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Chapter 1  

 

General Introduction 

 

Magnetism is an attractive and exciting area in condensed matter physics, fascinating for 

fundamental research and various technological applications. Magnetism has been studied on natural 

permanent magnetic materials for almost three thousand years. Today, scientific and technological 

interests in magnetism extend over a wide field of different subjects, from massive magnets to low-

dimensional systems. Technologically, magnetic materials issue a variety of different applications in 

electrical power generation, power generators, transmission lines, and conversion and transportation 

systems including suitable permanent magnets. In recent times, magnetic systems with reduced 

dimensions have been studied and applied: as high-density magnetic storage devices, sensors, in 

spintronic applications, in nanomedicine, and many other fields.  Such systems have different physical 

and chemical properties because e.g. the surface to volume ratio increases, the interaction between 

different grains changes and the dimensions of the grains often approach the critical domain size for 

magnetic systems. In a number of studies, especially the magnetic properties of such nano-sized 

magnets have been engineered by precise size control and by varying the composition of the magnetic 

materials [1-5]. Examples of these systems are exchange-spring magnets that are subject of this thesis.  

The exchange-spring magnet (ESM), also called exchange-coupled composition (ECC) magnet, is 

composed of magnetically hard and soft materials. Therefore, they exhibit as an advanced attribute the 

huge coercivity Hc of the hard magnets and the high magnetization Ms of the soft magnets (see Fig. 

1.1).  To realize these ECC magnets, rare-earth permanent magnets or L10-phase alloys (e.g. FePt, 

CoPt, FePd and MnAl) with strong uniaxial anisotropy are exchange-coupled with transition metals, 

such as pure Fe, Co, Ni, or soft magnetic alloys such as Permalloy. As a result, the magnetic hysteresis 

loop reflects the combination of hard and soft magnetic components (see Fig. 1.1). Therefore, the ideal 

hysteresis loops of exchange spring magnets can have much higher energy products than those of the 

components themselves which are desirable for many applications, in particular also for traction 

motors, electric vehicles and magnetic data storage devices. In addition to combining magnetically 

hard and soft materials, tuning the size of the magnetic particles can be used to modify the magnetic 

properties. This has been shown by our group in previous research by tuning in this way the coercive 

field of pure FePt nanomagnets [3].  

In this thesis, FePt/Co exchange-spring nanomagnets of various sizes were prepared starting 

with thin Co/FePt films on single crystalline MgO. The films consisted of layers of chemically ordered 

L10-phase FePt (magnetically hard) and - on top – layers of Co (magnetically soft) of various 

thicknesses. The films were nano-patterned in order to obtain the desired nano-magnets. The structures 

were capped by a thin Pt film as a protective layer.  In the second set of samples, thin Pt layers were 

introduced as buffer layers in between the FePt and the Co films.  

L10-FePt is well known as a typical rare earth-free hard-magnetic material with high magneto-

crystalline anisotropy (Ku = 6.6 MJ/m3, JS= 1.43 T). The chemically ordered L10 phase shows a face-

centered tetragonal (fct) crystal structure. The magnetization of these thin films on MgO (100) 

substrates orients the tetragonal c-axis perpendicular to the film plane. To realize high coercive fields 

in the nano-magnets, the samples can be post-annealed. 
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As transition metal, Co is appropriate as soft magnet component (K1 = 0.45 MJ/m3, JS= 1.76 T). As 

demonstrated in this thesis, the general magnetic behavior of such a FePt/Co couple can be modified 

by changing the nominal thickness of the Co layer or by introducing a thin Pt buffer layer in between.  

The structural properties of the samples were investigated by X-ray diffraction (XRD), 

atomic/magnetic force microscopy (AFM, MFM), scanning electron microscopy (SEM) and 

transmission electron microscopy, the magnetic properties by SQUID magnetometry and the XMCD 

(X-ray circular dichroism) technique.  

 

Fig.1. 1 The magnetic hysteresis loops of hard (blue), soft (orange) and exchange-spring magnets (green). 

H is the applied external magnetic field and M is the magnetization of the materials. 
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Structure of the thesis 

 

Chapter 2 introduces the basics of magnetism, outlines the fundamentals of  micromagnetism, 

and gives an introduction to the theory and application of the method of “First order reverse curves 

(FORCs)” [6, 7] and into X-ray circular dichroism (XMCD) measurements[8], techniques that 

allow to study magnetic properties in detail.  

 

Chapter 3 deals with exchange-spring magnet materials. Hard magnets and soft magnets are 

introduced. Especially, the L10-FePt hard magnet and the Co soft magnet are explained in detail.  

 

Chapter 4  presents the fabrication routes and the various techniques applied to characterize the 

structure and the magnetic properties of the samples. The sample structure was studied by X-ray 

diffraction (XRD), atomic/magnetic force microscopy (AFM, MFM), scanning electron 

microscopy (SEM) and transmission electron microscopy, the magnetic properties by SQUID 

magnetometry and XMCD (X-ray circular dichroism).  To vary the coercivity, the size and 

composition of the magnetic particles were changed. 

 

Chapter 5 describes how the magnetic properties of the nanosized exchange-spring magnets, 

which are artificially fabricated, change with different thicknesses of the Co layer. This gives an 

idea how to optimize the ES nanomagnets. 

 

Chapter 6 describes how the strength of the exchange coupling between the Co and the FePt 

layer can be controlled by a Pt interlayer and how this influences the magnetic properties of 

naturally formed nano-islands of exchange spring magnetics. The presence of different 3d 

elements involved- here Fe and Co – allows in particular to investigate the magnetic reversal 

process by element-specific XMCD. 

 

Chapter 7 describes the realization of the large coercive field and maximum energy product 

(BH)max with L10-FePt hard magnetic phases.  
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Chapter 2  

 

Basic of Magnetism 

This chapter provides a brief summary of the basics of magnetism as found in standard text 

books.[8-10] General magnetism, types of magnetism and related phenomena, micromagnetism and 

the theory of the experimental techniques will be explained. 

 

2.1 The Origin of Magnetism 

 Magnetism originates from the spin and orbital magnetic moment of electrons in atoms. The 

orbital motion of an electron with a negative charge around the nucleus is similar to the current in a 

loop of wire. The spin is the intrinsic angular momentum of an electron. The magnetic moments of 

nuclei of atoms are about 2000 times smaller than the moments of the electrons. To describe the 

properties of the atoms properly, quantum mechanics must be applied. Here, quantum numbers 

describe the state of electron levels and are called angular momentum l, spin projection quantum 

number s and the total angular momentum j. 

 
Fig.2. 1 Origin of Magnetism. Magnetism in materials originates from the electrons of the atom. Electrons have 

a spin moment and an orbital moment. The latter is due to the orbital motion of the electrons around the nucleus. 

The spin moments of the nuclei are negligible.  

 

2.1.1 Magnetic moment  
The magnetic moment 𝑚⃗⃗  of a current loop is given by 

 𝑚⃗⃗ = 𝐼𝑆𝑛̂ (2.1) 

Here, 𝑛̂  is the unit vector with direction perpendicular to the current loop in the right-hand-rule 

direction. The amount of the magnetic moment 𝑚⃗⃗   is equal to the product of the area S of the current 

loop and the current I through this loop. Therefore, the unit for magnetic moment is ampere square 

meter (A 𝑚2) or joule per tesla (J/T) in the International System of Units (SI). The quantity J/T says 

that the magnetic moment is the ratio of the magnetic energy and the external field. 
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In an atom, the spin and orbital angular momentum are present, if the atomic level as the 3d and 5d 

shell in transition elements and the 4f shell in Rare Earths are unfilled. Hereby, in the L-S coupling, 

scheme following Hunds Rule the individual electrons couple to the total spin momentum S and an 

angular orbital momentum L. The total angular momentum J is given by J = L-S for less than half-

filled shells and J = L + S for more than half-filled levels. For the most important magnetic transition 

elements Fe, Co and Ni and the 5d element Pt the corresponding values are listed in Table. 2.1. It also 

includes the measured magnetic moments for the pure metal, which differ significantly. This 

phenomenon will be outlined in more detail in the next chapter  

 S L J mj[𝜇𝐵] (g[J(J+1)]1/2) 
Pure metal 

ms [𝜇𝐵] ml[𝜇𝐵] 

Fe 2 2 4 6.7 1.98 0.083 

Co 1.5 3 4.5 6.63 1.55 0.153 

Ni 1 3 4 5.59 0.6 0.06 

Table 2. 1 Spin, orbital, and total magnetic moment of Fe, Co, Ni, and Pt. [11, 12] 

 

2.1.2 Magnetization and Field 
 The magnetization or magnetic polarization expresses the vector field density of the magnetic 

moment in a magnetic materials. The magnetization also describes the magnetic induction by an 

external magnetic field and is defined as the vector sum of all magnetic moments in the magnetic 

material. Generally, magnetic moments per unit volume are assumed, in some cases also moments per 

unit mass are considered. 

 
𝑀⃗⃗ =

1

𝑉
∑𝜇 =

𝑚⃗⃗ 

𝑉
 (2.2) 

In other words, the induced magnetic moment in a certain volume of a homogeneously magnetized 

medium is given by multiplication of magnetization by the volume. 

 In the applied magnetic field, the magnetic moments in materials tend to align to the field direction. In 

most case, the magnetization is just proportional to the external magnetic field. These kinds of 

magnetization are described by: 

 
𝑀⃗⃗ = 𝜒𝐻⃗⃗ , 𝜒 =

𝜕𝑀

𝜕𝐻
 (2.3) 

where χ is the magnetic susceptibility which is a dimensionless quantity. The 𝐻 ⃗⃗⃗⃗  is the magnetic field.  

The magnetic flux density 𝐵⃗  in a material is represent by,  

 𝐵⃗ = 𝜇0(𝐻⃗⃗ + 𝑀⃗⃗ ) = 𝜇0(1 + 𝜒)𝐻⃗⃗ = 𝜇𝑟𝜇0𝐻⃗⃗ = 𝜇𝐻⃗⃗  (2.4) 

Here, 𝜇0 is vacuum permeability with 4π ∙ 10−7 𝑉𝑠 𝐴𝑚⁄ . Materials with small χ are called diamagnetic 

or paramagnetic, according to the minus or plus sign of χ. In strong magnets, such as ferromagnts, the 

magnetic moments are correlated and ordered even at field zero. 
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2.2 The Classes of Magnetic Materials 

 Magnetic materials can behave quite differently in the presence of an external magnetic field. 

Most materials can be classified as diamagnetic, paramagnetic or ferromagnetic and ferrimagnetic. 

 

2.2.1 Ferromagnetism 

Ferromagnetism results from a spontaneous magnetization even without external magnetic 

field. Ferromagnetic are only a few metals such as iron, cobalt, nickel and rare earth metals at low 

temperatures. Most of the ferromagnets are alloys. Among them, rare-earth magnets are very strong 

permanent magnets e.g. alloys of samarium and neodymium with cobalt or iron. Hereby, due to so 

called positive exchange interaction, spontaneous magnetic moments occur. This long-range ordering 

phenomenon forms a domain; i.e. regions with the magnetic moments line up parallel. An applied 

external magnetic field orients the domains in the field direction. Ferromagnets remember their 

magnetic history (in dependence of the magnetic field). The magnetic history is called hysteresis. It 

includes the saturation magnetization, remanence, and coercive field.  

For a detailed understanding of ferromagnetism, a number of different models exist. Among 

them, the Stoner criterion and the Heisenberg model will be discussed here. 

 

Stoner model for metallic ferromagnets 

Spontaneous magnetizations in ferromagnetic metals occur, if the Stoner criterion is fulfilled. Non-

magnetic metals have equal, ferromagnetic metals an imbalanced density of states (DOS) of spin- up 

and down electrons at Fermi level. If metals are in a magnetic field, their spin population is properly 

aligned in the field. Due to spontaneous splitting electrons gain kinetic energy within a narrow energy 

strip (δE) at the Fermi edge (EF). The total increase in kinetic energy is given by 

 ∆𝐸𝐾.𝐸. =
1

2
𝑔(𝐸𝐹)(𝛿𝐸)2 

(2.5) 

with the density of electron states at the Fermi level 𝑔(𝐸𝐹). 

On the other side, the interactions of spins with the molecular field decrease potential energy. 

The molecular field (𝜆𝑴 ) is due to exchange by Coulomb interaction and proportional to the 

magnetization M. The number density of up and down electrons is 𝑛↑/↓ =
1

2
(𝑛 ± 𝑔(𝐸𝐹)𝛿𝐸), with the 

total number density of electrons, n.  The magnetization can be expressed by the difference of the 

number density of spin up and down electrons, 𝑀 = 𝜇𝐵(𝑛↑ − 𝑛↓). The molecular field energy is 

∆𝐸𝑃.𝐸. = −∫ 𝜇0(𝜆𝑀
′)𝑑𝑀′

𝑀

0

= −
1

2
𝜇0𝜆𝑀

2 = −
1

2
𝜇0𝜇𝐵

2𝜆(𝑛↑ − 𝑛↓)
2 = −

1

2
𝑈(𝑔(𝐸𝐹)(𝛿𝐸))2 (2.6) 

with Coulomb energy 𝑈 = 𝜇0𝜇𝐵
2𝜆.  

The total change in energy is given by 

 ∆E = ∆𝐸𝐾.𝐸. + ∆𝐸𝑃.𝐸. =
1

2
𝑔(𝐸𝐹)(𝛿𝐸)2(1 − 𝑈𝑔(𝐸𝐹)) 

(2.7) 

Thus spontaneous ferromagnetism is possible, if the total change in energy is less than zero. ∆𝐸 < 0.  
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It means 

 𝑈𝑔(𝐸𝐹) ≥ 1 
(2.8) 

This is the Stoner criterion. Large density of state at Fermi energy and the strong Coulomb effects are 

favorable for ferromagnetism. In the absence of an applied magnetic field, the exchange splitting 𝛿𝐸, 

which is the energy splitting between the spin-up and -down bands, is due to spontaneous 

ferromagnetism.  

 
Fig.2. 2 Density of state (DOS) of spontaneous splitting in energy bands without an applied magnetic field. 

Ferromagnetic materials can become spin-split spontaneously.  

 

Heisenberg Model 

In this model, the magnetic interaction is estimated in the frame of a mean field approximation. 

A single magnetic moment produces a magnetic field interacting with the neighbors and aligning them. 

The exchange energy can be described by the Heisenberg Hamiltonian: 

 𝐻̂ = −∑𝐽𝑖𝑗𝑆 𝑖 ∙ 𝑆 𝑗
𝑖,𝑗

 (2.9) 

Jij is the exchange constant between neighboured spins. 𝑆𝑖
⃗⃗⃗   and  𝑆𝑗⃗⃗⃗   represent their spin moments. 

Positive Jij value is meant ferromagnetic interaction, negative Jij value in an anitoferro- or ferri-

magnetic. To explain magnetic ordering in an external magnetic field, the Heisenberg model is used as 

a mathematical model in statistical mechanics. 

 𝐻̂ = −∑𝐽𝑖𝑗𝑆 𝑖 ∙ 𝑆 𝑗 − 𝜇 ∑𝑆 𝑖 ∙ 𝐻

𝑖𝑖,𝑗

 (2.10) 

The second term in the Hamiltonian of Eqn. 2.10 describes the interaction with the external magnetic 

field H.  

All ferromagnets have a critical temperature, known as the Curie temperature Tc. Pure Iron, Cobalt, 

and Nickel have critical temperatures Tc of ~ 1043 K, 1388 K, and 627 K, respectively.[11] Above TC, 

ferromagnetic phase changes into paramagnetic. Here the individual magnetic moments react 

independently on temperature. The spins are uncorrelated and oriented randomly. Below TC, there 

exists an ordered magnetization even at field zero with spontaneous ferro- or ferromagnetic 

magnetization. 
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The temperature dependence of spontaneous magnetization is described by Bloch’s law. 

 𝑀⃗⃗ (𝑇) =  𝑀⃗⃗ (0)(1 − (𝑇 𝑇𝐶⁄ )3 2⁄ ) (2.11) 

where 𝑀⃗⃗ (0)  is the spontaneous magnetization at 0K. It is depicted in Fig. 2.3. With increasing 

temperature the spontaneous magnetization decrease and is zero at TC. The Curie temperature TC can 

be determined by the Curie-Weiss law (χ = 𝐶 (𝑇 − 𝑇𝐶⁄ )).  

0 1

1

M
(T

)/
M

(0
)

T/Tc
 

Fig.2 3 Temperature dependence of the saturation magnetization. Bloch’s T3/2 law. Spins in of graph line 

show correlated thermal fluctuations and outside random thermal fluctuations. 

 

2.2.2 Antiferromagnetism and Ferrimagnetism 

Also, antiferromagnetic and ferrimagnetic materials are materials with ordered magnetic spins. 

In these materials, neighboring magnetic moments are aligned in the opposite direction. If the 

magnitudes of spins are the same, the materials are called antiferromagnetic; if they are different, they 

called ferrimagnetic. (see figure 2.4) Also, the antiferromagnetism is temperature dependent with a 

magnetic phase transition at the Néel temperature. If no external magnetic field is applied, the total 

magnetization of antiferromagnetic materials vanishes. With an external magnetic field applied, 

antiferromagnetic materials align their spin component of the antiferromagnetic coupling sublattice. In 

practice, antiferromagnets adopt multidomain configuration. Alloys of iron manganese (FeMn) and 

nickel oxide (NiO) are typical antiferromagnetic materials. 

 Ferrimagnets exhibits, like ferromagnets, show a spontaneous magnetization below the Curie 

temperature. Ferrimagnetism has the magnetization compensation point with a net magnetic moment 

of zero. This is different from ferromagnetism. Ferrimagnetism is found in ferrites, magnetite (Fe3O4) 

and magnetic garnets. 

 
Fig.2. 4 Magnetic structure. Spin ordering in ferro-, antiferro- and ferri- magnets. Ferromagnets order with one 

direction. And antiferromagnets order opposite direction with the same strength. Ferrimagnet also orders 

opposite direction, though strengths are different.  
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2.2.3 Paramagnetism 

Paramagnetic media have a positive susceptibility  𝜒 . When an external magnetic field is 

applied, the magnetic moment aligned parallel to the field direction. In field zero, the magnetic 

moment vanishes. Most chemical elements with an open atomic shell are paramagnetic. The 

magnetization 𝑀⃗⃗  as a function of the applied magnetic field 𝐻⃗⃗  and the temperature T is given by 

 𝑀⃗⃗ = 𝑁𝑔𝐽 𝜇𝐵𝐵𝐽(𝑥), 𝑀⃗⃗ 𝑆 = 𝑁𝑔𝐽 𝜇𝐵 (2.12) 

 
𝐵𝐽 =

2𝐽 + 1

𝐽
coth (

2𝐽 + 1

2𝐽
𝑥) −

1

2𝐽
(𝑐𝑜𝑡ℎ

1

2𝐽
𝑥) , (𝑥 ≡ 𝑔𝐽𝜇𝐵𝐻 𝑘𝐵𝑇⁄ ) (2.13) 

Here Ms is the saturation magnetization, g is Landé-factor, 𝐽  is the total angular momentum. 𝐵𝐽(𝑥) is 

the Brillouin function. At low magnetic field and not to low temperatures the susceptibility can be 

approximated by:  

 𝑀⃗⃗ 

𝐻⃗⃗ 
=

𝑁𝐽 (𝐽 + 1)𝑔2𝜇𝐵
2

3𝑘𝐵𝑇
=

𝐶

𝑇
, 𝐶 =

𝑁

3𝑘𝐵
𝜇𝑒𝑓𝑓

2 , ( 𝜇𝑒𝑓𝑓 = 𝑔√𝐽 (𝐽 + 1)𝜇𝐵) (2.14) 

This formula is called Curie law.  The Curie constant C is a material specific constant. The 

magnetization 𝑀⃗⃗  is related to temperature T.  

 
Fig.2. 5 Temperature dependence of the magnetic susceptibility in para-, ferro- and antiferro-magnets. 

The magnetic structure of the material can be assumed by temperature with Curie temperature TC for 

ferromagnetism, Néel temperature TN for antiferromagnetism. [2] 
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Fig.2. 6 Brillouin function. The Brillouin function is a special function for calculation of an ideal paramagnetic 

material in statistical mechanics. The magnetization is related to the applied magnetic field and the total angular 

momentum quantum number J in Eqn. (2.13). 

 

2.2.4 Diamagnetism 

 The diamagnetism is described by Larmor susceptibility. In atom, electrons generate a current 

around the nuclei. A magnetic field B applied to an electron (charge e and mass m) produces a current 

that causes a magnetic moment opposite to the field. The current of Z electrons is given by: 

 
𝐼 = −

𝑍𝑒2𝐵

4𝜋𝑚
 (2.55) 

The magnetic moment 𝑚⃗⃗  of a current loop is given by the product of current and area of the loop. The 

average loop area is assumed to be  π < 𝜌2 > with ρ being the mean radius. Therefore, the magnetic 

moment is: 

 
𝑚⃗⃗ = 𝐼 × 𝑎𝑟𝑒𝑎 = −

𝑍𝑒2𝐵

4𝑚
< 𝜌2 > =  𝑐𝐻⃗⃗  (2.16) 

where c is small negative constants. 

All atoms exhibit diamagnetism. 
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2.3 Basics of Ferromagnetic Hysteresis loop 
 

The magnetic material behavior as a function of an external magnetic field is characterized by 

the hysteresis loop, i.e. the relation between external magnetic field H and the sample magnetization M. 

Characteristic properties are the saturation magnetization Ms, the remanence Mr, and the coercivity HC, 

(see, Fig 2.7). 

 

Fig.2. 7 Schematic hysteresis loop. a) Characteristic properties in hysteresis loop.[5] Change of magnetization 

M in ferromagnet by an applied magnetic field H is indicated by the hysteresis loop. By increasing applied field, 

magnetization is approached magnetic saturation. If the applied field reaches to zero, the retained magnetization 

is called remanence Mr. The applied field to decrease magnetization to zero after saturation is coercivity or 

coercive field HC. b) Typical hysteresis loops in hard and soft magnets.[6]  

The saturation magnetization MS is the maximal value. By reducing the magnetic field to zero, the 

remaining magnetization is defined as remanence Mr. Increasing of the magnetic field to opposite 

direction removes the magnetization at the coercive field HC. Continuously, increasing the applied 

field along the negative direction provides opposite saturation magnetization. By forward turning the 

magnetic field the M(H) curve forms a closed loop.  

Fig. 2.7 b) shows a typical hysteresis loop for hard and soft magnets. Hard magnetic materials are used 

as stable, permanent magnets. Very soft magnetic materials are easily magnetized and demagnetized 

with a smaller coercivity. 
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The coercivity can vary between the lowest values of 10-5 mT to about 12 T, as for Mu-metal (76 % Ni, 

5 % Cu, 2 % Cr) and L10-phase FePt, respectively (as also shown in this thesis). The highest saturation 

magnetization is approached in Ho metal with a value of 3 T (at 4K, H > 3T, TC ~ 20 K) 

The magnetic anisotropy energy (MAE) is a prerequisite for hysteresis. It depends on the preferred 

direction of the magnetization by the crystal structure and the shape of the sample or internal gains. 

The crystal structure dependent anisotropy is called magnetocrystalline anisotropy (MCA) and results 

from the spin-orbit interaction, since the orbital motion of the electrons couples with the crystal 

electric field. The other contribution to the MAE is the shape anisotropy and related to the 

demagnetizing field which depends on the geometry of the system. The demagnetizing field will be 

explained in more details later on.  

One technologically significant value for permanent magnets is the energy product (BH)max. Nowadays, 

the highest value of 59 MGOe was found for NdFeB.[13] The maximum energy product can be 

deduced from the hysteresis as shown in Fig. 2.8. 

 

Fig.2. 8 The maximum energy product (BH)max calculation from BH curve 
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2.3.1 The Stoner-Wohlfarth (S-W) model 

The Stoner-Wohlfarth model is one of the most commonly used models for the numerical 

calculation of single-domain magnetic hysteresis curves; it provides a relation between the external 

magnetic field H, the easy axis direction of the magnetization vector, and the projection of the 

magnetization along the applied magnetic field. The variation of the external field leads to a coherent 

rotation of the magnetization. The direction of the magnetization and the anisotropy constant of a 

ferromagnet of the sample are given by the angle 𝜓 and 𝜃, respectively.[14]  

 

The energy of the system is written regarding the anisotropy energy EA and the Zeeman energy EZ[14].  

 𝐸𝑇 = 𝐸𝐴 + 𝐸𝑍 = 𝐾𝑢𝑉𝑠𝑖𝑛2𝜓 − 𝜇0𝑀𝑆𝑉𝐻𝑐𝑜𝑠𝜙, 𝜓 = 𝜙 − 𝜃 (2.67) 

To minimize energy for the longitudinal hysteresis curve, the corresponding cos𝜙 is varied.  

The Stoner-Wohlfarth model is used to calculate the hysteresis loop with intrinsic magnetic 

properties of materials, such as magnetocrystalline anisotropy energy and saturation magnetization. 

However, in bulk hard magnet materials there are multi-domain states, which result in a non-trivial 

calculation of the complete hysteresis loop. An empirical approach is given by the Kronmüller 

equation (2.18), which is inspired by the Stoner-Wohlfarth model.[15]  

 𝐻𝐶 = 𝛼 2𝐾1 𝜇0𝑀𝑆⁄ − 𝑁𝑒𝑓𝑓𝑀𝑆 (2.78) 

where α and Neff are experimental parameters. The Kronmüller equation will be referred later in 

section 2.4.4.  

  

Fig.2. 9 Stoner-Wohlfarth model. a) Arrangement of angle in the S-W model. The orientation of sample 

magnetization and the external field H with respect to the easy axis given by the angle 𝜓 and θ, respectively. b) 

Hysteresis loops calculated by S-W model for different angles θ between external field and anisotropy axis.  



15 

 

2.3.2 Preisach model and First Order Reversal Curves 

The Preisach, also one model for hysteresis loops based on the concept of parallel connection 

of relay hysterons.[6] In ferromagnetic materials, small domains are distributed and network with each 

other, and generate the total magnetic moments. The relay hysteron is the basic block of the Preisach 

model and has two values of 1 and 0 with switch between the on-off condition. It forms a loop, as 

shown in fig.2.10. 

 

Fig.2. 10 The operation of the relay hysteron. α and β define the switch-off and on the threshold, respectively. 

It is mathematically described as: 

 

y(x) = { 

1          𝑖𝑓 𝑥 ≥ 𝛽     
0          𝑖𝑓 𝑥 ≤ 𝛼     
𝑘      𝑖𝑓 𝛼 < 𝑥 < 𝛽

 (2.19) 

where k = 0 if the previous region is in 𝑥 ≤ 𝛼. And k = 1 if the previous region is in 𝑥 ≥ 𝛽. 

 The entire hysteresis loop is formed by parallel connection and summation of these hysterons, which 

have different α and β thresholds and are scaled by μ. Fig. 2.11 a) is block diagram to explain hysteron 

builds up the hysteresis loop. By increasing the relay hysterons number N, the hysteresis curve can be 

represented with high accuracy. In Fig.2.11 b), the αβ plane describes a number of relay hysterons. It 

is considered the half-plane α < β and a right-angle triangle, the plane is divided by α = β.  There is the 

Preisach density function μ(α,β), which describes a number of relay hysterons of each different value 

of (αi,βi). Outside of the right-angle triangle has a value of μ(α,β) = 0. By the αβ plane, hysteresis 

curve can be approximated.[7]  

 

Fig.2. 11 The mathematical Preisach model. a) The block diagram of Preisach model, consists of many 

relay hysterons connecte in parallel. b) Geometrical representation of Preisach (α-β) plane 
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 The Preisach model could be experimentally determined by first-order reversal curves 

(FORCs), as developed by Mayergoyz.[16-18] FORCs measurements are a useful practical method to 

obtain the intrinsic distribution of magnetic interaction and coercive fields of hysterons or domains 

with magnetostatic interactions in various types of complex magnet samples systems, such as bulk, 

thin films layer systems, magnetic arrays or magnetic nanoparticles.[19-24] The intrinsic field 

distribution can be obtained from measurements of main and minor reverse hysteresis curves with a 

specific reversal field Hr. An FORC distribution is defined by a mixed second-order derivative of the 

magnetization M by both a reversal field Hr and an increasing external field H for saturation, which is 

given by  

 
𝜌(𝐻𝑟 , 𝐻) = −

1

2

𝜕2𝑀(𝐻𝑟 , 𝐻)

𝜕𝐻𝑟𝜕𝐻
 (2.20) 

This eliminates the purely reversible components of the magnetization. Any nonzero ρ corresponds to 

an irreversible switching process.[25] The FORC density resembles the Preisach model.[6] However, 

not all of the experimentally obtained FORC distributions are a good representation of the 

magnetization behavior of the sample. This is only the case, if all of the minor loops are perfectly 

closed with small steps of reversal field. Also, minor loops must be independent and congruent. This is 

called the congruency and wiping out property.[16] The experimental details will be explained later in 

chapter 4.  

 

Fig.2. 12 FORCs and the Preisach model in both coordinate systems.[25] 
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2.4 Micromagnetism 
In theoretical physics, ferromagnetic materials can be described from several viewpoints 

according to length scales. These models are shown in table 2.1.[26] 

Model Description Length Scale 

Atomic level theory Quantum mechanical ab initio calculations < 1 nm 

Micromagnetic theory Continuous description of the magnetization 1 – 1000 nm 

Domain theory Description of domain structure 1 – 1000 μm 

Phase theory Description of ensembles of domains > 0.1 mm 

Table 2. 2 Established models for the description of ferromagnetism on different length scales 

Micromagnetism, which describes the individual spin arrangement by a continuum theory, is a 

reliable model to calculate the magnetization behavior on the submicron scale. In contrast to atomic 

level theory, it can be solved numerically for a large number of atoms system. On the other hand, the 

micromagnetic theory is able to resolve relatively small structure in the compare to domain theory. 

Magnetic dipoles of cells favor locally parallel spin alignment due to exchange interaction. The spatial 

distribution of the polarization 𝐽  or the magnetic moment 𝑚⃗⃗   is determined by minimizing the 

magnetic free energy as a stable state. The stable configuration, the domain structure and magnetic 

hysteresis loops as a function of an external field could be calculated using normalized components of 

the polarization vector, 𝐽 (𝑟 ) = 𝐽(𝑟 )/𝐽𝑠  with unit vector  𝑟 =  √𝑟1
2 + 𝑟2

2 + 𝑟3
2 = 1 , the saturation 

polarization  𝐽𝑠 = constant , and the value of the directional cosines. Micromagnetism combines 

classical field theory, like the continuous magnetization field which is a common parameter in 

classical electrodynamics[27], and quantum mechanics, such as the exchange interaction, thus is often 

referred to as semi-classical continuum theory.[26]  

 

2.4.1 Magnetic free energy 

The total energy of ferromagnets in the continuum theory of micromagnetism is described as 

the sum of a quantum mechanical origin and a classical description. The stable magnetization 

configurations can be found by local minima of the energy function. Exchange energy and the 

anisotropy energy are quantum mechanical effects. Stray field energy (demagnetization energy) and 

Zeeman energy are classical descriptions. The total magnetic free energy density according to  

 𝐸𝑡 = 𝐸𝑒𝑥 + 𝐸𝐾 + 𝐸𝑆 + 𝐸𝐻 (2.21) 

is composed of exchange, anisotropy, stray field and Zeeman energies.[28] 

 

1.  Exchange Energy 𝑬𝒆𝒙 : 

The exchange energy can be derived from exchange interaction of the Heisenberg model 

introduced by equation (2.13). It provides a preferred parallel alignment of nearest neighboring atoms 

in localized electrons of a ferromagnet. By continuum variable  𝛾𝑛(𝑟 ) , homogeneous and 

inhomogeneous magnetic configurations can be described.  

 
E𝑒𝑥 = 𝐴∫∑(∇𝛾𝑖)

2𝑑𝑉

3

𝑖=1

 (2.22) 
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Here, A is the exchange stiffness constant and 𝛾𝑖is the local direction cosines. The exchange stiffness 

constant A can be obtained by Bloch T3/2 law that is relation between the temperature dependence of 

the saturation polarization Js and Curie temperature TC. 

 

2.  Magnetocrystalline anisotropy energy 𝑬𝑲 : 

The magnetocrystalline anisotropy energy depends on the crystal structure of the material. 

Magnetic polarization has a preference alignment parallel to certain axis, so-called easy axis. This 

anisotropy energy is based on the interaction of the orbital moment with the crystal and the spin-orbit 

interaction.[29] Based on the symmetry of the crystal more than one easy axes can be present. This 

anisotropy energy is given by 

 
𝐸𝐾 = ∫𝐾1𝑠𝑖𝑛

2𝜃 + 𝐾2𝑠𝑖𝑛
4𝜃 + ⋯𝑑𝑉 (2.23) 

where  θ is the angle between the polarization J and a well-defined axis in the crystal. 𝐾𝑛 are the 

different crystalline anisotropy constants sorted by the order of θ. The cubic lattice structure has 

naturally three pairwise orthogonal easy axes, thus the anisotropy energy is written by 

 
𝐸𝐾 = ∫[𝐾1(𝛾1𝛾2 + 𝛾2𝛾3 + 𝛾1𝛾3)

2 + 𝐾2(𝛾1𝛾2𝛾3)
2 + ⋯ ]𝑑𝑉 (2.24) 

   

3.  Stray field energy 𝑬𝑺 : 

The stray field energy, also called demagnetization energy, is the magnetostatic energy of the 

magnetization in its own stray magnetic field. [30] According to classical electrodynamics, the energy 

is given by 

 
𝐸𝑆 =

𝜇0

2
∫ 𝐽 ∙ 𝐻𝑆

⃗⃗ ⃗⃗ 𝑑𝑉 (2.25) 

where the factor 1/2 is correction factor for twice contribution in integration due to dipole-dipole 

interaction. 

 

4.  Zeeman energy 𝑬𝑯 : 

The Zeeman energy is also one of the magnetostatic energies, while it is based on the external 

field. It describes the interaction of the polarization 𝐽  with an applied field. 

 
𝐸𝐻 = −∫𝐽 ∙ 𝐻𝑒𝑥

⃗⃗ ⃗⃗ ⃗⃗  𝑑𝑉 (2.26) 

To determine the equilibrium magnetization configuration, this is the minimization of the magnetic 

free energy the total magnetic free energy of a magnetization is calculated by differentiation. 

 𝛿𝐸𝑡𝑜𝑡𝑎𝑙 = δ(𝐸𝑒𝑥 + 𝐸𝐾 + 𝐸𝑆 + 𝐸𝐻) = 0 (2.27) 
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2.4.2 Domain and Domain Walls 

 A magnetic domain is a region of a uniform magnetization. A large number of atomic 

magnetic moments are parallel aligned in small regions. The stray-field created by a magnetic domain 

results is effectively interacting with the neighboring domains. These structures are formed to 

minimize the total energy.[31] To reduce the magnetostatic energy 𝐸𝑆 outside the material, magnetic 

domains can split into two or more. 

 
Fig.2. 13 Domains on the basis of energy minimization.[32] 

In Fig. 2.13 shows how a ferromagnetic material is split into magnetic domains for reducing the 

magnetostatic energy; it is depicted stray field on the outside of the magnet. a) Single domain: higher 

energy around the magnet, b) two domains: reduced the magnetostatic energy, c) multiple domains 

with closure domains: minimum energy state. 

 Magnetic domains are separated by domain walls, where the magnetization aligns by gradual 

rotation to next domain. Domain walls require wall energy composed of exchange and anisotropy 

energy, both necessary for changes of the magnetization direction. Two types exist for 180⁰ walls. In 

bulk material, Bloch walls are formed, since the system is large enough to include these walls. 

Magnetization vectors turn through the plane parallel to the wall plane, where only small stray 

magnetic fields are present at the rim of the sample. In thinner films, Néel walls appear, if the 

exchange length is larger than the thickness. The magnetization rotates within the plane of the domain 

wall. See Fig. 2.14. 

 
Fig.2. 14 The structure of the Bloch wall (left) and Néel wall (right) in a thin film[2][33] 

For uniaxial systems, these values are determined by the exchange stiffness constant A and the 

anisotropy constant 𝐾1.  
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The wall energy γ, the exchange length lK and the domain wall thickness δ for the stray field free wall 

given by 

 𝛾 = 4√𝐴𝐾1,      𝑙𝐾 = √𝐴 𝐾1⁄       and      𝛿 = π𝑙𝐾 = π√𝐴 𝐾1⁄  (2.28) 

The magnetization can change by domain walls moving and domain rotation. In the field dependent 

magnetization, the main increasing process is wall motion with a sharp increase in the M(H) curves. At 

the larger field, there is a region close to saturation dominated by rotation, which can happen against 

the anisotropy forces. The magnetization process separated in rotation and motion of the domain walls 

is indicated in Fig.2.15. 

 
Fig.2. 15 The wall motion occurs in an applied field and magnetization processes.[32] 

 

2.4.3 Single- and Multi-Domain particles 

 When size of magnetic particles gets small, they favor forming single domains. For comparing 

the energy difference between single- and multi-domain particles, the particle shape is assumed to be 

simple ellipsoid with axes a and b, saturation magnetization 𝐽𝑆𝑎𝑡 and demagnetization factor 𝑁. The 

single domain energy Esd is just related to the total stray field described by 

 
𝐸𝑠𝑑 =

1

2𝜇0
𝑁𝐽𝑆𝑎𝑡

2 ∙
4

3
𝜋𝑎2𝑏 (2.29) 
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For the two-domain particle, the domain wall energy has to be added to give the two domains energy 

Emd as 

 
𝐸𝑚𝑑 = 𝛾𝜋𝑎𝑏 + 𝛼

1

2𝜇0
𝑁𝐽𝑆𝑎𝑡

2 ∙
4

3
𝜋𝑎2𝑏 (2.30) 

with γ the domain wall energy per surface area and α the stray field reduction factor between the 

single- and multi domain state.[34] The magnetostatic energy of a two-domain particle is less 

compared to a single-domain particle with a lower stray field. 

 The critical domain diameter 𝐷𝐶 can be found where the energy of single- and two-domain 

particle is equal. 

 
𝐷𝐶 = 2𝑎 =

3𝛾𝜇0

2(1 − 𝛼)𝑁𝐽𝑆𝑎𝑡
2 ,

18𝛾𝜇0

𝐽𝑆𝑎𝑡
2  for a sphere,

6𝛾𝜇0

𝐽𝑆𝑎𝑡
2 for a ellipsoid (2.31) 

 The diameter of  𝐷𝐶  becomes a main criterion to consist of single- or multi- domains in ellipsoidal 

particles. With an external magnetic field, these spins rotate to align parallel to the field to minimise 

the Zeeman energy. Below critical diameter  𝐷𝐶  the particle forms a single domain state, and for larger 

sizes materials form the multi domain state to reduce stray fields, where the reduction on stray field is 

higher in energy that the domain wall energy which have to be paid.  

 In Fig. 2.16, anisotropy contribution and size dependence of the coercive field are shown with 

magnetization modes in single domains. A Dth is a critical diameter for the transition from a thermally 

stable to an unstable state. The nucleation field for homogeneous rotation is replaced by the curling or 

buckling mode at a critical diameter, Dcrit
nuc grain size. With increasing size of the particle, a two-

domain state with a domain wall forms from Dcrit
do. 

 
Fig.2. 16 Four regions of the coercive field dependent on grain size.[4] There exist critical diameters of a 

thermal state transition, Dth, the nucleation mode conversion Dcrit
nuc and domain state change, Dcrit

do. 
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2.4.4 Coercivity and Microstructural parameters 

 For single domain particle the coercive field  𝐻𝐶  could be theoretically calculated by the 

linearized micromagnetic equation in the Stoner-Wohlfarth model.[15] The coercive field is then given 

by 

 
𝜇0𝐻𝐶 = 𝜇0

2𝐾1

𝐽𝑆
− (𝑁∥ − 𝑁⊥)

𝐽𝑆
𝜇0

 (2.32) 

The coercive field of single-domain particle is determined from the magnetocrystalline 

(2𝜇0𝐾1/𝑀𝑆) with homogeneous rotation. Multi-domain particles by formation of domains originating 

reduced the coercive field from the shape anisotropy ((𝑁⊥ − 𝑁∥) ⋅ 𝐽𝑆/𝜇0). Thermal energy overcomes 

the barrier and the coercive field decreases. [35, 36] 

The equation 2.32 is the ideal nucleation field. The real nucleation field takes into account the effect of 

magnetic inhomogeneity based on microstructural effects. I could be obtained by the linearized 

micromagnetic equation. The difference between the ideal and the real nucleation field is known as 

Brown’s paradox.[35] The coercive field can be well described by the universal relation of 

micromagnetism.[15, 37] 

 
𝜇0𝐻𝐶 = 𝜇0𝛼

2𝐾1

𝐽𝑆
− 𝑁𝑒𝑓𝑓

𝐽𝑆
𝜇0

 (2.33) 

α and 𝑁𝑒𝑓𝑓  are the microstructural parameters. The  𝑁𝑒𝑓𝑓  relates with the effect of an effective 

anisotropic demagnetizing field. α is an effective reduction parameter, which is describes by a product 

function of the reduction of the crystal field αK, misaligned grains αψ and exchange coupled gains αex.  

 α = 𝛼𝐾 ∙ 𝛼𝜓 ∙ 𝛼𝑒𝑥 (2.34) 

Those three parameters are now shortly described. 

 

1.  Nucleation for inhomogeneous regions (parameter 𝜶𝑲): 

The crystal anisotropy is lowered by disorder, defects, and stresses of the crystal lattice. The 

reducing of anisotropy leads to a decline coercive field in single domain particles. For a planar grain 

boundary, the microstructural parameter 𝛼𝐾  is calculated analytically by Kronmüller from 

micromagnetic equation.[15, 38] 

 

𝛼𝐾 = 1 −
𝛿𝐵

′2

4𝜋2𝑟0
2 [1 − √1 + 4𝜋2

𝑟0
2

𝛿𝐵
2

𝐾1 − ∆𝐾1

𝐾1
]

2

 (2.35) 

Here, 𝛿𝐵 = 𝜋√𝐴 𝐾1⁄  is the domain wall width of the perfect crystal, 2r0 indicates the extension of the 

magnetic defect and ∆𝐾1 is the reduction of crystalline anisotropy in the area. 
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Fig.2. 17 Nucleation for inhomogeneous region αK. A reversed domain with reduced anisotropy of width 2r0: 

Stripe a) perpendicular and b) parallel to the direction of the external field and c) the microstructural parameter 

αK as a function of r0/δB for various ΔK.[10] 

 

2.  Nucleation for misaligned grains (parameter 𝜶𝝍): 

The applied magnetic field which misaligns under an angle ψ0 on the easy axis of a uniaxial 

particle influences to reduction of coercive field by a factor 𝛼𝜓. The microstructural parameter 𝛼𝜓 has 

been calculated by Stoner-Wohlfarth and by Kronmüller [14, 39] and is given by 

𝛼𝜓 =
𝐻𝑁(𝜓0)

𝐻𝑁(0)
 

=
1

{(𝑐𝑜𝑠𝜓0)2 3⁄ + (𝑠𝑖𝑛𝜓0)2 3⁄ }3 2⁄
[1 +

2𝐾2

𝐾1 + (𝑁∥ − 𝑁⊥)𝐽𝑆
2/(2𝜇0)

(𝑡𝑎𝑛𝜓0)
2/3

1 + (𝑡𝑎𝑛𝜓0)2/3
] 

(2.36) 

The microstructural parameter  𝛼𝜓 is a function of the angle ψ0. The minimum nucleation field has 

with 𝛼𝜓
𝑚𝑖𝑛 ≈ 0.5 at 𝜓0 = π/4. The 𝛼𝜓 can be substituted by 𝛼𝜓

𝑚𝑖𝑛 = (𝐾1 + 𝐾2)/(2𝐾1) ≈ 0.5. In the 

absence of nucleation, fixed domain wall, 𝛼𝜓 is described by  𝛼𝜓 = 1/𝑐𝑜𝑠𝜓, where the  𝛼𝜓 is always 

greater than 1.  

 

3.  Nucleation for exchange-coupled grains (parameter 𝜶𝒆𝒙): 

The exchange-coupled grains increase the demagnetization effect to neighbor grains. It 

reduces the coercive field due to the exchange coupling and induces a rotation of the spontaneous 

polarization Js. If the grain size D is smaller than the domain wall width  𝛿𝐵 = 𝜋(𝐴 𝐾1⁄ )1/2 , the 

exchange-coupled grains effect becomes important. The random anisotropy effect results in a 

reduction of the effective anisotropy constant. The reversal process in exchange-coupled grains is a 

collective process of grains demagnetized by misalignments. The average coercive field of misaligned 

grains is of the order of 0.25(2K1/JS). the microstructural parameter 𝛼𝑒𝑥  can be evaluated to 0.5.[40] 
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2.5 X-ray and Magnetism 

 Electromagnetic waves interact with matter via absorption and scattering. In the visible range, 

magnetic effects in the absorption channel occur known as Magneto-optical effects by Faraday and 

Kerr rotation.[41, 42], which enable the investigation of magnetic materials by light. At higher 

energies in the soft x-ray range in the vicinity of distinct absorption edges as the L2,3-edges of 3d 

transition elements and M4,5-edges of Rare Earths, the interaction between polarized x-rays and 

magnetic materials show extremely large magnetic absorption effects due to the occurrence x-ray 

magnetic circular dichroism (XMCD). The first experimental result by x-ray magnetic circular 

dichroism (XMCD) was reported at the K absorption edge of Fe in the hard x-ray regime [43] and 

subsequently at L- and M-edges.[44-47] The power of XMCD is correlated to its element-specify as 

conventional x-ray absorption spectroscopy (XAS) and the extremely high magnetic contrast. 

Moreover, by applying sum rules [48, 49] it provides a unique possibility to determine in a 

quantitative manner spin- and orbital moments separately. 

 

2.5.1 X-ray Absorption Spectroscopy (XAS) 

 X-ray absorption spectroscopy (XAS) gives information of the local geometric or electronic 

structure of samples. When the incident photon energy matches with the binding energy of core 

electrons, resonant excitations appear, which are visible by a strong increase of the absorption 

spectrum. (see fig. 2.18) 

 

Fig.2. 18 X-ray absorption spectroscopy. Photon excites electron to 3d-hole (left), When the number 

of holes in the final d-states decreases XAS of transition metal Fe, Co, Ni and Cu atomic configuration 

at L-edge (right) [8] 

The transmitted photon intensity I (E, t) through a sample of thickness t is related the incident intensity 

I0 by the Lambert-Beer rule, 

 𝐼(𝐸, 𝑡) = 𝐼0(𝐸)𝑒−𝜇(𝐸)∙𝑡 = 𝐼0(𝐸)𝑒−𝜌𝑎𝜎𝑎𝑏𝑠∙𝑡 (2.37) 

where μ(E) is the X-ray absorption coefficient, which is dependent on energy E and the atomic number 

Z with the rough relation of μ(E) ~ Z4/E3.[50] The μ(E) = 1/λx [length-1] is correlated to the atomic 

number, density 𝜌𝑎 = 𝑁𝐴𝜌𝑚𝐴 [atoms/length3] and x-ray absorption cross-section σabs [length2/atom]. 

A characteristic length λx leads to an intensity attenuation by a factor 1/e.[8]  
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In quantum mechanics, the absorption coefficient can be derived according to Fermi’s Golden 

Rule. Bound inner-shell electrons transit after absorption of the photon from the initial state |𝑖⟩  to the 

final state ⟨𝑓| corresponding to the unoccupied density of states 𝜌(E) above the Fermi energy. The 

electronic transition probability Τ𝑖→𝑓 is described by 

 
Τ𝑖→𝑓 =

2𝜋

ℏ
|⟨𝑓|𝐻̂𝑖𝑛𝑡|𝑖⟩|

2
𝜌(𝐸) (2.38) 

𝐻̂𝑖𝑛𝑡 is the Hamiltonian for the interaction between photons and electrons. The Hamiltonian is 

described by 

 𝐻̂𝑖𝑛𝑡 =
𝑒

𝑚𝑐
𝑨 ∙ 𝒑 (2.39) 

with the momentum operator p and the vector potential A. The absorption probability is shown by a 

combination of Eqn.(2.38) and (2.39) 

 
𝑊𝑖→𝑓 =

𝜋𝑒2

2ℏ𝑚2𝑐2
𝐴0

2|⟨𝑓|𝒑 ∙ 𝑨|𝑖⟩|2𝜌(𝐸)𝛿(𝐸𝑓 − 𝐸𝑖 − ℏ𝜔) (2.40) 

Here, ℏω is the energy of the incident photon. For the absorption of x-ray the dipole approximation is 

valid and eqn.2.40 can be written as 

 
𝑊𝑖→𝑓 =

𝜋𝑒2

2ℏ𝑚2𝑐2
𝐴0

2|⟨𝑓|𝑒𝑖𝒌∙𝒓𝒆 ∙ 𝒑|𝑖⟩|
2
𝜌(𝐸)𝛿(𝐸𝑓 − 𝐸𝑖 − ℏ𝜔) (2.41) 

In the dipole approximation the electron transitions are follow the dipole selection rules. 

 ∆ℓ = ±1 (not zero) 

∆𝑚ℓ = 0,±1 

∆𝑚𝑠 = 0 

∆𝑗 = 0,±1 

(2.42) 

By photon emission and absorption, the orbital angular momentum quantum number is always 

changed by 1. The magnetic quantum number and the total angular momentum can change by zero or 

one. For right and left circular polarization of the absorbed photon  ∆𝑚𝑙 = +1 , ∆𝑚𝑙 = −1 , 

respectively. 

In particular for magnetic x-ray studies, L2,3-edges of 3d transition metal (TM) appear between 400-

1200 eV. These edges are further characterized by the spin-orbit configuration (2p1/2 and p3/2 for the 

L2,3-edges). This energetic splitting of the spin-orbit states by about 10 eV for L-edges of 3d TM are in 

general much larger than the experimental resolution in the range of typically 100meV. The 

corresponding atomic transition and the measured XAS absorption profile for the late 3d transition 

metals (Fe, Co, Ni and Cu) metal are shown in Fig. 2.19. The picture indicates, that the XAS profile 

reflects the density of the final states involved. This matches with theoretical expectation, that the 

transition matrix elements to be nearly energy independent in the energy range covered by an 

absorption line. 
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2.5.2 X-ray Magnetic Circular Dichroism (XMCD) 

 X-ray magnetic circular dichroism (XMCD) is one of the key methods for x-ray based 

magnetic property investigations. It has been verified, that the absorption of circularly polarized x-ray 

light at the vicinity of an absorption edge is dependent on the orientation and strength of the 

magnetization.  

The origin of XMCD is a result of dipole selection rules. Fig.2.19 shows excitation of 2p core 

level electrons to 3d valence band by absorption of a right circularly polarized electron for only the 

spin quantum numbers of the electronic transition involved. Here the difference in transition 

probability is only given by the quantum mechanical vector coupling coefficients (Clebsch-Gordon 

coefficients). The spin polarization of the excited electron at both initial spin-orbit partner amounts to -

1/2 at the L2- and +1/4 at the L3-edge with a ratio of -2. The same consideration for the orbital 

polarization shows that the corresponding orbital polarization is identical for both edges and amount to 

+3/2. Therefore the excited core electrons can be considered as a spin and orbital source probing the 

spin and orbital polarization of the final 3d states. These values also indicate that the sensitivity to an 

orbital moment is considerably larger compared to the spin sensitivity. 

 

Fig.2. 19 Schematic diagram of XMCD phenomenon. In core level, straight and round arrows describe spin 

and orbital momentum of electrons, respectively. 
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 The spin and orbital polarization direction of the emitted electrons are given by propagation direction 

i. e. the polarization vector P of the absorbed light. Thus the XMCD effect scales with the projection 

of the magnetization 𝑀⃗⃗  onto the x-ray k-vector 𝑃⃗ .  

According to the helicity directions, the circularly polarized x-ray polarizations are parallel (+) or 

antiparallel (-) with respect to the magnetization directions, the absorption coefficient differs. This is 

the circular dichroism phenomenon. When the dichroism part Δμ of absorption coefficient scales with 

the scalar product 𝑃⃗ ∙ 𝑀⃗⃗  .The relation is given by  

 ∆𝜇 = 𝜇+ − 𝜇− ≈ 𝑃⃗ ∙ 𝑀⃗⃗ = |𝑃⃗ | ∙ |𝑀⃗⃗ |cos (𝑃⃗ , 𝑀⃗⃗ ) (2.43) 

where 𝑃⃗  is the incident polarization vector and 𝑀⃗⃗  is the magnetization of the sample. 

 

Fig.2. 20 Experimental example of XMCD effect. X-ray absorption spectra with parallel and 

antiparallel alignment of helicity and magnetization (top) and XMCD spectrum of Co L-edges on 7 

nm FePt / 3 nm Co / 2 nm Pt exchange-spring magnetic multilayers (our result) fully oriented onto the 

saturation field. 
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2.5.3 Sum rules 

Orbital and Spin magnetic moments 

 B. T Thole and Paolo. Carra derived the sum rules for determination of spin- and orbital- 

moments by x-ray circular magnetic dichroism. [48, 49] They have shown a relation of orbital moment 

expectation values with the integrated XMCD for direct measure of 〈𝐿𝑍〉 in Ni, first.[48] Ground-state 

expectation values of LZ, SZ, and TZ are obtained in Fe, Co, and Ni metal.[49] C. T. Chen has 

demonstrated how to determine magnetic moment from the integrals of the XAS and XMCD spectra 

utilizing these sum rules in a quantitative manner.[12] The number of holes 𝑛ℎ can be estimated by 

theoretical considerations or XAS measurements.  

  
〈𝐼〉 = 〈𝐼𝐿3

+ 𝐼𝐿2
〉 = 𝐶 ∙ 𝑛ℎ = 𝒜ℛ2

𝐿

3(2𝐿 + 1)
𝑛ℎ  (2.44) 

I is the averaged XAS intensity, 𝒜 is proportional constant and ℛ is the radial dipole matrix element 

of the core-valence transition. [8] 

 First, the ground-state orbital moment expectation value 〈𝐿𝑍〉 is related with an experimentally 

measurable quantity ρ.[48] 

 
𝜌 =

∫
𝑒𝑑𝑔𝑒

𝑑𝜔(𝜇+ − 𝜇−)

∫
𝑒𝑑𝑔𝑒

𝑑𝜔(𝜇+ + 𝜇− + 𝜇0)
=

1

2

𝑐(𝑐 + 1) − 𝑙(𝑙 + 1) − 2

𝑙(𝑙 + 1)(4𝑙 + 2 − 𝑛)

〈𝐿𝑍〉

ℏ
 (2.45) 

where ∫𝑒𝑑𝑔𝑒𝑑𝜔 indicates integration range of the 𝑙𝑛(the  l subshell with number of electrons, n.) to 

c𝑙𝑛+1 (final state configuration, where c denotes the angular momentum of core hole) edges.  The c 

indicates the angular momentum of the core hole. 𝜇+ and  𝜇−  are the absorption coefficient of the 

circularly polarized light (q = ±1) and 𝜇0 is the absorption coefficient for linear polarized light (q = 0) 

and equal to 𝜇0 =
𝜇++𝜇−

2
.    

 Next, the spin sum rule can be obtained by relation between a measurable quantity δ, which is 

defined from the spin-orbit splitting of the core level, and the ground-state spin moment 〈𝑆𝑍〉 and 

magnetic dipole 〈𝑇𝑍〉 expectation values.[49] 

𝛿 =
∫

𝑗+
𝑑𝜔(𝜇+ − 𝜇−) − [

𝑐 + 1
𝑐 ]∫

𝑗−
𝑑𝜔(𝜇+ − 𝜇−)

∫
𝑗++𝑗−

𝑑𝜔(𝜇+ + 𝜇− + 𝜇0)
         

=
𝑙(𝑙 + 1) − 2 − 𝑐(𝑐 + 1)

3𝑐(4𝑙 + 2 − 𝑛)

〈𝑆𝑍〉

ℏ

+
𝑙(𝑙 + 1)[𝑙(𝑙 + 1) + 2𝑐(𝑐 + 1) + 4] − 3(𝑐 − 1)2(𝑐 + 2)2

6𝑙𝑐(𝑙 + 1)(4𝑙 + 2 − 𝑛)

〈𝑇𝑍〉

ℏ
 

(2.46) 

Where j± indicates spin-orbit coupling of the core hole (c ± 1/2),  c and l describe the shell and 

subshell orbital quantum numbers of the initial and final states, respectively. n is the initial number of 

electrons in the final state shell.  
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Fig.2. 21 XAS and MCD spectra of cobalt at L3,2-edges. 

In fig.2.21, the Co spectrum was dealt with equation (2.47) for orbit moment and Eqn. (2.48) for a spin 

moment. 

 
𝑚𝑜𝑟𝑏 = −

4∫
𝐿3+𝐿2

(𝜇+ − 𝜇−)𝑑𝜔

3∫
𝐿3+𝐿2

(𝜇+ + 𝜇−)𝑑𝜔
(10 − 𝑛3𝑑) = −

4𝑞(10 − 𝑛3𝑑)

3𝑟
 (2.47) 

 

𝑚𝑠𝑝𝑖𝑛 = −
6∫

𝐿3
(𝜇+ − 𝜇−)𝑑𝜔 − 4∫

𝐿3+𝐿2
(𝜇+ − 𝜇−)𝑑𝜔

∫
𝐿3+𝐿2

(𝜇+ + 𝜇−)𝑑𝜔
(10 − 𝑛3𝑑) (1 +

7〈𝑇𝑍〉

2〈𝑆𝑍〉
)

−1

 

 

= −
(6𝑝 − 4𝑞)

𝑟
(10 − 𝑛3𝑑) 

(2.48) 

The magnetic dipole term TZ  and Magnetocrystalline anisotropy energy, MAE 

The magnetic dipole operator is defined by 

 𝚻 = ∑𝑺𝒊

𝑖

− 3𝒓̂𝑖(𝒓̂𝑖 ∙ 𝑺𝒊) (2.49) 

where 𝑺𝒊 is the spin moment of the i-th electron and 𝒓̂𝑖  is the unit position vector of the electron 

associated with the spin moment 𝑺𝒊. The magnetic dipole term relates to the quadrupole moment of the 

spin density distribution. It can be obtained by comparison between normal incident and angle 

dependent measurement.[51]  

 In this work only the 2p to 3d transition from corresponding L3,2-edges of the transition metals 

are addressed. A visualized sum rules calculation is shown in Fig. 2.22. 
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Fig.2. 22 Quantitative determination of magnetic moments by Sum Rules. The normalized XAS is the spin 

averaged or non-magnetic spectrum (top-left) and difference XMCD spectrum measured by flipping the 

magnetization or the light or helicity (top-right). Relation between spectral areas and LZ, SZ and TZ expectation 

values 

In bulk cubic or polycrystalline samples with arbitrary grain orientation, TZ term could be ignored for 

the 3d TM. However, in ultrathin films and surfaces with perpendicular magnetic anisotropy (PMA), 

the Tz term can have a sizable effect on XMCD based effective spin magnetic moments.  

The magnetic dipole term TZ presents in the case of symmetry breaking by uniaxially squeezed (see 

fig.2.23 a)) or a quadrupolar spin distribution of electrons. The increased charge along the z-direction 

reduces along the x-y directions. Mathematically, it is correlated to the spin magnetic dipole operator 

as shown by in Eqn. 2.50. When the spin-orbit coupling is small, it can be re-written as[52, 53]  

 
  𝑻 ≈ −

2

7
𝐐 ∙ 𝑺̂, 𝑸 = 𝑳𝟐 −

1

3
𝐿2, 𝑇𝑍 =

𝑆𝑍(1 − 3𝑐𝑜𝑠2𝜃)

2
 (2.50) 

Q is the quadrupole moment of the charge distribution. TZ is for 𝑆  aligned along the z direction. In 3d 

transition metal, the magnetic dipole term can be determined by the symmetry relation.〈𝑇𝑥〉 + 〈𝑇𝑦〉 +

〈𝑇𝑧〉 = 0.[54] It can be written in the absence of in-plane anisotropy. 𝑚𝑇
⊥ + 2𝑚𝑇

∥ = 0. To determine TZ 

and MAE, the moments of 𝑚𝑠𝑝𝑖𝑛 − 7𝑚𝑇
𝜃 and 𝑚𝑜𝑟𝑏

𝜃  are deduced by the sum rules. From these values 

and relation, 𝑚𝑇 or 𝑚𝑜𝑟𝑏
𝜃 .can be obtained. 

  𝑚𝑇,𝑜𝑟𝑏
𝜃 = 𝑚𝑇,𝑜𝑟𝑏

⊥ 𝑐𝑜𝑠2𝜃 + 𝑚𝑇,𝑜𝑟𝑏
∥ 𝑠𝑖𝑛2𝜃 (2.51) 

Moments from angle dependent have this relation, too. 

 𝑚𝑇,𝑜𝑟𝑏
𝜃 = 𝑚𝑇,𝑜𝑟𝑏

0 − ∆𝑚𝑇,𝑜𝑟𝑏𝑠𝑖𝑛
2𝜃, ∆𝑚𝑇,𝑜𝑟𝑏 = 𝑚𝑇,𝑜𝑟𝑏

⊥ − 𝑚𝑇,𝑜𝑟𝑏
∥ . (2.52) 

By these relations, 𝑚𝑇,𝑜𝑟𝑏
∥  are can be determined. ∆𝑚𝑜𝑟𝑏 is related spin-orbital interaction.  
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On the basis of spin-orbit coupling, orbital moment is enhanced along the easy axis of anisotropic 

magnetic material. The spin-orbit energy tries to align the spin moment along the direction with 

enhanced orbital projections. (see fig. 2.23 b)) The magnetocrystalline anisotropy energy, MAE relates 

to orbital moment and the magnetic dipole term. Bruno model relates the energy anisotropy in a 

perturbation theory to the spin-orbit interaction, (𝐇𝑠𝑜𝑥 = 𝜉𝐋 ∙ 𝐒 ).[55, 56]  

 
 ∆𝐸𝑆𝑂 = −𝑐

𝜉

4𝜇𝐵
(𝑚𝑜𝑟𝑏

⊥ − 𝑚𝑜𝑟𝑏
∥ ) (2.53) 

where ∆𝐸𝑆𝑂 = 𝐸𝑆𝑂
⊥ − 𝐸𝑆𝑂

∥ = −𝐾1with 𝐸𝑆𝑂 = 𝐾0 + 𝐾1𝑠𝑖𝑛
2𝜃. And c is the factor dependent on the band 

structure. 𝜉  is the spin-orbit coupling constant. ( 𝜉 ≤ 0.1 eV  ). The magnetocrystalline anisotropy 

energy (MAE) is given only orbital magnetic moments, while the spin-orbit interaction is treated in 

second order. In here, the anisotropy of the field of the spin, is expressed by the magnetic dipole 

moment.[52] The MAE is given as 

  
 𝛿𝐸 = −

1

4
𝜉𝑺̂ ∙ [〈𝑳↓〉 − 〈𝑳↑〉] +

𝜉2

∆𝐸𝑒𝑥

21

2
∙ 𝑺̂ ∙ 〈𝑻〉 (2.54) 

with [〈𝐋↓〉 − 〈𝐋↑〉] = [〈𝐒〉 − 2〈𝐋↑〉]. And ∆𝐸𝑒𝑥, is the exchange splitting of the two spin bands and can 

be obtained from band structure calculations. The spin-orbit constant 𝜉 depends strongly on atomic 

number Z, and also on the radius of the atomic shell. For the 3d transition metals, the spin-orbit 

interaction energy in the 3d band is small value of the order of several meV,[57] which is considerably 

weaker than the exchange interaction (~1eV). 

By angle-dependent measurement, the contribution of crystallographic related TZ term and its 

contributions to the magnetocrystalline anisotropy energy can be determined.[51]  

 

 

Fig.2. 23 The TZ term and the spin and orbital relation. a) Schematic of the charge and spin distribution for 

TZ term. b) Bruno mdel of the magnetocrystalline anisotropy. c) The shapes and labels of the five 3d orbitals.[58] 
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Chapter 3  

 

Basic of Nanosized Exchange Spring Magnets 
 Nanosized magnets, like magnetic nanoparticles, single molecular magnets, nanomagnet 

patterns, clusters and so on, can be investigated for an understanding of fundamental physical 

phenomena [59, 60] and for application as ultra-high density magnetic information storage, catalysts, 

spintronic device or biomedical therapy.[61-63] Exchange-spring magnets, which are composed of 

magnetically hard and soft magnets, were developed as a concept for permanent magnets with tailored 

coercive fields and saturation magnetization. [64, 65] These combinations of high performances 

nanosized and exchange-spring magnets are achieving lots of applications and have also been studied 

from a fundamental point of view. [66, 67] 

 

3.1 Nanomagnets 
 Between macroscopic and nanometer sample dimensions of the same material, different 

magnetic behaviors have been observed, which arise for example from a higher proportion of atoms 

on the surface, broken translation symmetry in nanometer scales and the geometrical constraints. 

Nanomagnetism is the area of research in physics focusing on the magnetic properties of nanosized 

objects. Nanomagnetism in solid state science includes application and the study of properties of the 

magnetism of nanoparticles, nanodots, nanowires, thin films, and multilayers. [68] Natural magnetic 

nanoparticles exist in many rocks and soils, where the nanoparticles are usually based on magnetite. 

Nanomagnets have also been found by biomineralization in bacteria, insects, birds and other 

creatures, where their magnetic moments are aligned or interacting with the earth’s magnetic 

field.[69] Today, magnetic recording is a prominent successful application of nanomagnetism. In this 

technology, the areal bit density of magnetic hard disks has increased by a factor of tens of millions. 

Fig.3.1 shows growth of areal densities.[70] The application to spintronic devices has also increased, 

rapidly.   

 
Fig.3. 1 Historical areal density trends for magnetic hard disk drives.[70] by Coughlin Associates in 

Storage Developer Conference (SDC 2015). CGR: compound growth rate, MR: magnetoresistance, GMR: 

giant MR, AFC: anti-ferromagnetically coupled and TMR: tunnel MR 
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The unusual phenomena of nanomagnetism have several reasons, since the sample dimensions meet 

the characteristic length scales. Nanomagnets can be formed with a size smaller than critical domain 

size Dcr and smaller than superparamagnetic critical diameter 𝐷cr
spm

. Therefore nanomagnets become 

superparamagnetic.[71] The exchange length lex < 100 nm which can be usually ignored in bulk 

systems, effects nanomagnets. The characteristic lengths scales, which should be compared to the size 

of nanoobjects, are shown in Table3.1.[68] 

Symbol Length Typical magnitude (nm) 

𝑑𝑎 Interatomic distance (Fe) 2.5 × 10−1 

dex Range of exchange interaction ~10−1 − ~1 

dRKKY Range of RKKY interaction ~10−1 − ~10 

𝑑𝑐 Domain size 10 − 104 

𝐷cr
spm

 Superparamagnetic critical diameter ~1 − ~102 

Dcr Critical single-domain size ~10 − ~103 

𝛿0 Domain wall width ~1 − ~102 

lex Exchange length ~1 − ~102 

𝜆𝑚𝑓𝑝 Electron mean free path ~1 − ~102 

Table 3. 1  Typical magnitudes of some characteristic lengths in magnetism.[57] 

In low dimensional materials, the broken translation effects atoms most prominent by the change in 

the nearest neighbor coordination, as it happens at surfaces or interface regions. In general, the 

electronic structure of the atoms on the surface is different compared to atoms in bulk. Usually, the 

  
 

Fig.3. 2 Density of states for Fe, Co, and Ni in bulk metals (above) and a (100) surface (below)[63] d-state 

Spin up (red) Spin down (blue), p-state (green) and s-state (black) 
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bandwidth is narrowed by reduction of the coordination number. The comparison of the density of 

states of bulk and surface Fe, Co and Ni is shown in Fig. 3.2. The density of state curves of the (100) 

surface atoms is narrowed compared to bulk samples of the same materials. 

In addition, due to the symmetry breaking and the non-cubic crystal field, the orbital contribution to 

the magnetic moment increases with decreasing dimensionality.[72] Table 3.2 shows the increasing of 

the orbital moment and anisotropy energy by going from the bulk to the single atom.   

 Bulk Monolayer 
Diatomic 

wire 

Monoatomic 

wire 

Two 

atoms 

Single 

atom 

Orbital moment (𝜇𝐵/𝑎𝑡𝑜𝑚) 0.14 0.31 0.37 0.68 0.78 1.13 

Anisotorpy energy (meV/atom) 0.04 0.14 0.34 2.0 3.4 9.2 

Table 3. 2 Magnetic orbital moments and anisotropy energy. Co on Pt with different 

dimensionalities.[64][73] 

The presence of defects and impurities, such as adsorbates, change the strain and modify not only the 

lattice parameter. These factors also influence to the magnetic properties of atoms nearby. Furthermore 

the crystal structure of nanosized materials is also formed differently from the bulk. For instance, 

metallic cobalt particles smaller than approximately 30 nm diameters reveal fcc (face-centered cubic) 

structure, compared to bulk hcp (hexagonal close-packed).[68]  
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3.2 Exchange-Spring magnet 

 An exchange spring magnet (ESM) consists of more than one type of FM phases usually 

comprising a hard and a soft magnetic phase, also called exchange-coupled composition magnet 

(ECC magnet).[64] The magnetic properties of ESM are based on the exchange interaction between 

those two hard and soft magnetic materials. The main reason to use ESMs is the possibility to tailor 

the magnetic properties by a combination of the hard and soft magnet, which could not be simply 

done by the optimization of just a single component material. Fig. 3.3 and Fig. 3.4 show schematic 

and experimental examples of ESMs, which have a high coercivity from the hard phase and a higher 

magnetization from the soft phase. 

 

Fig.3. 3 Demonstration of the hysteresis loops of hard and soft phase,  decoupled and exchange coupled 

ESMs 

  

Fig.3. 4 Hysteresis loops of Fe3O4:FePt nanocomposites. a) Single phase behavior with effective exchange 

coupling between two phase by Fe3O4(4 nm):FePt (4 nm) assembly and b) the phase separation hysteresis by 

Fe3O4(12 nm):FePt (4 nm). [65] 
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3.2.1 Soft and Hard Ferromagnetic materials  

Ferromagnetic materials are separated into two broad classes corresponding to their hysteresis 

loops, which reflect the energy stability and thermal dissipation by their open area.[74] Soft magnetic 

materials are easily magnetized, because of small coercivity and small total anisotropy energy K. Soft 

materials are characterized by high permeability and low losses. Permeability is the degree of 

magnetic response of a material to an applied field. The pinning of domain walls at inclusions and 

grain boundaries can affect the behavior of soft materials.[75, 76] Examples transition metals (TM, e.g. 

Fe, Co, and Ni), as components in silicon steels, Fe-Ni-Co alloys, amorphous alloys, nanocrystalline 

alloys, and soft ferrites (MnZn, NiZn). These magnetic materials are used in motors, generators, and 

transformers.[76, 77] Table 3.3-4 show intrinsic magnetic properties of some famous soft magnetic 

materials 

Metal 

Bohr magneton 

number per atom at 

0⁰K 

Saturation magnetization  
Curie temperature 

105Am-1 or 102 G, at   

0⁰K 17⁰C  ⁰K ⁰C 

Iron 2.216 17.45 17.08  1043 770 

Cobalt 1.716 14.30 13.98  1400 1127 

Nickel 0.616 5.22 4.84  631 358 

Table 3. 3 Intrinsic magnetic properties of ferromagnetic metals.[78] 

 

Composition 

Saturation 

polarization 

(T) 

Coercivity  

(Am-1) 

Curie 

temperature (⁰C) 

Permeability at 

H=4mAm-1 X 103 

Fe67Co18Si1B14 1.80 5 (~0.06Oe) ~550 1.5 

Fe39Ni39Mo2Si12B8 0.8 2 260 20 

Fe74Co2Mn4Si11B9 1.0 1.0 480 2 

Fe73.5Cu1Nb3Si13.5B9 1.25 1 600 100 

Table 3. 4 Survey of soft magnetic amorphous and nanocrystalline alloys.[79] 

Hard magnetic materials, which are used as permanent magnets, are hard to magnetize and difficult to 

demagnetize. These magnets have a higher coercive field (coercivity, HC) and maintain their 

magnetism without field after they have been magnetized (remnant, Mr). The origin is the high pinning 

force of domain and their walls.[80] Permanent magnets have been developed to increase the energy 

products from naturally abundant lodestone, high carbon steels, tungsten/chromium steels, ferrite 

magnets, AlNiCo, up to the well-known rare-earth (RE) based magnets, as shown figure 3.5 by the 

increase of the maximum energy product and a decrease of effective volume of the magnet.[81] 
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Fig.3. 5 Historical development of different types of permanent magnets, plotted their maximum energy 

product (BH)max.[82] 

The high energy product of the rare-earth magnets with a small volume is very attractive and has big 

advantages. Table 3.5 provides a comparison of the intrinsic magnetic properties of some related hard 

magnetic materials. 

Phase symmetry 
Js  

[T] 

Tc  

[K] 

𝜇0𝐻𝐶  

[T] 

𝐾1 

[MJ/m3] 

A  

[pJ/m] 

𝛿𝐵 

 [nm] 

𝐷𝐶 

[nm] 

α-Fe cubic 2.15 1043 - 0.048 20.7 11.26 20 

Co cubic 1.76 1131 0.20 0.45 - - - 

Co hexagonal 1.81 1390 0.76 0.45 36.2 14 68 

L10-FePt tetragonal 1.43 750 11.5 6.6 10 6.3 359 

L10-CoPt tetragonal 1.00 720 12.3 2.8 10 7.4 479 

L10-FePd tetragonal 1.39 760 3.5 1.8 - 11.5 330 

SmCo5 hexagonal 1.07 1020 3.9 16.6 12 3.6 1137 

Sm2Co17 rhombohedral 1.22 1190 6.5 3.2 17 8.6 401 

Nd2Fe14B tetragonal 1.61 585 7.6 4.3 7.3 3.9 196 

Table 3. 5 Intrinsic magnetic properties of different magnetic materials. Js: Spontaneous polarization, Tc: 

Curie temperature, μ0HC: Coercive field, K1: Magnetocrystalline anisotropy energy, A: Exchange constant, δB: 

Domain wall width, DC: Single-domain particle diameter. [83-85] 

However, the expensive cost of rare-earth elements in scarcity situations causes the need for new 

magnets with lean and/or cheaper rare-earth elements. One way is to use exchange-coupling effect. 
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3.2.2 Exchange-coupling effect  

Exchange coupling materials as described here consist of the soft phase aligned to the 

magnetization vector of a hard magnetic phase due to the exchange coupling effect. As described 

before, materials can have high saturation magnetization and high remanence by a proper of these 

phases resulting in a significant large maximum energy product (BH)max could be obtained by 

exchange coupling effect. However, the coercivity will usually decrease by exchange coupling effects 

with a soft magnetic second phase.[86]  

The first actual exchange spring magnet was observed by Coehoorn et al. in 1989.[87] The 

theoretical presentation was presented by E. F. Kneller in 1991. Figure 3.5 is the schematic of 1-

dimensional exchange-coupling from E. F. Kneller.[64]  

 

Fig.3. 6 1-D schematic of one-dimensional model of the micromagnetic structure of exchange-coupling 

effect. This is alternation structure of k-(hard) and m-(soft) phases. (a) Saturation remanence. (b-c) 

Demagnetization in an increasing reverse field H. (d) Demagnetization at decreasing width. [53]  

The k phase is a hard magnetic material with high magnetocrystalline anisotropy energy, and the m 

phase is a soft magnetic material with high saturation magnetization. In figure 3.6 (a), if the external 

magnetic field is zero, the magnetizations of a hard and a soft magnet are arranged in the same 

direction. In fig. 3.7 (a-c). At a low field H, the hard magnet spins keep the direction. Increasing H, the 

soft magnetic spins show the inclination to reverse. However, the spins adjoined to interface maintain 
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the initial state by exchange interaction with the hard magnet spins. At a high field, all spins are 

reversed along the external field direction, exclusive of interface spin at the hard magnet (see Fig.3.6 

between (c) and (d)). This effect, the maintenance of soft magnetic spin by a hard magnet on the 

interface in the applied field is called exchange coupling effect. By this effect, the composition of the 

hard and soft magnet has high coercivity. Likewise, the saturation magnetization depends on the 

amount of soft magnet phase. With exchange-coupling effect, the magnet has high saturation 

magnetization and large coercive field, although both are reduced. The magnetic property of 

composition has to be investigated and tuned to achieve for an appropriate application and dependent 

on the fraction of hard and soft magnetic material and shape. 

 

3.2.2.1 Critical size for exchange-coupling effect  

The critical size for effective coupling between the hard and the soft magnetic material has been 

theoretically and experimentally investigated.[64, 88-90]  Energy products have been increased with 

the higher remanent field. For melt-spun 30 nm Nd2Fe14B / 10 nm Fe3B - α-Fe mixtures the maximum 

energy product has been increased up to 11 MGOe.[87] A. Manaf et al. has reported a higher 

maximum energy product of 19MGOe by the combination of NdFeB and α-Fe, too.[89] The 70 % of 

Sm2Fe17Nx and 30% of α-Fe 20 nm grain size composition has demonstrated 25.8 MGOe with a high 

remnant magnetization of 80% with respect to the saturation magnetization.[91] These results clearly 

show that the grain size of soft magnetic materials has to be nm size. The maximum energy product is 

affected according to the soft magnetic layer, which has a critical thickness.[90, 92]  

 

Fig.3. 7 Energy product variation for Co thickness changes in SmCo/ Co multilayer[90] 

In figure 3.7, Co soft magnetic layers are deposited with a thickness range from 10 to 40 nm deposited 

on 45 nm thick SmCo. The Co layer of 10 nm has the highest maximum energy product of 14 

MGOe.[90] 
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3.3 L10-FePt / Co composition ES magnet  

For this work, we selected L10-FePt and cobalt for ESMs. The uniaxial magnetocrystalline anisotropy 

in the hard magnetic L10-FePt layer could be prepared to have its easy axis perpendicular to the film 

plane. Co has high saturation magnetization and high fractional remanence.[85]  

Today, investigation on FePt and Co exchange spring magnet compositions have been started for 

applications and fundamental magnetic research on thin films and nanoparticles. [2, 93] In Fig. 3.8 and 

Fig. 3.9, magnetic properties of thin films and nanoparticles of ES nanomagnets are shown, which are 

composed of FePt, Co and Fe and tailored by exchange coupling effects. 

 

Fig.3. 8 Exchange coupling effect to the coercive field on FePt/Fe and FePt/Co/Fe film.[80] 

   

 

Fig.3. 9 Diagram of ESM and hysteresis loop for FePt@Co nanoparticles.[2] 

Further systems are FePt core particles (5 nm diameter) surrounded with a soft magnetic Co shell (0.6 

to 2.7 nm thick) by microwave synthesis. The ES magnetic nanoparticle led to a 4-fold enhancement 

in the energy product as compared to the energy product of bare FePt with coercivity and saturation 

moment.[2]  
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3.3.1 Phase diagram and Crystal Structures of FePt and Cobalt 

 

3.3.1.1 FePt 

 The L10 chemically-ordered FePt has attracted attention due to their excellent intrinsic 

magnetic, chemical and mechanical properties. Therefore, L10-FePt is a good candidate for magnetic 

recording with very high uniaxial magnetocrystalline anisotropy.[83] We will discuss the essential 

properties of the FePt material system. In particular, the composition dependent crystal structure is 

explained. The magnetic properties of the L10-phase are discussed and compared with other materials 

in the previous section. 

 

1. Phase diagram 

 Chemically disordered (A1-phase, face-centered cubic) FePt is present for temperature below 

600 ⁰C and above 1350 ⁰C, as shown in the phase diagram in Fig. 3.7. Chemically-disordered means 

that Fe or Pt atoms occupy statistically the lattice sites of the fcc-elementary cell. In the composition 

range, FePt can be three different crystalline phases. (FePt3: L12 (fcc) phase from 15 to 32 % Fe, FePt: 

L10 (fct) phase from 35 to 55 % Fe and Fe3Pt: L12 (fcc) phase from 55 to 80 % Fe). The chemically 

ordered phase (L10-phase, face-centered tetragonal) in the composition range from Fe45Pt55 to Fe65Pt35 

can be formed with high crystallinity in the temperature range of 600 ⁰C to 1300 ⁰C with high 

chemical order and a layered anisotropy. Fe and Pt atoms occupy (110) planes in an alternating layered 

way. In fig. 3.10, unit cells are presented. The strong directional crystalline anisotropy has a large 

effect on the magnetic behavior, as shown in Table3.6.  

 

Fig.3. 10 Equilibrium phase diagram of the Fe-Pt system.[83] 
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 L12-Fe3Pt L10-FePt L12-FePt3 

Disordered Para 

Ferro 

𝜇0𝑀𝑆 ≈ 1.5 𝑇 

low HC 

Ferro 

Ordered 

Ferro 

𝜇0𝑀𝑆 ≈ 1.7 𝑇 

low HC < 1 T 

Ferro 

𝜇0𝑀𝑆 ≈ 1.43𝑇 

high HC > 1 T 

Para 

antiferro T<160K 

Table 3. 6 The magnetic behavior and magnetic properties at room temperature of the main phases in the 

Fe-Pt system.[83] 

 

2. Crystal structure 

 In Fig.3.11 shows a comparison of the unit cells between the fcc- and fct- crystal structures. 

The L10- phase has a four-fold rotational symmetry along the (001) axis. The unit cell of the fct 

structure is slightly compressed along the c-direction (001). The fcc unit cell has a lattice constant of 

3.81 Å whereas the fct unit cell has a larger lattice constant a = 3.852 Å, and for the cubic face the 

lattice constant of c = 3.716 Å is smaller.  

 

Fig.3. 11 The unit cells for the different phases of FePt: (a) A1 alloy, face-centered cubic, (b) L10 FePt 

intermetallic, face-centered tetragonal, and (c) L12 FePt3 intermetallic, face-centered cubic.[82] 

 If FePt alloy contains Fe of 68-85%, a chemically ordered phase forms Fe3Pt. This crystal 

phase is likewise cubically centered with L12 symmetry. At a larger Pt excess, FePt3 can also be 

formed fcc-phase as shown in fig. 3.11 (c). The L10-Phase of FePt layers or Fe-Pt multiple layers on 

suitable substrates (MgO (100), LSAT (100)) can be formed at high temperature. In the range of high 

temperature treatment, decreasing temperature to room temperature does not affect FePt materials.[94, 

95] In the case of L10-FePt thin films, the fct ordering is formed directly during the deposition process 

at suitable conditions, such as temperature and pressure. Alternatively, after RT deposition films have 

to be annealed for subsequent ordering. Both of grains coalescence in the ordered phase may occur 

during the annealing process. 

 Thin films of L10-FePt are known to have high coercive fields with huge magnetocrystalline 

anisotropy energy ( 𝐾𝑢 = 6.6 × 106𝐽𝑚−3 ), which is reported in theoretically and experimental 

studies.[96, 97] The coherent rotation model indicates the possibility to achieve coercive fields of L10-

FePt almost reaching 12 T (2𝐾𝑢 𝑀𝑠⁄ ~120kOe at 300 K).[98] Fig.3.12 shows the magnetization curve 

for a 5 nm thick thin film measured at 4.5 K along the perpendicular film plane direction.  
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Fig.3. 12 Out-of-plane hysteresis loop of the FePt film with 5 nm thickness measured at 4.5 K.[86] 

 

3.3.1.2 Cobalt 

 Cobalt is a representative transition metal and also a RT ferromagnetic material. Cobalt has 

two crystalline phases, one is hexagonal close-packed (hcp) and the other is face-centered cubic (fcc, 

also called cubic close-packed).  In fig. 3.13 (left), the phase diagram of cobalt is shown. At room 

temperature cobalt is hcp. The phase can be changed to fcc at a temperature depending on the sample 

grain size.[99] The hysteresis of cobalt thin films shows typical soft ferromagnetic behaviors with high 

saturation magnetization and low coercive field in Fig. 3.13 (right).[100] 

 

 

Fig.3. 13 Phase diagram of cobalt and hysteresis loops. Magnetic hysteresis loops of the Co atom at 5.5 K, θ 

= 0° (black squares) and θ = 70° (filled triangles) relative to the surface normal.[1]  
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Chapter 4  
 

Experimental methods: Fabrication & Characterization 

 

4.1 Sample preparation 

4.1.1 Sputter deposition of thin films (Magnetron Sputtering) 

 In this works thin films have been produced by Magneto co-sputtering, basically,a physical 

vapor deposition method (also known as physical vapor deposition (PVD) coating). The schematic of 

a RF (Radio Frequency) magnetron sputtering device is shown in Fig. 4.1. In the sputtering chamber, 

filled with low-pressure Ar gas, a plasma is generated by positively charged Ar+ ions that are 

accelerated towards targets by an applied constant voltage of a few hundred volts. An elaborate 

electronic control allows one to ignite the plasma even at low pressure. A magnetron gun improves 

both, deposit speeds and film quality by increasing the fraction of ionized atoms. A magnetic field 

keeps the plasma in front of the target to intensify the bombardment of ions. The sputtered target 

atoms are condensed onto a substrate and form there either continuous films or islands, depending on 

the target and substrate material and sputtering conditions. It is possible with this technique to deposit 

as well single atoms as molecules. It can provide extremely pure thin films with high performance and 

is very useful for thin film preparation. 

 

Fig.4. 1 Schematic of RF magnetron sputtering. [93] Ar+ ions hit targets. Sputtered target atoms are 

deposited on the substrate.   

For FePt thin film layers and FePt/ Co multilayers, a magnetron sputtering system as described above 

has been used. Three different targets can be mounted with separate sputtering power supplies. Thus, 

alloys with well-defined compositions (by controlling the individual deposition rates) can be produced 
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by simultaneous sputtering (co-sputtering). The system includes a substrate heating which provides 

temperatures up to 800⁰ C that are necessary for forming the FePt L10-phase. 

4.1.2 Manufacture of regular nanopatterns 

 Regular nanopatterns can be realized by means of bottom-up or top-down methods. By using 

the bottom-up methods, it is attempted to arrange free nanoparticles regularly on a substrate by self-

organization. Top-down methods use lithography processes to imprint patterns into a sample (e.g. by 

photo-, electron-, ion beam lithography and nanoimprint lithography).  

Before presenting the technique used in this thesis, I would like to introduce a few other techniques, 

first. Bottom-up processes are also used for producing nano-patterns by chemical synthesis of 

colloids.[5, 101, 102] FePt nanoparticles can be formed by thermal decomposition of Fe(CO)5 and 

reduction of Pt(Acetylacetonate, acac)2. Nanoparticles on a substrate can be produced with a 

hexagonal pattern by applying the spin coating. However, with this method homogeneous pattern in a 

few micrometers periods can be produced. A further method is a combination of block copolymer 

micellar nanolithography (BCML) and glancing angle deposition (GLAD).[103, 104] With this 

approach feature size of ~100 nm can be obtained. However, chemically synthesized FePt 

nanoparticles with excellent magnetic properties are not reported.  

Most of the top-down methods use lacquer masks. The lacquer is typically applied by a spin 

coating (in order to obtain a homogeneous lacquer thickness) and subsequently processed to transfer 

the structure into the thin film. [105] Several top-down methods will be introduced. In 

photolithography, a lacquer mask covers certain parts of the sample and is then exposed to UV light. 

Molecular bonds in the lacquer are either ultimately dissolved or newly generated, depending on the 

type of lacquer (positive or negative). The exposed lacquer is removed during subsequent development 

or remained as structures on the substrate. In optical photolithography, the structure, sizes are limited 

to 250 nm due to the wavelength of light.  

Electron beam lithography uses a focused electron beam for patterning, which is accelerated at a few 

10kV. The areas of the lacquer to be patterned are exposed to the beam. The advantages of electron 

beam lithography consist in the fact that the electron beam can deflect easily and that any structures 

can be written. [106-108]  with an accuracy slightly below 10 nm.[109] However, electron beam 

lithography is extremely time-consuming, especially for preparing large area. Structures cannot be 

written in parallel which can take several hours or even days.  

 

Nanoimprint lithography (NIL, O2-plasma stripper, RIE-Etcher) 

 For fast and small size patterning over large areas, nanoimprint lithography (NIL) is suitable 

technique. NIL uses a stamp, which is structured by e-beam lithography. The size of the structure can 

be a few nanometers. [109] NIL is possible two ways: in a positive (lift-off) and negative process. In 

case of the positive process (the structure is transferred with a stamp) the substrate is coated with a 

thin lacquer in which the structure is transferred by pressing the stamp into the lacquer. It is squeezed 

out from the areas where the stamp touches the substrate, leaving lacquer-covered and lacquer-free 

structures on the substrate. (see Fig.4.2) Subsequently, the material to be structured is deposited on the 

structured lacquer that now acts as a mask. When now the lacquer is removed by lift-off, the deposited 

material on top of the lacquer is removed together with the lacquer, while the material deposited 

directly on the substrate remains. The obtained pattern is the same as the pattern on the stamp (positive 

process). The process of this lift-off is illustrated in Fig. 4.2.[110]   
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A lift-off process is, however, not suitable for L10-Phase FePt. In order to obtain chemically ordered 

structure (face-centered tetragonal, fct), Fe and Pt have to be deposited at temperature of 600 – 800 ⁰C. 

The temperature is much higher than the glassy temperature of the lacquer and the lacquer will be 

burned or carbonized. Moreover, carbon will be dissolved in FePt film and disturbed the formation of 

the L10-phase.  

In the negative process, which requires the transference of the opposite structure to the stamp, the L10-

phase FePt thin films have to be deposited directly on the substrate. The lacquer is then spin-coated on 

FePt thin films. The stamp is pressed on the lacquer at appropriate temperature and pressure. The 

structured lacquer is then hardened to provide the mask. Subsequently, the uncovered part of the FePt 

thin film is etched away together with the protective lacquer. In the end, a FePt negative of the stamp 

structure is left, as desired. 

 The special difficulties of NIL technique are substrate unevenness (roughness), thermal 

stresses and the lifetime of the stamp. The stamp can be polluted by resist and its structure destroyed 

by particles. These problems often prevent to obtain good structures. Obducat, a company that 

produces imprint equipment, developed special polymer materials and a special processing to solve 

these problems. One is “Intermediate Polymer Stamp”; it is called IPS foil and a flexible polymer foil, 

transparent for light. The other is a “Simultaneous thermal and UV” (STU) process, which is a 

combination of thermal and photo imprint lithography. These are realized in the Eitre 3 equipment of 

Obducat. In the first process, an IPS foil is placed on the stamp, a pressure applied of a few bar, and 

the stamp and the foil heated above the glass transition temperature (Tg). When stamp and foil are kept 

at appropriate temperature and pressure for a certain time, the polymer fills up the structure. After 

cooling off of the stamp and foil below Tg, the IPS foil is taken off from the master stamp by carefully 

pulling it off in one sweep. A pattern replica inverse to the original master stamp is now on the IPS 

foil. The next process is the transfer of this negative on the IPS foil onto the actual lacquer. When this 

step is successful, the lacquer shows the same pattern as the master stamp. The lacquer has to be 

chosen according to the size and shape of the structures. TU2-35 by Obducat is such a lacquer. It is a 

TU-series photoresist which is a combined thermal and UV imprint lacquer. A thin film of the this 

lacquer is brought on top of the FePt thin film by spin coating. Then the IPS foil is put on top of the 

lacquer layer, which is brought to the glass transition temperature. When slight pressure is applied the 

lacquer takes over the structure of the IPS foil. By UV curing the lacquer is hardened and its structure 

stabilized. For curing the UV lacquer is exposed to mercury light of 250-400 nm wavelength. The 

positive pattern has now been transferred to the lacquer. The IPS film can be taken easily off the 

lacquer film. The scheme of all processes is shown in Fig. 4.3. [111] 

 

 
Fig.4. 2 Illumination of the process of nanoimprint lithography (NIL). a) The lacquer coated on the 

substrate. b) The stamp is pressed on lacquer. c) The stamp is demold from lacquer. d) Materials deposit 

on substrate and lacquer. e) The remained lacquer as a mask are removed. The pattern transfers to 

materials.  



48 

 

 

Fig.4. 3 Schematic of the IPS and STU imprint process. Two steps for the transference of the stamp 

structure to lacquer. IPS imprint step uses thermal imprint, and STU imprint step uses a combination of 

thermal and UV curing. 

Typically still some lacquer (a few nm in thickness) is remaining between the positive structures after 

the last step, as indicated in Fig. 4.3. It is removed with an O2-Plasma treatment. The etching rate for 

the TUV lacquer (TU2-35 by Obducat) is around 3.4 nm/min in the O2-plasma. By means of reactive 

ion etching, the lacquer structure is then transferred to the FePt film (inductively coupled ICP-RIE Ar-

plasma, FePt etching rate approximately 60 nm/min, lacquer etching rate 80 nm/min). The etching 

processes are depicted in Fig 4.4.  

 

Fig.4. 4 Schematic of the etching steps.  The lacquer structure transfer into the metal layer. 

According to the various conventional methods presented in chapter 4.1.2, the bottom-up method, 

such as the block co-polymer micellar nanolithography (BCML) can produce rapid lithography and a 

large-area patterning. However, magnetic properties of these structures are not sufficient and not 

uniform over the patterned area. Electron beam and ion beam lithography can be fabricated to 

structures of less than 100 nm with high resolution, but these processes take too much time. The 

nanoimprint lithography has the double advantages since the entire surface is patterned in one process 

and the large area can be structured. In this work, stamp with 60 nm dot sizes 150 nm period pattern 

has been used for artificial nanostructures.  
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4.1.3 Structure and microstructure characterization method 

4.1.3.1 X-ray diffraction (XRD) 

 X-ray diffraction is a common method to study the crystal structure of solids. A beam of 

monochromatic X-ray is diffracted by the atomic crystal lattice of the matter, at an diffraction angle 

and intensity characteristic for the crystal structure. XRD patterns can also give information about the 

elements present in a sample and their concentrations. In a simple picture,: parallel planes scatter the 

radiation and, by interference, yield the well-known Bragg reflections, i.e. maxima in X-ray intensity 

along particular scattering angles. The relation between the diffraction angle 𝜃, the distance between 

neighboured atom planes d, and the X-ray wavelength λ with a positive integer n is known as the 

Bragg law.[112] 

 2𝑑sin𝜃 = 𝑛λ (4.1) 

A system of lattice planes in a crystal is characterized by the so-called Miller indices (h, k, l). By 

means of these indices also the inter planar distance d can be expressed: for a cubic crystal one obtains 

the following equation, 

 𝑑 =
𝑎

√ℎ2 + 𝑘2 + 𝑙2
 (4.2) 

where 𝑎 is the lattice constant. In practice, the lattice constant 𝑎 of crystal structure can be obtained by 

combination of Bragg’s law and eqn. (4.2). The degree of ordering of atoms A and B on the lattice 

sites in binary alloys can be quantified by the ordering parameter S, which is given by 

 
𝑆 =

𝑟𝐴 − 𝑋𝐴

1 − 𝑋𝐴
=

𝑟𝐵 − 𝑋𝐵

1 − 𝑋𝐵
 (4.3) 

where XA is the mole fraction of element A in the alloy and rA is the probability of an A-site being 

occupied by A atom (the same for B). In the case of FePt, the ordering parameter can be indicated by 

𝑆 = 𝑟𝑃𝑡 + 𝑟𝐹𝑒 − 1 = (𝑟𝑃𝑡 − 𝑥𝑃𝑡)/𝑦𝐹𝑒 = (𝑟𝐹𝑒 − 𝑥𝐹𝑒)/𝑦𝑃𝑡 .[83] The diffraction line from disordered 

and ordered phase are called fundamental lines. The extra line appear in the pattern of an ordered 

phase are called superlattice lines. A superlattice line is evidence of the ordering transformation. The 

ordering parameter S is obtained as the intensity ratio of the superlattice line to the fundamental line. 

 
𝑆 =

𝐼 𝑠𝑢𝑝𝑒𝑟𝑙𝑎𝑡𝑡𝑖𝑐𝑒

𝐼𝐹𝑢𝑛𝑑𝑎𝑚𝑒𝑛𝑡𝑎𝑙
, 𝑆𝐹𝑒𝑃𝑡 =

𝐼 (002)

𝐼(001)
 (4.4) 

In the case of FePt, the (001)-reflection can be used as the fundamental reflection and the (002)-

reflection as the superlattice reflection. In this thesis, X-ray diffraction has been used for confirmation 

of L10-Phase and ordering parameter S. 
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4.1.3.2 Atomic / Magnetic force microscopy (AFM, MFM) 

 Atomic force microscopy (AFM) is a method to characterize the surface morphology of 

sample. It is a high-resolution type of scanning probe microscopy (SPM) with sub-nanometer 

resolution. For AFM microscopy, a cantilever is used which is oscillated with proper frequency. The 

cantilever carries a very sharp tip at its end for the imaging of nanostructure (fig.4.5). During tapping 

of the AFM tip on the surface, the oscillation of a laser beam reflected by the cantilever is measured 

with an array of 2 × 2 photodiodes. At rest, the laser beam is precisely adjusted to the center of the 

four photodiodes. The amplitude of the oscillation can be output as the difference in the photoelectric 

voltages of the photodiodes.  

By means of a piezoelectric control in z-direction (i.e. vertical to the sample surface), the tip is slowly 

approached to the surface of the sample. The force of the approaching atoms in the surface exerted on 

the tip damps the oscillation amplitude and shifts the resonance frequency of the AFM cantilever. 

Piezoelectric elements attached to the cantilever are used to do the x-y scanning while the vertical z-

position is readjusted to maintain the oscillation amplitude constant. A topographic image is obtained 

from the x-, y, and z-positions.  

Magnetic force microscopy (MFM) is similar to AFM. The magnetic force between material and tip is 

detected in addition to the z-direction. For this purpose the MFM tip is made by a magnetic material 

coating on AFM tip. During a measurement, atomic and magnetic forces can be clearly separated by 

repeating a scan along the same scanning line at different distance z from the surface. Generally, the 

magnetic forces are further reaching than the atomic forces. Therefore, for a MFM measurement the 

distance is doubled. Due to the forces of a thin magnetic layer, the phase of the vibration is shifted 

about 1⁰-10⁰, which is allows to distinguish the forces also qualitatively. For the measurement in this 

work, measurement of images has been used Nanoscope V from Bruker (formerly Veeco). AFM and 

MFM have been used in this thesis to verify pattern structure and domain structure of nanomagnets. 

 

 

Fig.4. 5 Illustration of actuation principle of Atomic Force Microscopes and SEM image of AFM tip 

(inset)[109] 



51 

 

4.1.3.3 Scanning electron microscopy (SEM) 

 Scanning electron microscopy (SEM) is a method  to image method the morphology of a 

sample. Hereby, electrons are released from a thermal electron source and accelerated by a high 

voltage of 5 kV ~ 30 kV. The electron beam is focused by magnetic coils to a small spot in the nm 

range and scanned across the sample. When the electron beam is incident on the surface of the sample, 

secondary electrons are emitted and collected as a function of the beam position. In this way 

information is obtained on the surface topography. SEM can achieve a resolution down to ~1 

nanometer. When the electron beam collides with the sample, also various other phenomena occur 

such as back scattering of electrons or emission of Auger electrons and X-rays. By registering these 

particles or quanta, various types of analysis measurements can be performed. Different materials 

influence to image contrast, too: heavy elements cause stronger scattering. For SEM measurements 

high vacuum is needed in order to prevent scattering of the electron beam by the atoms in the air and 

contamination of the sample the deposition of carbon. For the SEM measurements in this work an 

ULTA55 by Zeiss was used. SEM has been used in this thesis for verification of the morphology of 

nano insular thin film. 

 

4.1.3.4 Wavelength-dispersive X-ray analysis (WDX_EPMA) 

 Wavelength-dispersive X-ray analysis (WDX), is also called electron probe microanalysis 

(EPMA), is performed for elemental analysis of solid specimens. In WDX, electrons in the sample are 

excited and atoms ionized by the electrons beam. When created inner core hole is filled by electron 

transitions characteristic X-rays are emitted that are collected and analyzed by an energy-resolving 

detector. The intensity of the element-specific spectra can be converted into percentage of the 

respective element in the sample. In addition, WDX gives sample information about the interaction 

depth of the electron beam, about atomic percentage, and weight percentage, density and thickness of 

the sample. This technique has been used in this thesis to optimize sputter power for high quality 

Fe51Pt49of defined composition. 

 

4.1.3.5  Transmission electron microscopy (TEM) 

 Transmission electron microscopy (TEM) provides microscopic images with sub-nm 

resolution. The electrons release by a pin cathode are accelerated by a high voltage of 80 kV – 400 kV 

and focused onto a small spot on the sample under investigation. the beam penetrates the sample and is 

focused in an additional step onto the image plane. An image of the sample is obtained due to 

absorption contrast, whereby, different parts of the samples reduce the local beam intensity differently 

(due to stronger or weaker interaction with the atoms in the sample). If the sample is crystalline, a 

TEM can also be used to image the diffraction pattern of the sample, i.e. the pattern of the electron 

beam diffracted by the crystalline parts of the sample. In this way local information about the sample 

structure is obtained. Moreover, besides the direct beam which is commonly used for imaging (bright 

field imaging), a diffracted part of the beam can be also used dark field imaging. This can provide 

information about structures that influence diffraction contrast, such as dislocations or stacking faults. 

In contrast to SEM, the backscattered electrons are not used for image in TEM. However, the sample 

can be excited by the electron beam. By analyzing the emitted X-rays or Auger electrons, information 

about the composition of the sample can be obtained. The basic structure of TEM corresponds to a 

light microscope. In this work, a JEOL 4000 Fx microscope is used with a maximum acceleration 

voltage of 400 kV and a lateral resolution of 1.9 Å. The sample thickness has to be several hundred 
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nanometer or less. For this purpose the sample have to be thinned by mechanical polishing to a layer 

thickness of approximately 100 µm and subsequently thinned further by either chemical etching or ion 

milling. TEM has been used in this thesis for pattern structure and phase distributions in nanopatterns.   
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4.2 Characterization of magnetic properties via SQUID  

 

4.2.1 SQUID magnetometry 

 

Fig.4. 6 Schematic representation of a) the rf SQUID, with tank circuit and preamplifier. The operation is 

set by the amplitude of the rf bias current, Irf.  The circle (left) is SQUID ring and the circuit (right) is tank circuit 

to read signal and b) pick-up coil constitution in MPMS-XL. To measure magnetic moment, sample moves in 

pick-up coils.[113] 

In this work, a Superconducting QUantum Interference Device (SQUID) magnetometer by the 

company Quantum Design (MPMS-XL) is used. 

The superconducting quantum interference device (SQUID) is sensitive to magnetic flux in the 

quantum limit. Fig. 4.6 a) shows the rf SQUID, which employs a single Josephson junction in a 

superconducting ring. The inductance L in the ring is coupled to the inductor LT of a tank circuit via 

mutual inductance M=k(LLT)1/2, k is optimal coupling factor.[114] A current oscillation drives the tank 

circuit. The oscillating bias current Irfsinωrft induces a current ITsinωrft = QIrf in the inductor; here Q is 

the quality factor on resonance with the SQUID. The peak rf flux in the SQUID ring is Φrf=MIT. The 

tank circuit with connection to a preamplifier serves to read out the applied flux Φa. The amplitude of 

the rf voltage VTsinωrft is periodic in Φa with period Φ0. This is a highly sensitive instrument for 

measuring magnetic flux which can be detected in extreme cases down to 5ⅹ10-18 T.[113] 

A SQUID magnetometer combines a SQUID, superconducting magnet, pick-up coil, flux transformer 

and superconducting shields. The sample is scanned through the center of a first- or second-order 

superconducting gradiometer. Fig. 4.6 b) represents a SQUID magnetometer and the calibrated output 

from SQUID electronics Flux transformer as a function of position. The magnitude and shape of curve 

is analyzed to obtain the magnetic moment of the sample. The MPMS-XL system offers the ability to 

measure in applied fields of up to 7 T in a temperature range from 350 K down to below 2 K in 

standard mode.  
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4.2.1.1 Correction of Diamagnetism 

In this part of the work, thin films are deposited on a MgO(100) substrate that has a strong 

diamagnetic signal. Fig. 4.7 (left) shows the magnetic hysteresis curve of 40 nm FePt on MgO (500 

μm thick) is over layered by a diamagnetic background (negative slope due to negative susceptibility).  

To correct the hysteresis curve for the diamagnetic signal, first the diamagnetic susceptibility was 

determined from the following equation: 

 
𝜒 =

𝑱

𝜇0𝐻𝑒𝑥𝑡
< 0 (4.5) 

As the susceptibility of a diamagnetism is constant, J is directly proportional to the applied field, the 

diamagnetic contribution can be corrected for by subtraction of J = χHext. For the determination of 

diamagnetic term, the slope at saturation field of L10-FePt and Co is used, i.e. far away from field zero. 

 

4.2.2 Magnetic parameters 

4.2.2.1 Saturation polarization JS 

 The saturation polarization can be evaluated from the hysteresis curve in the easy axis 

direction, directly. In this work, For L10-FePt/ Co magnets, the polarization can be saturated at 

maximum field of 7 T. The magnetometric system used in this work measures magnetic moment m in 

units of emu. The magnetic moment m can be transformed into the saturation polarization by dividing 

the saturation magnetic moment [emu] by cubic centimetre volume V(cc) giving the saturation 

magnetization in cgs units. Multiplying the magnetization in cgs units by the conversion factor, (𝜇0 ×

103 = 4𝜋 × 10−4) gives the saturation polarization in SI unit. The relation between emu and T is 

given by [115] 

 𝐽[T] = 𝜇0
𝑚 [emu]×103

𝑉 [𝑐𝑐]
, 𝑀[𝜇𝐵] =

𝑚 [emu]×10−3[
𝐴𝑚2

𝑒𝑚𝑢
]

9.274×10−24[
𝐴𝑚2

𝜇𝐵
]

 (4.6) 

 
Fig.4. 7 Out of plane hysteresis curve of 40 nm thickness L10-FePt on MgO substrate. Without correction 

of diamagnetic properties (left) and corrected magnetization with value of χ = -1.4e-6(right). 
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4.2.2.2 Anisotropy constant K1 
 The anisotropy constant K1 describes the energy necessary to rotate the magnetization from 

easy to hard direction in ferromagnetic materials. The directions are connected with the crystal axes in 

a crystal lattice and caused by the electric field in a crystal, the strain or stress in a magnetic phase or 

the shape of a magnetic sample. The anisotropy constant, K1 (MAE) can be determined as the sum of 

the magnetocrystalline anisotropy (MCA, Ku) and shape anisotropy Kshape (see Eqn. 4.8). First, the 

MCA is calculated from the susceptibility χ of the in-plane hysteresis curve (hard-axis) or the initial 

magnetization curve of the out-of-plane hysteresis curve (easy-axis) [28, 116] The magnetocrystalline 

anisotropy energy, Ku is given by [116] 

 
𝜒 =

𝐽𝑆
2

2𝜇0𝐾𝑢
, 𝐾𝑢 ≈

𝐽𝑆
2

2𝜇0𝜒
 (4.7) 

In this work, for the determination of the magnetocrystalline anisotropy Ku, the slope of in-plane 

hysteresis curves between 2 T and 4 T and the saturation polarization of out-of-plane hysteresis curve 

are compared (see Fig. 4.8). 

 

Fig.4. 8 Out-of-plane and in-plane hysteresis curve of 40 nm thickness L10-FePt thin film on MgO 

substrate, to obtain magnetocrystalline anisotropy constant Ku. The susceptibility χ is from slope of in-

plane hysteresis curve. The saturation polarization JS is obtained by out-of-plane hysteresis curve. 

The shape anisotropy can be obtained from the saturation polarization JS and the demagnetization 

factors by used of the following relation. [117-119]  

 
 𝐾𝑠ℎ𝑎𝑝𝑒 =

1

2
(𝑁⊥ − 𝑁∥)

𝐽𝑆
2

𝜇0
 (4.8) 

𝑁⊥ and 𝑁∥ are the demagnetization factors perpendicular and parallel to the external magnetic 

field, respectively. 

The anisotropy constant, K1 can then be determined by means of the relation: 

 𝐾1 = 𝐾𝑢 + 𝐾𝑠ℎ𝑎𝑝𝑒 (4.9) 
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4.2.2.3 Exchange stiffness constant A 
 The exchange stiffness constant A, which is a characteristic of a ferromagnetic material, is the 

strength of interaction between adjacent magnetic moments due to exchange interaction. It cannot be 

determined directly but calculated from the temperature-dependent spin wave stiffness constant Dsp 

[28]. However, also the spin wave stiffness constant Dsp cannot be directly determined, either. It can 

be obtained from the plot of (temperature dependent) easy axis saturation polarization JS/JS,0 versus 

(T/T0)3/2, according to Bloch’s T3/2-law.   

 𝐽𝑆(𝑇) = 𝐽𝑆,0(1 − (
𝑇

𝑇0
)
3 2⁄

) (4.10) 

In this work, the saturation polarization values in the temperature range from 50 K to 350 K are used 

to determine JS,0 and T0. JS,0 is obtained by extrapolating the 1/H plot to saturation field. By the 

temperature dependences of JS(T), the characteristic temperature T0 can be determined by the plot of 

JS(T) as function of T3/2, which leads to a linear relation (Eqn. 4.10). 

Then, Dsp is related to T0 and JS,0 by equation (4.11). 

 
𝑇0 = (

𝐽𝑆,0

0.117𝜇0𝜇𝐵
)
2 3⁄ 𝐷𝑠𝑝

𝑘𝐵
 (4.11) 

The temperature dependence of the exchange stiffness constant A can be obtained with Eqn. 4.12. 

 
𝐴(𝑇) =

𝐽𝑆(𝑇)𝐷𝑠𝑝

2𝑔𝜇0𝜇𝐵
=

𝐽𝑆(𝑇)𝑘𝐵𝑇0

2𝑔𝜇0𝜇𝐵
(
0.117𝜇0𝜇𝐵

𝐽𝑆,0
)

2 3⁄

 (4.12) 

where g is the Landé-factor. For L10-FePt, it can be set to 2. 

 

 

Fig.4. 9 The plot of Bloch T3/2-law to determine JS, 0 and T0. The linear fitting gives the characteristic 

temperature T0. 
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4.2.2.4 Microstructural parameter, α, and Neff 
 The microstructural parameters give information about grains in ferromagnetic materials, such 

as nucleation, homogeneity, misaligned grains, exchange coupling, grain shape effect, and magnetic 

reversal process.[37] The microstructural parameters can be obtained by plotting μ0HC(T)/JS(T) versus 

μ0HN
min (T)/JS(T) according to Eqn. 4.13. Both coordinates are temperature dependent. Eqn. (4.14) is a 

transformation of eqn.2.33. 

 𝜇0𝐻𝐶

𝐽𝑆
= 𝛼

𝜇0𝐻𝑁

𝐽𝑆
− 𝑁𝑒𝑓𝑓 = 𝛼

2𝜇0𝐾1

𝐽𝑆
2 − 𝑁𝑒𝑓𝑓 (4.13) 

For the determination of the microstructural parameters, hysteresis loops as function of temperatures 

are needed. The slope and the y-axis intersection of a linear fit to the measurements provide pertinent 

values for α and Neff, respectively.   

 

Fig.4. 10 The plot of μ0HC(T)/JS(T) versus 2μ0K1(T)/JS
2(T) to determine the microstructural parameters α 

and Neff of 20 nm thickness L10-FePt 100 nm dot size / 200 nm period nanopattern in the temperature range of 

50 K to 350 K. 
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4.2.3 First order reverse curves (FORC) measurement 

For FORC measurement, first, a sample was magnetized to saturation in a field HSat. Then the 

external field was decreased to a reversal field Hr, then magnetic moment is measured during 

sweep back to HSat. This procedure is repeated many times by series of Hr. By this process, the 

major hysteresis loop and minor hysteresis loops are obtained. Loops are drawn function of Hr 

and H, as M (Hr, H).  

4.2.3.1 FORC density analysis 

 The FORCs density is already referred in chapter 2 with Preisach model. To calculate the 

FORCs density, hysteresis loops, which procedure is explained above, are used. Nowadays, the 

density measured and analyzed with higher accuracy and faster with a new method using MOKE by J. 

Gräfe.[120] However, in this work, classical mathematical method, which consists in two sub-

sequential derivatives of hysteresis loops with respect to the external field H and reversal field Hr, is 

used to obtain the density from first-order reversal curves. Since, the magnetic moment signals are 

quite small (~ 10-5 emu range) due to the nanosized magnets, and because the samples have a large 

coercive field, since they are hard magnets a SQUID has to be used. Eqn. 2.20 is re-written to read: 

 
𝜌(𝐻𝑟 , 𝐻) = −

1

2

𝜕2𝑀(𝐻𝑟 , 𝐻)

𝜕𝐻𝑟𝜕𝐻
= −

1

2

𝜕

𝜕𝐻𝑟

𝜕𝑀(𝐻𝑟 , 𝐻)

𝜕𝐻
 (4.14) 

The process to obtain the FORCs density will here be shown step by step by means of collected minor 

loops of first order reverse curves measurement to density diagram. Fig. 4.13 is minor loops of 

nanopatterns for 100 nm dot size and 200 nm periods. 

 

Fig.4. 11 Minor hysteresis loops of L10-FePt hard magnet with 100 nm / 200 nm (dot size/period) 

nanopatterned. a) 2 D view as function of external field and b) 3 D view by dividing each minor.  

The reversal curves then, partially differentiated with respect to the external field H. Fig. 4.12 a) 

shows the first derivative of the graphs of the minor curves of fig.4.11, i.e. the results of 𝜕𝑀(𝐻𝑟, 𝐻)/

𝜕𝐻. These first derivative results are again partial differentiated with respect to the reverse field Hr. 

Graphs of these second derivative are shown in fig.4.12 b), i.e. 𝜕2𝑀(𝐻𝑟, 𝐻)/𝜕𝐻𝑟𝜕𝐻. 
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Fig.4. 12 Differential results of each minor loops. a) First differential and b) second differential multiplied 

with -1/2 of 100 nm / 200 nm (dot size/period) nanopatterned L10-FePt hard magnet. 

Finally, these double derivatives of the hysteresis loops are multiplied by -1/2 and drawn in the form 

of a contour map. Furthermore, the axes of H and Hr are rotated 45ᵒ for changing coordinates. The 

rotational transform is given by the relations: 𝐻u = (𝐻 + 𝐻𝑟)/2 and 𝐻C = (𝐻 − 𝐻𝑟)/2. Here 𝐻u is 

distribution of the interaction field and 𝐻C is the distribution of coercive field. Fig. 4.13 shows the 

final result of the FORCs density contour calculation, which provides the relation proportions of the 

components of magnetization due to magnetic interactions, which are irreversible.  
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Fig.4. 13 The contour plot of the corresponding FORCs distribution of 100 nm / 200 nm (dot 

size/period) nanopatterned L10-FePt hard magnet. 
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4.3 Characterization of magnetic systems via XMCD 

 

4.3.1 Synchrotron Radiation - WERA beamline at ANKA 
Electromagnetic radiation is generated when charged particles are accelerated. In an electron 

storage ring highly relativistic electrons are forced onto a closed circular path by magnetic fields and 

emit X-rays tangential to their direction of motion. For an overview of accelerator physics including 

synchrotron science since the development of the synchrotron principle in 1945 is given in [12]. In the 

first step, these electrons are produced from a hot cathode and accelerated to almost light speed by a 

microtron. By the magnets systems, accelerated electrons are injected into the synchrotron, and then 

electrons are further accelerated to their terminal energy. The electrons are injected from synchrotron 

into the storage ring.  

The often called synchrotron consists of a storage ring, essentially. A circular path of suitable magnets 

systems can hold the high-energy electrons. As an example for a third generation source, which is used 

as a source of x-rays in this thesis, is the ANKA Synchrotron at Karlsruhe. Fig. 4.14 shows schematic 

of a synchrotron storage ring and an undulator. 

 

Fig.4. 14 Schematic of a synchrotron storage ring and an undulator. [99] The relativistic electrons are 

injected into the ring from a linear accelerator (Linac) and a booster synchrotron. As the electrons travel 

through the insertion devices (bending magnets, undulator and wiggler) synchrotron radiation is emitted as a 

narrow cone tangential to the path of the particle.[121] 

The ANKA accelerator consists of a 53 MeV microtron, a 500 MeV booster synchrotron and a 2.5 

GeV storage ring with a nominal current of up to 200mA.[122] 

 The radiation emitted from a bending magnet, which is used to maintain a circulating beam 

with bending electrons into an orbit, emits synchrotron radiation with well-defined polarization 

characteristics as depicted in Fig.4.15. In the plane of the electron orbital, the radiation is linearly 

polarized, while right- and left- circularly polarized light can be obtained in small angles above and 

below the electron orbits. A polarization of typically 80-85% can be obtained at a several mm above 

and below position to the credit of an intensity reduction of about a factor 3.  
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An undulator consists of a periodic arrangement of hard magnets which produces synchrotron 

radiation with higher brightness and extends the energy range. Interference effects in undulator 

produced radiation peaks at tunable wavelengths with high spatial and spectral brightness. The narrow 

construction of magnets raises interference, its higher harmonics and increases the intensity.[123]. 

With a defined shift of the magnetic arrangement linearly or right and left circularly polarized x-ray 

can be created as shown in Fig. 4.16. 

 
Fig.4. 16 Schematic setting of three type undulator to obtain (a) horizontally polarised, (b) right circularly 

polarized or (c) vertically polarized x-ray by shifting two of the four rows of magnets in parallel mode. 

[124-126] 

 

Fig.4. 15 Circularly polarized radiations are emitted to set circular direction by position above and below 

from the electron orbit. [30, 120] 
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The WERA beamline at ANKA 

The corresponding scheme of the WERA (Weichröntgenanalytikanlage, soft x-ray analytics facility) 

beamline at the ANKA synchrotron is shown in fig.4.17. This beamline is sourced from a bending 

magnet of 1.5 T dipole (EC = 6.235 keV), 10 mrad horizontal, 3 mrad vertical or insertion device, 

alternatively. The x-ray, beam passes an aperture and is monochromatized by a spherical grating 

monochromator. 

 

Fig.4. 17 Schematic layout of the WERA beamline at ANKA. [121] 

The WERA beamline provides radiation for soft x-ray spectroscopy and microscopy in the photon 

energy range 100 – 1500 eV with a typical energy resolution of ∆𝐸 𝐸⁄ ~2 ∙ 10−4, maximum ∆𝐸 𝐸⁄ <

1 ∙ 10−4. The dipole source has typical beam size of 0.4 mm × 0.1 mm FWHM. The circular and 

linear polarization can be quickly selected by aperture. In this work, the degrees of circular 

polarization are 81% for Fe and, 84% for Co. The spherical grating monochromator consists of 3 

gratings with movable entrance and exit slits. Available methods at the beamline are Photoemission 

Electron Microscope (PEEM) for imaging of chemical and magnetic contrast with less than 100 nm 

resolution, Photoemission (PES), angle-resolved, resonant PES (ARPES, ResPES) for study of 

electronic, band structure with 2 meV energy resolution, Near-edge X-ray absorption (NEXAFS) by 

fluorescence yield, total/partial electron yield and Soft X-ray magnetic circular dichroism (SXMCD) 

for element-specific spin and orbital magnetic moment, as shown in fig.4.17. 

By our department, the soft x-ray magnetic circular dichroism setup was designed especially for 7 

Tesla fast field switching. The magnet is driven by a power supply with the maximum ramp rate of 1.5 

T/s to 5 T and 0.7 T/s to a maximum field of 7 T. Two cryocoolers cool the magnet system to the 

superconducting state. The chamber of the setup is under the base pressure usually 3∙10-10 mbar. The 

temperature can be set from 10 to 350 K. The absorption can be measured by three kinds; total 

electron yield (TEY), total fluorescence yield (TFY) and a transmission photodiode. The sample can 

be rotated both azimuthal 0⁰ to 360⁰ and polar 0⁰ to 90⁰ in principle. The sketch and real pictures of the 

setup are shown fig.4.18. 
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Fig.4. 18 Experimental setup for XMCD for TEY mode at WERA beamline in ANKA. a, b, c) 7 Tesla fast 

switching XMCD setup, designed, developed and constructed at the Schütz department, Max-Plank-

Institute for Intelligent Systems.[11]. d, e) Pictures of x-ray beam spot and sample on a sample holder in 

setup.  

 

4.3.1.1 Total Electron Yield (TEY) mode  

 Traditionally, XAS measurements were performed in transmission mode, which is measured 

the intensity of x-ray beam before and after transmission through a thin film. Transmission method is 

suitable for hard x-ray and required a transparent, thinned sample and thinned substrate. The mean 

absorption length (attenuation length) of soft x-ray is very short of the penetration depth and at the 

absorption edges is only 20-50 nm in soft x-ray region.[127, 128] To conquest these points, the 

absorption should be measured by means of secondary processes, like fluorescence yield, total / partial 

electron yield or even ion yield. The photocurrent is nearly proportional to the number of absorption. 

In this work, only total electron yield method is used for XAS and XMCD studies.  

 By absorption of x-ray photons, holes are formed an inner shell. The hole is closed again by an 

electron transition from an outer shell. During this process, the released energy emits and transfers to 

other electrons, which is torn out of their bond. It is so-called the Auger effect and is repeated for the 

secondary electrons. Some of these electrons can leave the sample surface, if these electrons have a 

higher energy than the work function. This induces a currents of typically 10-12A which are measured 

by a Keithley amperemeter. A schematic of the experimental setup of TEY measurement is described 

in fig4.19.  
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Fig.4. 19 Total electron yield method. The incident radiation is absorbed, and Auger process occurs. The 

current of Auger electrons, which leave the sample, is measured by electrometer and is proportional to the 

absorbed intensity.[58] 

The current is nearly proportional to the absorption of photons. This method also has experimental 

obstacles to overcome. The Lorentz force by the applied magnetic field affects the leaving electrons. 

Some electrons move on spiral and return to the sample, which can modify the current. To prevent this, 

the sample is set to a negative voltage. Another feature of the TEY measurements, the strong surface 

sensitivity, limits the range of probing depth to a few nm. For thin film, a saturation effect, which is 

also called self- absorption effect occurs.[129] These effect cannot be removed these experimentally. It 

has been evaluated after measurement, subsequently. The correction of saturation effect will be 

referred next section. On the execution of angle-dependent measurements, the correction of saturation 

effect have to be dealt, necessary.  

 

4.3.1.2 Correction of Saturation effect _self-absorption 

 The measurement in the TEY mode gives an error to measured absorption peaks for the film 

as thin as 5 nm. Depending on film thickness and X-ray incident angle.[129] In this work, the 

correction of self-absorption effect follows the procedure developed by Dr. Eberhard Goering.[130] 

To correct ITEY(E) signal, the origin signal have to be known by the relation with absorption 

coefficient and length. The TEY signal of a sample of the thickness of d is obtained by the total 

number of charge carriers nesc(d,E). The nesc(d,E) is determined by the number of charge carriers 

generated in the depth z along the path of photons. 

 𝑛(𝑧, 𝐸) = 𝑘 ∙ 𝐼0(𝐸) ∙
𝜇(𝐸)

𝑐𝑜𝑠𝜃
∙ 𝑒−𝑧∙

𝜇(𝐸)

𝑐𝑜𝑠𝜃,  𝑛𝑒𝑠𝑐(𝑧, 𝐸) = 𝑛(𝑧, 𝐸) ∙ 𝑒
−

𝑧

𝜉 (4.15) 

where k is an energy-dependent constant. I0(E) is the intensity of incident photons. θ is the incident 

angle from the normal direction of the sample. The number of nesc(d,E) is related with the average 

electron escape depth 𝜉which is limited by the electron mean free path. From this, ITEY(E) is given by 

 
𝐼𝑇𝐸𝑌(𝐸) ∝

𝑛𝑒𝑠𝑐(𝑑, 𝐸)

𝐼0(𝐸)
=

𝜇(𝐸)

𝑐𝑜𝑠𝜃
𝜉

+ 𝜇(𝐸)
∙ (1 − 𝑒

−𝑑∙(
1
𝜉
+

𝜇(𝐸)
𝑐𝑜𝑠𝜃

)
) (4.16) 

where, μ±(E) is absorption lengths. 

The absorption lengths μ0(E) can be obtained with the normalized measurement spectra and the 

absolute absorption length in μm-1. The absolute absorption length can be obtained from Henke et al. 

[131, 132] 
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For the correction of the spectra, a correction formula is for the measured absorption μ0 (E). The true 

absorption 𝜇(E) of the exponential term in Eqn. 4.16 can be replaced by μ0 (E). The equation is re-

written as 

 
𝐼𝑇𝐸𝑌(𝐸) ∝

𝜇(𝐸)

𝑐𝑜𝑠𝜃
𝜉

+ 𝜇(𝐸)
∙ (1 − 𝑒

−𝑑∙(
1
𝜉
+

𝜇(𝐸)
𝑐𝑜𝑠𝜃

)
) (4.17) 

 

In the bulk samples, the absorption coefficient is 𝜇(𝐸) = 𝜇0(𝐸)/(1 −
𝜉∙𝜇0(𝐸)

cosθ
). However, in a thin film 

sample of a certain thickness, the absorption signal is added to ratio of the electron charge carrier 

(indicating by current) according to sample thickness, 𝜇(𝐸) = 𝜇0(𝐸)/(1 −
𝐼(𝐸,𝑑)

𝐼∞(𝐸)

𝜉∙𝜇0(𝐸)

cosθ
). The ratio 

can be obtained by 𝐼(𝐸, 𝑑) = 𝐼∞(𝐸) ∙ (1 − 𝑒
−𝑑∙(

1

𝜉
+

𝜇0(𝐸)

𝑐𝑜𝑠𝜃
)
). 

The absorption length can be corrected by 

 
𝜇(𝐸) =

𝜇0(𝐸)

1 −
𝜇0(𝐸) ∙ 𝜉

cosθ (1 − 𝑒
−𝑑∙(

1
𝜉
+

𝜇0(𝐸)
𝑐𝑜𝑠𝜃 )

)

 
(4.18) 

In this thesis, the electron escape depth 𝜉 is determined from “universal curve for electron”. The mean 

free path’s depends on the kinetic energy of the electron. (about 20 Å, for the 3d meals at 700-1000 eV, 

24 Å for FePt and 25 Å for Co were used).  
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Fig.4. 20 The spectrum is converted to absorption length [μm-1]. 
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Chapter 5  

 

Results: Artificially structured exchange-spring nanomagnets 

 

Exchange-spring magnets (ESMs) of ferromagnetic materials have been investigated to tune the 

magnetic properties of thin layers. ESMs comprise a combination of magnetically hard and the soft 

magnets. One of the methods for increasing the coercivity is to microstructure the magnet size to 

obtain a suitable size according to fig.2.17 and is used in this thesis. In this chapter, the hard magnets 

are artificially nanostructured by the top-down method. Moreover, ESMs have been developed to 

improve the relatively small magnetization of the hard magnet by a soft magnets stacked on hard 

magnets to control the coercivity. In the field of magnetic data storage, the patterned nanostructure is 

called as bit-patterned media (BPM) and ESMs are called exchange-coupled composition media (ECC 

media).  

 

Nanopatterned magnets of excellent magnetic properties were designed and built by the combination 

of nanostructure and exchange-spring magnet. The magnetic properties of different ratios of the soft 

and hard magnets were investigated to find out how to tune the magnets and magnetic reversal process. 

In order to be able to compare the hard magnets and the exchange-spring magnets of different 

coupling strength, three kinds of magnetic thin film layers were produced by magneto co-sputtering. 

Sample 1 consists of a hard magnetic thin film, only. Sample 2 is an exchange-spring magnetic 

multilayer. For sample 3, the thickness of the soft magnetic layer was increased. In this way the 

fraction of soft magnetic material and the coupling strength are changed. The multilayers were 

checked and analyzed with respect to crystal phase and morphology by x-ray diffraction (XRD) and 

scanning electron microscopy (SEM). Nanopatterned films were fabricated by nanoimprint 

lithography (NIL) that is one of top-down techniques. In this work, the nanopatterns consisted of 60 

nm diameter dot size and 150 nm period in an area of 2 × 2  mm2. The pattern structures were 

confirmed by atomic force microscopy (AFM). In addition, size and structure of each nanomagnet 

were checked by transmission electron microscopy (TEM).  The distribution of the magnetic domains 

and the interaction between different domains in these nanomagnets were studied by magnetic force 

microscopy (MFM). 

Fig.5. 1 Schematic of bit pattern media (BPM) and exchange-coupling composition media (ECC media). In 

this chapter, the combination of two media is investigated as exchange-spring nanomagnet pattern. 
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Superconducting quantum interference device (SQUID) magnetometry was employed to measure the 

magnetic properties.  By temperature dependence studies of the magnetic hysteresis loops, magnetic 

intrinsic parameters and micromagnetic structural parameter were determined by applying in 

Kronmüller equation. Each nanomagnet in patterns can become the hysteron in Preisach model. 

Moreover, first-order reversal curves measurements were performed to obtain interaction field 

distribution and coercive field distribution according to the ratio of the soft and hard magnet in 

samples. Especially, the domain transitions on various fields were confirmed to investigate magnetic 

reversal process by MFM. 

 

5.1 L10-FePt / Co nanopatterned samples 

Overview of the systems 

To investigate exchange-spring magnets with different coupling strengths, three kinds of magnetic thin 

film layers were prepared by magneto co-sputtering. The layer thicknesses and their compositions are 

shown in Fig.5.2. L10-chemically ordered FePt with huge magnetocrystalline anisotropy energy 

(𝐾1~6.6 𝑀𝐽/𝑚3 ,  𝐽𝑆~1.43) has been chosen as the magnetically hard material and cobalt, a 3d-

transition metal with high magnetic saturation polarization (𝐽𝑆~1.76, 𝐾1~0.45 𝑀𝐽/𝑚3), is used as 

magnetically soft material. 20 nm thick L10-FePt films were deposited on MgO (100) substrate at 600 

ᵒC for all samples. The optimized sputter condition for the formation of L10-Fe51Pt49 and the WDX 

results are presented in Appendix A. 1. After the deposition of the L10-FePt films, the temperature of 

600 ᵒC was kept for 1 hour. For the exchange-spring magnet, Co layers of 3 and 7 nm thickness were 

deposited on the L10-FePt films, respectively (sample t3 and t7). temperature to prevent any inter 

diffusion between the layers. In addition, samples t3 and t7 were covered by 2 nm of Pt as protection 

layer to avoid sample oxidation. Fig. 5.2 shows schematic of thin films, respectively. 

Sample 1 (t0) : 20 nm FePt  

Sample 2 (t3) : 20 nm FePt/ 3 nm Co/ 2 nm Pt 

Sample 3 (t7) : 20 nm FePt/ 7 nm Co/ 2 nm Pt 

 

Fig.5. 2 Illustration of the FePt hard magnet of 20 nm thickness and exchange-spring magnet multilayers 

of 20 nm FePt / 3 nm and 7 nm Co with 2 nm Pt protection layer on MgO (100) substrate. 
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5.1.1 Characterization of the thin film structure 

5.1.1.1 Crystal structure 

 The thin L10-Fe51Pt49 films were prepared under optimized conditions as listed in Table A3. 

The structures of all samples were studied by x-ray diffraction (XRD) with Cu-Kα radiation as shown 

in fig. 5.3. FePt (001), (111) and (003) peaks are observed at 2θ ~24°, ~54° and ~80°, respectively. 

Indicating that crystal structure is L10-phase (face-centered tetragonal, fct). Co (111) and (200) peaks 

are at 2θ ~41° and ~54°, respectively. The peaks positions are ascribed to the face-centered cubic (fcc) 

crystal structure of Co. The Co (200) peak is overlapping with the FePt (111) peak, once Pt (222) peak 

shows up at 2θ ~81° where it overlaps with the FePt (003) peak.  

 

Fig.5. 3  X-ray diffraction spectra for samples, t0 (Black), t3 (Red) and t7 (Blue). Peaks of FePt, Co and Pt 

are verified.  

The tiny heights of FePt (001) peaks are similar for all these samples; there is no overlapping with 

other peaks. Obviously, sample t0 contains only FePt. Samples t3 and the t7 show Co and Pt peaks from 

Co and Pt layers. There are some differences between those two exchange-spring multilayers that are 

not understood in all details: the Co (200) at 2θ ~54º of t3 is stronger than t7, on the other had the Pt 

(222) at 2θ ~81º of the t7 is stronger than that of t3. The latter may be due to the deep gaps seen on the 

surface of sample t3 (see below). The Pt could have diffused into these gaps and, there, formed a film 

of different structure that does not show up here. The Co (111) peak of t7 is broader than that of t3 and 

exhibits less intensity. Nevertheless, the experiments show that an L10-FePt film has formed that is 

covered by a considerable amount of Co.  
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5.1.1.2 SEM images of the continuous films 

In order to obtain more information about the samples, they were investigated by scanning electron 

microscopy (SEM) as shown in Fig.5.4. According to our previous work [133], the sputtered thin FePt 

films first form granular islands, then become maze-like, and after a critical thickness they become 

thin continuous films. FePt of 20nm thickness is deposited (see top of fig. 5.4). The center and bottom 

parts of Fig. 5.4 show the SEM images of sample t3 and t7. 

As the figure shows, the thickness of 3 nm and 7 nm Co are not enough to provide perfect thin films. 

The surface of t3 shows an island-like nanostructure. Although t7 looks almost packed by Co, the 

whole area is not a continuous film. The Pt protection layer on t3 is too thin to form a substantial 

crystalline Pt layer. Instead Pt is diffused into the gaps between the grains, probably forming a new 

phase there. A thicker Co layer forms an almost continuous Co film and allows to build up a Pt layer 

exhibiting the Pt crystal structure (sample t7). The layer structures, as suggested by the SEM images, 

are schematically shown in Fig. 5.4 on the right hand side (compare with the intended structure as 

illustrated in Fig. 5.2) These SEM results will be helpful to understand the transmission electron 

microscopy (TEM) images of the nanomagnets shown in the next section. 

 

 

Fig.5. 4 Scanning electron microscopy images of all samples. 20 nm FePt layer on MgO (100) substrate 

shows the perfectly thin film (top). 3 nm Co forms granular particles on FePt thin film (middle). 7 nm Co 

is like a maze (bottom). Schematic of exchange-spring magnet multilayer is corrected by SEM image. 

(Right) The 3 nm and 7 nm on 20 nm FePt thin layer are not enough to form a thin layer. They are island-

type nanostructure. 
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5.1.2 Characterization of the nanopattern structure 

5.1.2.1 AFM and MFM results 
 These films are then structured by NIL, explained in Appendix A. 2. For all samples only one 

master stamp was used. It exhibits dots of 60 nm diameters, 150 nm period and 90 nm heights. The 

AFM image describes the size and height of each nanomagnet and their periodicity. The MFM image 

shows the magnetic up and down directions of the nanomagnets. It shows that they are single domain 

nanomagnets without noticeable interaction. The 3-D structure and scale down images are in 

Appendix A. 3. 

 

Fig.5. 5 Schematic of the exchange-spring nanomagnets produced in this part of the work a) The pattern 

size is a large area of 4 mm2. b) The diameter of nanomagnet is 60 nm, their period 150 nm.  

 

Fig.5. 6 The AFM and MFM images of samples after the etching process. All samples show the same 

results. The AFM images shows a uniform pattern with 60 nm size and 150 nm periods. The MFM result 

denotes that the individual nanomagnets are not interacting, but are single domains. 

The AFM and MFM images of the nanodots are shown in Fig. 5.6. The nanomagnets are distributed 

homogeneously over the substrate and exhibit the same shapes, very similar to the schematic shown in 

Fig. 5.5. 
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5.1.2.2 TEM images of the nanomagnets 

TEM images were taken (see Fig.5.7) direct information about the real thicknesses and shapes of the 

nanomagnet. The figures show that the nanomagnets deviate from a cylindrical shape. They look more 

like circular truncated cones, which is due to lateral etching. The height of the nanomagnets t0 is less 

than 20 nm. One also can recognize something on top of these nanomagnet; this is carbon that has 

been deposited there during the preparation of the TEM samples. The samples t3 and t7 only show 

traces of Co on top of the FePt islands, besides rests of the lacquer from patterning. Also the TEM 

pictures show that the Co and Pt layers are by no means homogeneous. At the moment it is not clear 

why the t7 nanomagnets exhibit an exceptionally low Co coverage.  

In these TEM measurements FePt and Co layers of samples t3 and t7 are hard to distinguish. Therefore, 

in order to determine the composition of an exchange-spring nanomagnet, energy-dispersive X-ray 

spectroscopy (EDX) measurements were performed. Appendix A.4 presents the EDX results. 

 

Fig.5. 7 TEM images of t0, t3, and t7 samples. The thickness of t0 sample is less than thin films due to 

etching rate. The Co layers of t3 and t7 are not covered whole area and thicknesses are not homogeneous. 
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5.2 Magnetic properties 

 The magnetic properties of the nanopatterned magnets were investigated with SQUID 

magnetometry. But before nanopatterning, also the magnetic properties of the thin films were 

measured. The out-of-plane and in-plane magnetic hysteresis loops at RT are shown in Fig. 5.8 

showing to large out-of-plane anisotropy. With increasing thickness of the soft magnetic Co layer, 

anisotropy and coercivity are reduced. For comparison, the intrinsic magnetic properties of the 

multilayers components are presented Appendix A. 5.  

 
Fig.5. 8 RT out-of-plane and in-plane magnetic polarization hysteresis loops of the exchange-spring 

multilayers t0, t3, and t7 before getting nanostructured. On the right-hand side a magnified version 

around field zero. In the bottom-line the magnetic moments of the out-of-plane hysteresis loops are 

compared.  
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Fig.5. 9 The hysteresis loops (magnetic polarization and magnetic moments) of exchange-spring 

nanomagnet patterns in our-of-plane at room temperature. The saturation polarizations are similar. 

The values of magnetic polarization (magnetization) are similar, because they are quantities per unit 

volume. The magnetic moments (fig.5.9, right) show the influence of the soft magnetic layer. The 

hysteresis loops of t0 and t3 are switching in almost one step without a significant kink. However, t7 

shows clearly two-steps switching with kink. Sample t0 is composed of one phase, only, the L10-FePt 

hard magnet. In sample t3 there is perfect coupling between the hard and the soft Co phase. Only 

partial coupling, is observed for t7 .Further details will be referred to later in this section. 

 

Fig.5. 10 Normalized out-of-plane hysteresis loops of 20 nm thick continuous and nanopatterned L10-FePt 

on MgO (100) substrate at RT. 

The out-of-plane hysteresis loops of the thin continuous film and the nanopatterned system of t0 show 

big difference (see fig. 5.10). The coercivity increases from HC ~0.15 T (thin film) to HC~1.75 T 

(nanomagnets). The magnetic parameters of the thin films are summarized in Appendix A.5 
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5.2.1 Temperature dependence of hysteresis loops 

In order to study the magnetic reversal process by microstructural parameters, the temperature 

dependence of the hysteresis loops of samples have been measured in the temperature range 50 K to 

350 K. The temperature dependent out-of-plane hysteresis loops of the samples are shown in Fig 5.11. 

 
 

Fig.5. 11 Out-of-plane hysteresis loops of the nanomagnets t0, t3 and t7 from 50 K to 350 K. 
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The temperature dependence of the out-of-plane hysteresis loops of these tuned exchange-spring 

nanomagnets are directly consequences of the fraction of soft magnetic material on the coercive field 

and saturation polarization. The coercive fields HC decrease from 1.94 T to 1.66 T for t0, from 1.32 T 

to 1.19 T for t3 and from 1.24 T to 1.02 T for t7 in the temperature range 50 K to 350 K. A decreasing 

temperature cause the coercive field to increase as expected.[133] However, the fraction of the soft 

magnetic material does not seem to influence the temperature dependence of the coercive field. The 

width distributions of HC are 0.28 T for t0, 0.11 T for t3 and 0.21 T for t7. The pure FePt patterns 

exhibit the largest change, the perfectly coupled exchange-spring magnets a smallest. Thus, the 

increase of the saturation polarization definitely is due to the soft magnetic layer. The saturation 

polarizations JS decrease from 1.78 T to 1.15 T for t0, from 1.79 T to 1.20 T for t3 and from 1.79 T to 

1.26 T for t7 in the temperature range 50 K to 350 K. With decreasing temperature the saturation 

polarization increases. However, the soft magnet has higher Curie temperature, and thus the decrease 

of the saturation polarization with temperature is less. The hard magnetic nanomagnet patterns have 

smallest saturation polarization. The saturation polarization distributions of the samples are 0.63 T for 

t0, 0.59 T for t3 and 0.53 T for t7. The saturation polarization is related to amount of the soft magnetic 

material. The hysteresis loops of the hard nanomagnet pattern t0 are almost rectangular. The increase 

of the soft magnet fraction bends the hysteresis shapes due to increasing coupling between the hard 

and soft phases. The coercive field and the saturation polarization are shown in Fig. 5.12 in 

dependence of temperature. 

 

Fig.5. 12 The coercive field, HC and the saturation polarization, JS at various temperatures of exchange-

spring nanomagnet patterns. 

 The anisotropy energy (MAE, K1) were determined as the sum of the effective 

magnetocrystalline anisotropy energy (MCA, Ku) and the shape anisotropy (Kshape), [K1= Ku + Kshape]. 

The effective anisotropy can be obtained from the slope and the magnetic polarization of in-plane 

hysteresis loops, as described in section 4.2.2.2. The in-plane hysteresis loops of the nanopatterns are 

shown in Appendix A.4. The shape anisotropy was calculated from the difference of the 

demagnetization factors for each directions and saturation magnetization according to the 

formula 𝐾𝑠ℎ𝑎𝑝𝑒 =
1

2
𝜇0∆𝑁𝑑𝑀𝑆

2. The values of ΔNd are obtained 0.356 for t0, 0.304 for t3 and 0.244 for 

t7 by simple approximation of M. Sato.[118]  The anisotropy energies are shown in fig.5.15 in 

dependence of temperature. The pure FePt system has a higher MAE. The slopes that can be used to 

calculate the effective anisotropy do not dramatically change between samples. The shape anisotropy 

is dependent on the saturation magnetization. An increasing of the thickness of the Co layer reduces 

MAE.  
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Fig.5. 13 The anisotropy constant K1 was obtained from the magnetocrystalline anisotropy energy 

(MAE, Ku) and the shape anisotropy constant Kshape in dependence of temperature.  

The temperature dependent exchange stiffness A was determined by means of Eqn. 4.11 which is  

relation between the saturation polarization JS and stiffness constant Dsp. The stiffness constant, Dsp 

could be obtained by JS,0 = JS (T=0) and the characteristic temperature T0 in Eqn. 4.19. Fig. 5.14 (left) 

shows the plots ((T/T0)3/2 vs JS/JS.0) to obtain JS,0 and T0 by Eqn. 4.18. By fitting of the Bloch’s T3/2 

law, the values of t0: JS,0 - 1.843 T, T0 - 663.54 K, t3: JS,0 - 1.842 T, T0 - 707.2 K and t0: JS,0 - 1.835 T, 

T0 - 765.22 K) are determined. The calculated exchange stiffness A by in dependence of temperature, 

which are shown in Fig. 5.14 (right), are smaller than for thin films.  By adding of soft magnetic 

layers the saturation polarization at 0 K slightly decreases, the characteristic temperature increases. If 

the magnetic moments are aligned parallel to each other, the exchange stiffness A decreases due to a 

thicker domain wall. 

 

 

Fig.5. 14 The linear fit of experimental data to obtain JS,0 and T0 by Bloch’s law. The exchange stiffness A 

of exchange-spring nanomagnet patterns. 

With MAE and A, the wall energy γ, the exchange length lk and the wall thickness δ can be calculated.. 

The MFM results show the behavior of each nanomagnet in patterns as single domain nanoparticle. 

However, the hysteresis loops of t7 are kinked: the decoupled part in exchange- spring nanomagnets 

seems to form multi-domains. As can be seen in fig.5.15, sample t7 has the lowest wall energy. It 
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means that for sample t7 sample it is easier to forms multi-domains. Moreover, the thicker Co soft 

layer is in favor of parallel alignment of the magnetic moments, which increase the domain wall 

thickness. The calculated exchange lengths are about double of lattice constants.  

 

Fig.5. 15 The wall energy, the exchange length and the width of domain wall of exchange-spring 

nanomagnet patterns are obtained with MAE and A 

The exchange stiffness A, the wall energy γ, the exchange length lK, the domain wall thickness δ and 

the critical diameter DC of samples t0, t3 and t7 at RT are listed in Table 5.1. 

 A [pJ/m] γ [mJ/m2] lK[Å] δ [nm] DC [nm] 

t0 2.022 13.32 6.07 1.91 42.3 

t3 2.245 13.34 6.73 2.11 39. 

t7 2.578 13.34 7.72 2.42 34.8 

FePt thin film 4.2 19.15 8.7 2.75 52 

Table 5. 1 The magnetic domain theory parameter of exchange-spring nanomagnet patterns at RT. 7 nm 

FePt thin film for comparison.[133]  
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5.2.2 Microstructural parameters 

The microstructural parameters explain the magnetic reversal process, introduced in section 2.4.4. To 

obtained these parameters, the measured values of the saturation polarization JS, the coercive field HC 

and the MAE K1 for various temperature were inserted into the relation of  𝐻𝐶(𝑇)/𝐽𝑆(𝑇) vs 2𝐾1(𝑇)/

𝐽𝑆
2(𝑇).  

 The plot of the coercive field, the saturation polarization, and MAE relations gives the 

information of coercivity (switching, magnetic reversal process) mechanism by the microstructural 

parameters α and Neff. Fig. 5.16 shows a plot of the relation by which the microstructural parameters 

can be determined; the slope provides α and the intersection with the y-axis are Neff. 

 

Fig.5. 16 The plot to determine the microstructure parameters α and Neff of exchange-spring nanomagnet 

patterns with different the soft magnetic fraction. 

The ideal nucleation field has α = 1 and Neff = 0 which is accompanied by an irreversible homogeneous 

rotation. However, the experimental coercivities are smaller than in the ideal case; this is known as 

Brown paradox. The determined parameters are summarized in Table 5.2. 

 α Neff αK αex 

t0 0.11 0.402 0.846 0.13 

t3 0.135 -0.066 0.768 0.175 

t7 0.106 0.138 0.742 0.142 

Table 5. 2 The obtained microstructural parameters. Those parameters explain the coercive mechanism. 
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The obtained microstructural parameter α shows the influence of the Co soft magnetic layer. 

Compared to t0, the α is increased for t3, but about the same for t7. In order to estimate the reason of 

this behavior, sub-parameters (αK, αψ and αex) of α are determined. The value of αψ is assumed by 

almost ~1, as for the easy axis direction. αK is due to the inhomogeneous regions which are 1.7 nm in 

the A1 phase for t0, 3 nm Co for t3, and 7 nm Co for t7. αK is reduced due to the increasing 

inhomogeneous regions. The hard magnet t0 and perfectly coupled exchange spring magnet t3 are both 

magnetically homogeneous. The small value of αK of t7 explains that more magnetic phases than in the 

other cases. The smaller values of αex result from exchange-coupled grains. By all of the results, the 

assumed magnetic moments directions in the individual nanomagnets with real dot shape are depicted 

in fig, 5.17. Pure FePt has inhomogeneous region due to the etching and mismatching with the 

substrate. The cover by Co protects the top of FePt from being an A1 phase (αK). No flat region at the 

edge of nanodots forms the angle of magnetic moments. The decoupling between the hard and the soft 

magnetic layers separates the magnetic moment directions of the top and bottom layers. (αex). 

 

Fig.5. 17 The magnetic moment directions in the individual nanomagnets 

 Neff is the difference 𝑁∥ − 𝑁⊥ . The negative values of Neff mean that those magnets form a 

demagnetization field Hd which has components in both directions, perpendicular and parallel to 

external field. Moreover, part of the dots extends in vertical direction. The A1 phase on t0 and 

decoupled part of t7 induce the magnetization reversal mechanism. The magnetizations in the 

nanomagnets of disk shape tend to be aligned parallel to the disk face. L10-FePt has an easy axis 

perpendicular to the disk face. However, the decoupled part of the Co soft magnet follows the shape 

anisotropy. This direction corresponds to the film direction, which is perpendicular to the external 

field. 𝑁⊥is increased by the decoupled soft layer. Therefore Neff goes down to negative values.  

 

5.2.3 FORCs results 

First-order reversal curves measurements on these nanomagnet patterns were performed to investigate 

the interaction field and the coercive field distribution. The measured minor hysteresis loops were 

analyzed by explained method in section 4.2.3.1. The FORCs densities of each sample are depicted in 

Fig 5.18. 

The distributions of the interaction field are very narrow, supporting tiny interaction between the 

nanomagnet in the patterns. The coercive field distribution tells that this nanopattern is a good 

example for the Preisach model. Each single domain nanomagnet behaves as hysteron in the hysteresis 

loop. The numbers of nanomagnets is the same in all patterns, and they are uniformly distributed. The 

magnetization of the hard nanomagnet in t0 is smaller than that of the others. Therefore, it has lower 

intensity with broader distribution. In contrast, sample t3 shows a higher intensity and a narrower 

distribution. The perfect coupling of two phases has a lower potential for switching due to the soft 

magnetic layer. The decoupled region of the t7 samples forms two separated mounds due to the soft 

magnetic layer reversal at low field and a coupled part reversing with hard magnet. 
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Fig.5. 18 FORC density of tuned exchange-spring nanomagnet patterns: t0 result (top), t3 (middle) and t7 

(bottom). The partially coupled exchange-spring magnet has two regions for distribution. 

In addition, the distribution of the areas between FORCs minor loops (Fig. 5.19, Appendix A. 7) with 

an equal field spacing of 1000 Oe represents how many hysterons are switching by the reversal field. 

In Fig.5.19, the bar graph displays the difference of the area in FORCs. It also shows a modified 

Gaussian distribution (G(𝐻) = 𝑚0 + (
𝐴

𝜎√2𝜋
) exp (

𝐻−𝐻𝐶

2𝜎2 )) fitted to the data (green line). The fitting 

results give information about m0, σ and HC. 𝑚0 indicate the amout of change by an external field of 

1000 Oe. A rise of the thickness by the Co layer increase the value of 𝑚0 from 0.00928 (ratio of area) 

for 0 nm Co and 0.00956 for 3 nm Co to 0.1167 7 nm Co layer. At the point of the begin of the 

switching, the area is smaller than m0. This range is assumed to result from spin tilt, not a spin flip of 

dots. A higher values of m0, the dots switch. The decoupled ES magnet has broader range of 

nucleation. Besides, in the partially coupled ES magnet includes broad less change range is seen 

almost 1 T due to decoupled part of the Co soft layer. The value of σ is reduced from 6.8 kOe for t0, 

5.2 kOe for t3 and 4.2 kOe for t7 by Co layer. The coupling between dots is negligible, and patterns are 

almost equal. However, the narrowing of width means that the force to switch dot is reduced by soft 

layer. 

 

Fig.5. 19 Switching field distribution (SFD) by area of FORCs.  
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5.2.4 Magnetic reversal process in partially coupled ES magnet 
The reversal process of a single one phase magnet (t0) and a perfectly coupled magnet (t3) is just one 

flip. However, the partially coupled magnet (t7) has a kink in the reversal process, consisting of two 

steps. The decoupled part of soft magnetic layer can create a domain wall. The two domain states are 

confirmed by MFM. For this purpose field-dependent MFM images were taken at various fields, from 

2 T to -2.5 T. Fig 5.20 are MFM images by various reversal fields measured at zero field.  

The magnetic saturation at 2 T is correlated to a homogeneous pattern in the MFM image. At -0.5 T 

and -1 T, there seems to be two domains in one nanomagnet. A bright and a dark side of one structure 

is due to the Co magnetization is in-plane oriented, therefore the stray field of top of dot is a flat dipole. 

The MFM machine can only check -up-down directions of magnetic stray field. A hard magnetic 

behaviors is assumed under the soft magnet at those fields. It appears as a black-white contrast in one 

nanomagnet. However, at -1.25 T, the flipped nanomagnet does not show two domains. The assumed 

model of magnetic reversal is depicted in Appendix A.9. 

 
 Fig.5. 20 The microscopic magnetic reversal processes by MFM images of remnant at a certain field (t7: 

Partially coupled ES magnet sample). Inset: Zoom in one particle, white circle is guide a dot. 
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 5.3 Conclusion: Influence of the soft magnet fraction in 

artificial nanosized exchange-spring magnets. 

 It was the aim of this study to investigate the differences between the magnetic properties of 

one-phase nanomagnet and exchange-spring nanomagnets of different soft magnet fractions. For this 

purpose three kinds of thin films were prepared by sputtering with the composition: 20 nm FePt, 20 

nm FePt/ 3 nm Co/ 2 nm Pt and 20 nm FePt/ 7 nm Co/ 2 nm Pt. Films qualities, crystal structure, and 

morphology were investigated by XRD and SEM. A nanopattern of 60 nm dot size and 150 nm period 

was transferred to the three thin films with nanoimprint lithography. The pattern and phase structures 

were investigated by AFM and TEM and how good quality. 

