Lines on K3 quartic surfaces in characteristic 3
Date
2022
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
We investigate the number of straight lines contained in a K3 quartic surface X defined over an algebraically closed field of characteristic 3. We prove that if X contains 112 lines, then X is projectively equivalent to the Fermat quartic surface; otherwise, X contains at most 67 lines. We improve this bound to 58 if X contains a star (ie four distinct lines intersecting at a smooth point of X). Explicit equations of three 1-dimensional families of smooth quartic surfaces with 58 lines, and of a quartic surface with 8 singular points and 48 lines are provided.
Description
Keywords
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess
