Learning soft millirobot multimodal locomotion with sim‐to‐real transfer

dc.contributor.authorDemir, Sinan Ozgun
dc.contributor.authorTiryaki, Mehmet Efe
dc.contributor.authorKaracakol, Alp Can
dc.contributor.authorSitti, Metin
dc.date.accessioned2024-10-30T16:05:21Z
dc.date.available2024-10-30T16:05:21Z
dc.date.issued2024de
dc.date.updated2024-10-15T19:19:57Z
dc.description.abstractWith wireless multimodal locomotion capabilities, magnetic soft millirobots have emerged as potential minimally invasive medical robotic platforms. Due to their diverse shape programming capability, they can generate various locomotion modes, and their locomotion can be adapted to different environments by controlling the external magnetic field signal. Existing adaptation methods, however, are based on hand‐tuned signals. Here, a learning‐based adaptive magnetic soft millirobot multimodal locomotion framework empowered by sim‐to‐real transfer is presented. Developing a data‐driven magnetic soft millirobot simulation environment, the periodic magnetic actuation signal is learned for a given soft millirobot in simulation. Then, the learned locomotion strategy is deployed to the real world using Bayesian optimization and Gaussian processes. Finally, automated domain recognition and locomotion adaptation for unknown environments using a Kullback‐Leibler divergence‐based probabilistic method are illustrated. This method can enable soft millirobot locomotion to quickly and continuously adapt to environmental changes and explore the actuation space for unanticipated solutions with minimum experimental cost.en
dc.description.sponsorshipMax Planck Societyde
dc.description.sponsorshipHORIZON EUROPE European Research Councilde
dc.description.sponsorshipThe Ministry of National Education of the Republic of Turkiyede
dc.identifier.issn2198-3844
dc.identifier.issn2198-3844
dc.identifier.other1908109114
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-151804de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/15180
dc.identifier.urihttp://dx.doi.org/10.18419/opus-15161
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/843531de
dc.relation.uridoi:10.1002/advs.202308881de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/de
dc.subject.ddc620de
dc.titleLearning soft millirobot multimodal locomotion with sim‐to‐real transferen
dc.typearticlede
ubs.fakultaetFakultäts- und hochschulübergreifende Einrichtungende
ubs.fakultaetExterne wissenschaftliche Einrichtungende
ubs.institutStuttgarter Zentrum für Simulationswissenschaften (SC SimTech)de
ubs.institutMax-Planck-Institut für Intelligente Systemede
ubs.publikation.seiten11de
ubs.publikation.sourceAdvanced science 11 (2024), No. 2308881de
ubs.publikation.typZeitschriftenartikelde

Files

Original bundle

Now showing 1 - 1 of 1
Thumbnail Image
Name:
ADVS_ADVS8521.pdf
Size:
1.89 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
3.3 KB
Format:
Item-specific license agreed upon to submission
Description: