO7-δ, via floating zone growth of crystals. With powder and single-crystal XRD, we study the stability range of the RP-type phase. Our Thermogravimetric Analysis (TGA), X-ray photoelectron spectroscopy (XPS) and gas extraction studies reveal a remarkably high oxidation state of Ni4+ stabilized by chemical strain from Al. The obtained black crystals are insulating in transport and show a magnetic transition around 12 K.en
dc.description.sponsorshipProjekt DEAL
dc.identifier.issn2397-4648
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-168120de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16812
dc.identifier.urihttps://doi.org/10.18419/opus-16793
dc.language.isoen
dc.relation.uridoi:10.1038/s41535-024-00708-5
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc660
dc.titleRealization of a classical Ruddlesden Popper type bilayer nickelate in Sr3Ni-xAlxO7-δ with unusual Ni4+en
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetChemie
ubs.fakultaetExterne wissenschaftliche Einrichtungen
ubs.institutInstitut für Materialwissenschaft
ubs.institutMax-Planck-Institut für Festkörperforschung
ubs.publikation.noppnyesde
ubs.publikation.seiten9
ubs.publikation.sourcenpj quantum materials 9 (2024), No. 92
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
41535_2024_Article_708.pdf
Size:
3.17 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: