Uncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentials

dc.contributor.authorZaverkin, Viktor
dc.contributor.authorHolzmüller, David
dc.contributor.authorChristiansen, Henrik
dc.contributor.authorErrica, Federico
dc.contributor.authorAlesiani, Francesco
dc.contributor.authorTakamoto, Makoto
dc.contributor.authorNiepert, Mathias
dc.contributor.authorKästner, Johannes
dc.date.accessioned2025-07-14T13:48:49Z
dc.date.issued2024
dc.date.updated2025-01-27T13:57:48Z
dc.description.abstractEfficiently creating a concise but comprehensive data set for training machine-learned interatomic potentials (MLIPs) is an under-explored problem. Active learning, which uses biased or unbiased molecular dynamics (MD) to generate candidate pools, aims to address this objective. Existing biased and unbiased MD-simulation methods, however, are prone to miss either rare events or extrapolative regions-areas of the configurational space where unreliable predictions are made. This work demonstrates that MD, when biased by the MLIP’s energy uncertainty, simultaneously captures extrapolative regions and rare events, which is crucial for developing uniformly accurate MLIPs. Furthermore, exploiting automatic differentiation, we enhance bias-forces-driven MD with the concept of bias stress. We employ calibrated gradient-based uncertainties to yield MLIPs with similar or, sometimes, better accuracy than ensemble-based methods at a lower computational cost. Finally, we apply uncertainty-biased MD to alanine dipeptide and MIL-53(Al), generating MLIPs that represent both configurational spaces more accurately than models trained with conventional MD.en
dc.description.sponsorshipDeutsche Forschungsgemeinschaft
dc.identifier.issn2057-3960
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-167890de
dc.identifier.urihttps://elib.uni-stuttgart.de/handle/11682/16789
dc.identifier.urihttps://doi.org/10.18419/opus-16770
dc.language.isoen
dc.relation.uridoi:10.1038/s41524-024-01254-1
dc.rightsCC BY
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject.ddc540
dc.subject.ddc620
dc.titleUncertainty-biased molecular dynamics for learning uniformly accurate interatomic potentialsen
dc.typearticle
dc.type.versionpublishedVersion
ubs.fakultaetChemie
ubs.fakultaetMathematik und Physik
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtung
ubs.institutInstitut für Theoretische Chemie
ubs.institutInstitut für Stochastik und Anwendungen
ubs.institutFakultätsübergreifend / Sonstige Einrichtung
ubs.publikation.noppnyesde
ubs.publikation.seiten18
ubs.publikation.sourcenpj computational materials 10 (2024), No. 83
ubs.publikation.typZeitschriftenartikel

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
41524_2024_Article_1254.pdf
Size:
7.57 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: