An atomistic view on the uptake of aromatic compounds by cyclodextrin immobilized on mesoporous silica

Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

The effect of immobilized β-cyclodextrin (bCD) molecules inside a mesoporous silica support on the uptake of benzene and p -nitrophenol from aqueous solution was investigated using all-atom molecular dynamics (MD) simulations. The calculated adsorption isotherms are discussed with respect to the free energies of binding for a 1:1 complex of bCD and the aromatic guest molecule. The adsorption capacity of the bCD-containing material significantly exceeds the amount corresponding to a 1:1 binding scenario, in agreement with experimental observations. Beside the formation of 1:2 and, to a lesser extent, 1:3 host:guest complexes, also host-host interactions on the surface as well as more unspecific host-guest interactions govern the adsorption process. The demonstrated feasibility of classical all-atom MD simulations to calculate liquid phase adsorption isotherms paves the way to a molecular interpretation of experimental data that are too complex to be described by empirical models.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By

Creative Commons license

Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess