Tackling xEV battery chemistry in view of raw material supply shortfalls

dc.contributor.authorKarabelli, Duygu
dc.contributor.authorKiemel, Steffen
dc.contributor.authorSingh, Soumya
dc.contributor.authorKoller, Jan
dc.contributor.authorEhrenberger, Simone
dc.contributor.authorMiehe, Robert
dc.contributor.authorWeeber, Max
dc.contributor.authorBirke, Kai Peter
dc.date.accessioned2024-03-15T13:29:23Z
dc.date.available2024-03-15T13:29:23Z
dc.date.issued2020de
dc.date.updated2023-11-14T05:54:12Z
dc.description.abstractThe growing number of Electric Vehicles poses a serious challenge at the end-of-life for battery manufacturers and recyclers. Manufacturers need access to strategic or critical materials for the production of a battery system. Recycling of end-of-life electric vehicle batteries may ensure a constant supply of critical materials, thereby closing the material cycle in the context of a circular economy. However, the resource-use per cell and thus its chemistry is constantly changing, due to supply disruption or sharply rising costs of certain raw materials along with higher performance expectations from electric vehicle-batteries. It is vital to further explore the nickel-rich cathodes, as they promise to overcome the resource and cost problems. With this study, we aim to analyze the expected development of dominant cell chemistries of Lithium-Ion Batteries until 2030, followed by an analysis of the raw materials availability. This is accomplished with the help of research studies and additional experts’ survey which defines the scenarios to estimate the battery chemistry evolution and the effect it has on a circular economy. In our results, we will discuss the annual demand for global e-mobility by 2030 and the impact of Nickel-Manganese-Cobalt based cathode chemistries on a sustainable economy. Estimations beyond 2030 are subject to high uncertainty due to the potential market penetration of innovative technologies that are currently under research (e.g. solid-state Lithium-Ion and/or sodium-based batteries).en
dc.description.sponsorshipMinistry of the Environment, Climate Protection and the Energy Sector Baden-Württembergde
dc.identifier.issn2296-598X
dc.identifier.other1883629047
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-140955de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/14095
dc.identifier.urihttp://dx.doi.org/10.18419/opus-14076
dc.language.isoende
dc.relation.uridoi:10.3389/fenrg.2020.594857de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc621.3de
dc.titleTackling xEV battery chemistry in view of raw material supply shortfallsen
dc.typearticlede
ubs.fakultaetInformatik, Elektrotechnik und Informationstechnikde
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Photovoltaikde
ubs.institutDeutsches Zentrum für Luft- und Raumfahrt e. V. (DLR)de
ubs.institutFraunhofer Institut für Produktionstechnik und Automatisierung (IPA)de
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten13de
ubs.publikation.sourceFrontiers in energy research 8 (2020), No. 594857de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 3 of 3
Thumbnail Image
Name:
datasheet1.pdf
Size:
492.17 KB
Format:
Adobe Portable Document Format
Description:
Supplement
Thumbnail Image
Name:
datasheet2.pdf
Size:
432.4 KB
Format:
Adobe Portable Document Format
Description:
Supplement
Thumbnail Image
Name:
fenrg-08-594857.pdf
Size:
1.24 MB
Format:
Adobe Portable Document Format
Description:
Artikel

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: