Integrated optoelectronic devices using lab‐on‐fiber technology

dc.contributor.authorRicciardi, Armando
dc.contributor.authorZimmer, Michael
dc.contributor.authorWitz, Norbert
dc.contributor.authorMicco, Alberto
dc.contributor.authorPiccirillo, Federica
dc.contributor.authorGiaquinto, Martino
dc.contributor.authorKaschel, Mathias
dc.contributor.authorBurghartz, Joachim
dc.contributor.authorJetter, Michael
dc.contributor.authorMichler, Peter
dc.contributor.authorCusano, Andrea
dc.contributor.authorPortalupi, Simone Luca
dc.date.accessioned2024-08-02T13:03:00Z
dc.date.available2024-08-02T13:03:00Z
dc.date.issued2022de
dc.date.updated2023-11-14T00:09:23Z
dc.description.abstractSilica fibers are nowadays cornerstones in several technological implementations from long‐distance communication, to sensing applications in many scenarios. To further enlarge the functionalities, the compactness, and the performances of fiber‐based devices, one needs to reliably integrate small‐footprint components such as sensors, light sources, and detectors onto single optical fiber substrates. Here, a novel proof of concept is presented to deterministically integrate optoelectronic chips onto the facet of an optical fiber, further implementing the electrical contacting between the chip and fiber itself. The CMOS‐compatible procedure is based on a suitable combination of metal deposition, laser machining, and micromanipulation, directly applied onto the fiber tip. The proposed method is validated by transferring, aligning, and bonding a quantum‐well based laser on the core of a multimode optical fiber. The successful monolithic device integration on fiber shows simultaneously electrical contacting between the laser and the ferrule, and 20% light in‐coupling in the fiber. These results pave new ways to develop the next generation of optoelectronic systems on fiber. The technological approach will set a new relevant milestone along the lab‐on‐fiber roadmap, opening new avenues for a novel class of integrated optoelectronic fiber platforms, featuring unrivaled miniaturization, compactness, and performances levels, designed for specific applications.en
dc.description.sponsorshipProjekt DEALde
dc.identifier.issn2365-709X
dc.identifier.other1897943016
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-147772de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14777
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14758
dc.language.isoende
dc.relation.uridoi:10.1002/admt.202101681de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc530de
dc.subject.ddc620de
dc.titleIntegrated optoelectronic devices using lab‐on‐fiber technologyen
dc.typearticlede
ubs.fakultaetMathematik und Physikde
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Halbleiteroptik und Funktionelle Grenzflächende
ubs.institutStuttgart Research Centre of Photonic Engineering (SCoPE)de
ubs.institutZentrum für integrierte Quantenwissenschaft und -technologie (IQST)de
ubs.institutInstitut für Mikroelektronik Stuttgart (IMS CHIPS)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten9de
ubs.publikation.sourceAdvanced materials technologies 7 (2022), No. 2101681de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
ADMT_ADMT202101681.pdf
Size:
1.91 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: