Monte Carlo Tree Search Algorithmen für das Brettspiel ”Scotland Yard”

Thumbnail Image

Date

2015

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Monte Carlo Algorithmen haben in letzter Zeit immer mehr an Bedeutung gewonnen. Vor allem das Einsetzen von Monte Carlo Algorithmen zum Erstellen und randomisierten Absuchen eines Suchbaums hat neue Wege im Bereich der Künstlichen Intelligenz geschaffen. In der vorangegangenen Arbeit von Minorics wurden für das Brettspiel Scotland Yard KIs für die Steuerung von Mister X entwickelt. Diese KI-Algorithmen haben jedoch keine Planung der Züge im klassischen Sinn vorgenommen. Eine Steuerung der Detektive wurde zudem nicht implementiert. Diese Arbeit erweitert die Ergebnisse der vorangegangenen Arbeit durch das Umsetzen von KIs zur Steuerung der Detektive und durch das Einsetzen von Monte-Carlo-Tree-Search-Algorithmen für die Zugplanung. Neben der Implementierung der einzelnen KIs steht auch deren ausführliche Evaluation im Mittelpunkt der Arbeit. Diese wurde anhand von umfassenden Testspielen durchgeführt, bei den jeweils verschiedene KIs für Mister X und die Detektive gegeneinander evaluiert werden.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By