Their magnetic properties have been investigated by SQUID magnetometry. The temperature 

dependent hysteresis loops gave the information about the saturation polarization and the coercive 

field. MAE values for various temperatures were obtained by measuring the hysteresis loops along 

different directions. From these measurements, the microstructural parameters, which can explain the 

coercivity mechanism, were determined. Different switching behavior of the nanomagnets can be 

explained by the obtained the microstructural parameters, where individual nanomagnets are non-

interaction as a single domain. A separated nanomagnet becomes a hysteron in the sense of the 

Preisach model. For the verification of this, FORCs measurements were performed. The samples 

exhibit a narrow interaction field distribution, but a broad coercive field distribution. In a comparison 

of the hard and the exchange spring magnet, the pure FePt system has broader distribution of the 

coercivity. Moreover, the different thicknesses of the soft magnet influence the magnetic reversal 

behavior and exchange coupling. The latter causes either perfectly coupled or partially coupled 

exchange spring magnet which includes also decoupled region as be seen in FORCs density.  

To check the spin tilt of the decoupled part, field dependent MFM images were performed. The 

decoupled cobalt parts of all nanomagnets in partially coupled magnet pattern are reversed first. At the 

critical field, some nanomagnets switch, and the magnetization directions of nanomagnets in the 

pattern are re-arranged. The assumed model of the magnetic reversal process in partially coupled 

magnets was depicted by field dependent MFM. 

 The results show that exchange spring magnet can be produced perfectly coupled or partially 

coupled, according to the thickness of the soft magnetic layer. The perfectly coupled exchange spring 

magnet exhibits a one-step hysteresis loop without kink, such as a one-phase hard magnet alone. 

However, the partially coupled exchange spring magnet shows two steps hysteresis loop with kink, 

due to the early reversal of the decoupling soft magnet. Increasing the decoupled soft layer reduces the 

microstructural parameter α and Neff. The stacked hard and soft magnets form exchange coupled grains, 

misaligned grains, and inhomogeneous grains. The nucleation α in these grains causes a rotation of the 

spontaneous polarization with increasing demagnetization field. In consequence, these effects reduce 

the coercive field of the magnets as shown by the intensity of the FORCs density. The decoupled soft 

layer forms a metastable state with two regions. Actual magnetic reversal process of partially coupled 

ES magnet is shown.  

It was verified that a combination of these magnets can give new magnet of excellent magnetic 

properties. 
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Chapter 6  

 

 

Results: Exchange-spring granular nanomagnets 

 

 In this chapter, exchange-spring nanomagnets formed as granular, multilayered nanomagnets 

are investigated. The coupling strength between the hard and the soft magnetic components of these 

nanomagnets are tuned by a non-magnetic interlayer of varying the thickness. In this way, perfectly 

coupling, partially coupling and decoupling between the two magnetic layers are obtained. The aim of 

these studies is to get information about the influence of different type of coupling and to investigate 

how the magnetic properties can systematically controlled by the variation of the coupling. This is 

particularly important for applications. 

The exchange-spring multilayers consist of 7 nm L10-FePt/ x nm Pt/ 3 nm Co/ Pt layers with a 

varying thickness  (x = 0, 0.5, 1 and 2) of the Pt interlayer. The samples were grown by Magneto co-

sputtering. They were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM) 

to check the crystal phase and morphology. The influences of magnetic coupling on the magnetic 

properties were studied by superconducting quantum interference device (SQUID) magnetometry. 

From these measurements magnetic intrinsic parameters, microstructural parameters and first order 

reverse curves (FORCs) were obtained. In addition, X-ray magnetic circular dichroism (XMCD) was 

employed to study element specific magnetic properties. By this method, the hard magnet (by Fe L2,3 

XMCD) and the soft magnet (by Co L2,3 XMCD) could be investigated, separately. 

 

6.1 L10-FePt/ Pt/ Co composition island structure 

As hard magnet, 7 nm thick (nominal thickness) layers of L10-FePt on MgO (100) substrate were used. 

It has been reported to show a high coercivity (HC) of ~4T with highly structural order in our previous 

work of our group.[133] The L10-FePt layer was covered by a  3 nm thick (nominal thickness) Co 

layer (for the soft magnet) with Pt interlayer of various thicknesses. The whole stack was covered by a 

thin Pt layer as protection layer (see Fig. 6.1).  

The 7 nm thick L10-Fe51Pt49 films were grown on an MgO (100) substrate at 800 °C by following the 

optimized sputtering condition described in Appendix A. 1. All of other materials, the Co soft 

magnetic layer and Pt inter/protection layers were deposited at room temperature to prevent inter 

diffusion. Four multilayer stacks were prepared:  

In addition, a 7 nm FePt film without any Co layer was grown as a reference. The details about this 7 

nm FePt film on MgO will be referred to in chapter 7 again.  

All samples are named after the thickness of the Pt interlayers, such as t0, t0.5, t1, t2 and tNoCo. Fig.6.1 

shows schematics of these exchange-spring multilayers. 
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6.1.1 Crystal structure 

The crystal structures of the exchange-spring multilayers were identified by X-ray diffraction using 

CuKα radiation. The results of t0, t1, t2, and NoCo are shown in Fig. 6.2. FePt (001), (002) and (003) 

peaks are clearly found at 2θ~24°, 2θ ~48° and 2θ ~76° in the XRD pattern, respectively. The Co 

(111) and (002) peaks overlap with the MgO (002) and FePt (002) peaks. The chemical ordering 

parameter S of the L10-FePt structures has been determined from the peak intensities by the numerical 

calculation. The S values of t0, t1, t2 and NoCo are 0.92, 0.86, 0.99 and 0.86, respectively indicate high 

ordering, which is for t1 and the NoCo samples somewhat lower.  

t0 : 7 nm FePt / 0 nm Pt     / 3 nm Co / 2 nm Pt , t0.5 : 7 nm FePt / 0.5 nm Pt / 3 nm Co / 1 nmPt 

t1 : 7 nm FePt / 1 nm Pt    / 3 nm Co / 1 nmPt   , t2   : 7 nm FePt / 2 nm Pt    / 3 nm Co / 1 nmPt 

tNoCo : 7 nm FePt  

 

Fig. 6. 1 Schematic illustration of multilayer stacks that exhibit Pt interlayers of different thicknesses (0, 

0.5, 1and 2 nm) between a L10-FePt hard magnet layer of 7 nm and a Co soft magnet layer of 3nm and 7 

nm pure FePt without Co. They were grown on a MgO(100) substrate. All exchange-spring multilayers 

are covered by Pt protection layers.  tNoCo is only pure  L10-FePt as a reference sample. The samples are 

named by the thickness of interlayer: t0, t0.5, t1, t2 and tNoCo. 
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Fig. 6. 2 X-ray diffraction spectra of t0, t1, t2 and tNoCo samples. FePt (001-003) peaks indicate the crystal 

structure of chemically ordered L10-phase. The highest peak is from MgO(100) substrate. Co peaks are 

overlapped the other peaks. 
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6.1.2 Morphology 

Scanning electron microscopy (SEM) has been carried out to verify the morphology of the exchange-

spring multilayers. The L10-FePt thin films with nominal film thickness less than 8 nm are formed an 

island-type nanostructure of isolated particles with out-of-plane texture (see fig. 6.3). The c-axis of 

the face-centered tetragonal (fct) structure is perpendicular to MgO(100) substrate. The total 

thicknesses of multilayers are t0: 12 nm, t0.5: 11.5 nm, t1: 12 nm, t2: 13 nm. The packing area ratios 

(coverage) are t0: 59.37%, t0.5: 59.04%, t1: 60.9% and t2: 64.68% and used to calculate the sample 

volume which is needed to calculate magnetization (emu/cc, μB) or polarization J (T).  

 

Fig. 6. 3 SEM images ofL10- FePt (7 nm)/ Pt (x nm)/ Co (3 nm)/ Pt (1 or 2 nm), (x = 0, 0.5, 1 and 2) 

exchange-spring magnetic multilayers and a pure 7 nm FePt grown on MgO(100) substrate. Entire 

thickness, grain sizes and packing ratios are different for each sample. 

The diameter distribution of nanograins in ESM multilayers were obtained from SEM results in 

Appendix B.1. 
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6.2 Characterizations of magnetic properties 
 

The SQUID magnetometry were done to study magnetic properties and magnetization reversal 

process of each magnetically different phase magnets in exchange-spring multilayers. The intrinsic 

material parameters and the micromagnetic parameters were obtained with the results of the field 

dependent magnetization measurements at various temperatures.  

Fig 6.4 b-f) show the magnetic polarization hysteresis loops of the samples NoCo, t0, t0.5, t1and t2 

in hard- and easy-axis at room temperature, after the correction for diamagnetism and paramagnetism 

of the substrate The out-of-plane and in-plane measurements still show a strong anisotropy resulting 

from L10-FePt layers, in spite of the existence of exchange-coupling with the soft magnetic layer. as 

expected for the chemically order in L10-FePt phase. The maximum field of 7 T that can be applied in 

the SQUID magnetometer is sufficient to reach the saturation magnetization for easy-axis (out-of-

plane). However, for the hard-axis (in-plane), the magnetization of the films does not reach saturation 

in a maximum field of 7 T.  

It is obvious that the interlayer thickness plays an important role for the coupling between hard 

and soft magnetic phases. For t0, the saturation magnetization of the out-of-plane measurement is 

reached, because FePt is saturated due to perfect coupling to the Co soft magnet. However, the Co soft 

magnetic layer is saturated first and affects the L10-FePt hard magnetic layer to saturate. This tendency 

can be seen by the in-plane result, since the slope (between 2 T and 4 T external field) is decreased by 

decoupling.  

The coercive field increases with increasing decoupling, i.e. increasing Pt interlayer thickness, 

while the saturation polarization decreases only slightly with increasing total thickness (t0: 12 nm, 

t0.5:11.5 nm, t1: 12 nm and t2:13nm) and decoupling.  

According to thickness of the interlayer, the coercive field of out-of-plane measurement 

increases from HC = 1.59 T for t0 (coupling to Co) to HC = 3.21 T for t2 (decoupling). For comparison: 

the pure 7 nm FePt in reference sample has a coercive field of 4.14 T. With increasing interlayer 

thickness two magnetic phases develop with a kink (two steps hysteresis) in the out-of-plane 

measurement. By the hysteresis behavior, the coupling can be assumed to be perfectly, partially 

coupled and decoupled. All out-of-plane hysteresis curves at room temperature are compared in Fig. 

6.4 a). The magnetic moment and the switching field distributions (SFD, dM/dH) are compared in 

Appendix B.2. 
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Fig. 6. 4 Hysteresis loops of magnetic polarization at RT. a) Comparison of hysteresis loops of L10-FePt/ 

Pt/ Co/ Pt exchange-spring multilayers and pure L10-FePt on MgO(100) substrate in direction of out-of-

plane at RT and b) the hysteresis loops of each samples in both direction of out-of-plane and in-plane 

measurements at RT. 
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6.2.1 Temperature dependence of hysteresis loops 

The temperature dependence of the hysteresis curves are measured for all interlayer thicknesses in 

order to obtain the intrinsic and microstructural parameters at 50 K, 100 K, 150 K, 200 K, 250 K, 300 

K and 350 K as shown in Fig 6.5. As the temperature decreases, the saturation magnetization and the 

coercive field increase, consistently. The coercivity of the reference sample (pure 7 nm FePt) could not 

be measured because the maximum external field of 7 T was not enough to obtain saturation at 50 K. it 

is assumed by extrapolation. 

 

Fig. 6. 5 The temperature dependent hysteresis loops (magnetic polarization) of FePt/ Pt/ Co/ Pt exchange-

spring magnetic multilayers and FePt thin film on MgO(100) substrate. a) The out-of-plane hysteresis 

loops at 50 K and b-f) at a various temperature from 50 K to 350 K. 
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From these out-of-plane hysteresis, the temperature dependence of the coercive field and the 

saturation polarization are deduced. The coercive fields are in the range: 2.08 T >  𝐻𝐶  > 1.43 𝑇 for t0, 

3.1 T >  𝐻𝐶  > 2.19 T for t0.5, 3.37 T >  𝐻𝐶  > 2.45 T for t1, and 3.9 T >  𝐻𝐶  >  2.99 T for t7 in the 

temperature range 50 K to 350 K.  The decoupling apparently recovers the coercive field of the L10-

FePt hard magnet. However, the temperature-dependent saturation polarization shows a smaller 

increase in the decoupled sample t2 than in the coupled samples, i.e. it shows a hard-magnetic effect in 

the coupled samples. The Curie temperature of Co (1400 K) is much higher than that of FePt (660 K). 

If Co is not coupled to FePt, the Co soft magnet is almost saturated in the temperature range of the 

measurements, leading to the increase in saturation magnetization for better coupling.  Fig. 6.6 shows 

the temperature dependence of the coercive field Hc and of the saturation polarization JS for all 

samples studied in this part of the thesis 

 
Fig. 6. 6 Temperature dependence of the coercive field HC and the saturation polarization JS of all 

samples used in this study 

By comparing the out-of-plane and in-plane hysteresis curves of the multilayers, the temperature 

dependent magnetocrystalline anisotropy energy (MCA, Ku) could be determined. With the saturation 

magnetization and demagnetization factors of the hard and of the easy directions, the shape 

anisotropy (Kshape) was calculated. Temperature-dependent magnetic anisotropy constant K1 values 

were obtained by the sum of these anisotropies (Ku and Kshape). The results for MAE as obtained from 

MCA and the shape anisotropy are shown in Fig 6.7. The MAE increases from perfectly coupling to 

decoupling due to the increasing influence of the hard magnet.  
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To obtain the spontaneous magnetization at temperature zero, JS(T) is plotted versus 𝑇3/2 in fig. 6.8   

for all samples. According to Bloch’s law, the plots should give straight lines which is obviously 

fulfilled. From the slopes of the lines values for the characteristic temperatures T0  are obtained. In the 

equation for the exchange stiffness A(T) (equ. 4.18) JS,0 and T0 enter. From the relation, values for the 

exchange stiffness A were determined by use of the following values for JS,0 and T0: t0: JS,0 = - 2.006 T, 

T0 = - 1852.68 K, t0.5: JS,0 = - 2.085 T, T0 = - 1864.7 K, t1: JS,0 = - 2.047 T, T0 = - 1962.15 K, t2: JS,0 = - 

1.967 T, T0 = - 2354.02 K and NoCo: JS,0 = - 1.863 T, T0 = - 1694.13 K. For RT, the obtained values 

for the exchange stiffness are listed in Table 6.1. 

 

Fig. 6. 8 Left: Plots of the spontaneous magnetization versus T3/2 according to Bloch’s law, JS(T, 0) = JS,0 

(1-(T/T0)3/2). Right: The exchange stiffness constant A can be determined by the relation of JS,0 and T0 

(eqn.4.18). 

 

 

Fig. 6. 7  Temperature dependence of the magnetic anisotropy energy (MAE, K1), the magnetocrystalline 

anisotropy energy (MCA, Keff) and the shape anisotropy energy (KShape). 
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The exchange stiffness A seems to depend on coupling (t0, t0.5 and t1) or decoupling (t2). The domain 

wall energy γ, the exchange length lk and the wall thickness δ can be obtained from values for MAE 

and A by use of the Eqn.(2.28). Fig. 6.9 shows the domain parameters γ, lk and δ as a function of 

temperature. 

 

Fig. 6. 9 Temperature dependence of the domain wall energy γ, exchange length lK and of the domain wall 

thickness δ. The domain parameters were obtained from MAE and A values. 

For RT, the obtained exchange stiffness A, the wall energy γ, the exchange length lK, the 

domain wall thickness δ and the critical domain diameter DC (single-multiple domains) are 

listed in Table 6.1 for all samples. 

 A [pJ/m] γ [mJ/m2] lK[nm] δ [nm] DC [nm] 

t0 7.97 23.55 1.35 4.2 33.5 

t0.5 8.12 26.1 1.25 3.9 34.4 

t1 8.54 27.53 1.24 3.89 37.2 

t2 10.22 29.97 1.37 4.29 42.9 

NoCo 7.02 23.6 1.12 3.5 42.6 

Table 6. 1 Exchange stiffness A, the wall energy γ, the exchange length lK, the domain wall 

thickness δ and the critical domain diameter DC of all samples at RT 
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6.2.2 Micromagneticstructure parameters 
The magnetic reversal mechanism of the samples can be described by universal relation (eqn.2.33) 

introduced in section 2.4.4. The plot of 𝐻𝐶(𝑇)/𝐽𝑆(𝑇) vs 2𝐾1(𝑇)/𝐽𝑆
2(𝑇) at various temperatures gives 

information of microstructural parameter α and Neff using the experimental results for the temperature 

dependent values of JS and HC. 

Fig 6.10 shows plot that are used to determine the microstructural parameters α and Neff.  

 

Fig. 6. 10 Plot to determine microstructural parameter α and Neff, reference of 7 nm FePt (black), t0 

(red), t0.5 (green), t1 (blue) and t2 (magenta), Inset: zoom in the data district. 

The determined parameters α and Neff are summarized in Table 6.2 

 α Neff αK αex 

t0 0.336 -0.173 0.815 0.412 

t0.5 0.507 -0.498 0.639 0.794 

t1 0.658 -1.091 0.526 1.251 

t2 0.414 -0.076 0.481 0.86 

NoCo 0.918 1.93 0.999 0.918 

Table 6. 2 The microstructural parameters α and Neff of exchange-spring multilayers. 

The microstructural parameter α is decreased with the reduction of coupling. However, the parameters 

of the decoupling samples t2 are just the sum of the magnetic properties of both phases. In particular, 

the Neff values show how the reduction of coupling releases the Co soft magnetic layer. It images the 

shape anisotropy and demagnetization of the soft layer.  
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6.2.3 Extended FORCs results 
First-order reversal curves of the coupling-tuned exchange-spring nanomagnets were measured to 

study the effect of coupling on the interaction field and coercive field distribution at room temperature. 

The minor loops of FORCs are in Appendix B.3. The samples t0, t1, and t2 were chosen as examples 

for perfectly coupling, partially coupling and decoupling, representatively. Moreover, irreversibility 

can be seen in extended FORCs at HC = 0. The extended FORCs densities of the samples are shown in 

Fig. 6.11. 

 

Fig. 6. 11 The extended first-order reversal curves density for the samples t0, t1 and t2. The perfect 

coupling of sample t0 can confirm with a combination of distributions (top), In FORCs density of sample 

t1, a strong irreversibility and broad distributions are seen (middle). A separation in the density 

distribution is found in sample t2 (bottom). 
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The FORCs density also explains for exchange coupling between magnetically hard and soft phases. 

First of all, the ridge of interaction field at HC = 0 moves from t0: -0.52 T, t0: -0.12 T to t2: 0.01 T. The 

movement has followed a shift of the reversal field range of the Co soft layer by coupling strength. 

Each magnetic property of the L10-FePt hard and the Co soft layer is recovered by separation from 

each other. Especially, the coercive field distribution of the perfectly coupled sample, t0 is along with a 

broader interaction field (~3800 Oe) than others (t1:~2400 Oe, t2: ~2900 Oe). The coercive field 

distributions also move and broaden due to decoupling. The coercive field of the hard magnet has been 

reduced by the soft magnetic layer. However, the coercivity behavior of the soft magnet follows the 

hard magnet in sample t0. The coercive field of decoupling sample t2 shows a separation of both phases. 

Especially, the partially coupled exchange-spring magnet t1 has a broader coercive field distribution 

between the two phases with higher reversibility. The coercive field distribution at Hu= 2500 Oe 

(maximum intensity) and the interaction field distribution at Hc=500 Oe are shown in Fig. 6.15 and 

FWHM values of the distributions are summarized in Table 6.3. Additionally, the reversibility was 

calculated in Appendix B.4 

 

Fig. 6. 12 The coercive field distribution at Hu=2500 Oe and the interaction field distribution at Hc=500 

Oe. Those fields are determined from the position of the maximum intensity. 

       

FWHM 

[Oe] 

HC 

at Hu=2500, 

ρmax 

HC 

at Hu =  0 

Hu 

at HC = 500, 

ρmax 

Hu 

at HC = 0 

HC Center 

at HC = 2500, 

ρmax 

Hu Center 

at HC = 500, 

ρmax 

t0 ~5100 ~2000 ~3800 ~21200 15800 -5200 

t1 ~13200 ~1900 ~2400 ~18400 33700 -1200 

t2 ~10300 ~2700 ~2900 ~17900 39750 100 

tNoCo ~18600 - ~4800 - 38000 1400 
Table 6. 3 The FWHM values of the coercive field and the interaction field and moving the distribution 

center by coupling degree.  
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6.2.4 XMCD results 

The three samples (t0, t1 and t2) were chosen for X-ray magnetic circular dichroism (XMCD) 

measurements in the TEY mode. In the reference sample, the pure FePt grains are perfectly isolated 

each other. Therefore XMCD cannot be measured. A XMCD study of this reference sample, covered 

by a conducting material, will be shown in chapter 7. The three samples studied (t0, t1 and t2) have a 

good enough conductivity for TEY mode measurement.  

All XMCD experiments were performed at the WERA beamline of the ANKA synchrotron in 

Karlsruhe. The XMCD spectra were measured at Fe L3,2-edges (690 eV to 750 eV) for the hard 

magnetic and at Co L3,2-edges (760 eV to 840 eV) for the soft magnetic component in a saturation 

field of ±4 T for t0 and ±6 T for t1, t2 at RT. To study of the anisotropy, in normal incidence (NI) 

geometry and  at 60° measurements were undertaken. All spectra were corrected for self-absorption 

(saturation effect for thin film in the TEY mode) and Pt peaks (there are Pt absorption peaks in raw 

spectra and not visible in fig.6.16). All spectra are clear from oxidation peak, since the Pt layer works 

well for protection and conductivity. To confirm the shapes of the Fe spectra, we also measured 40 nm 

FePt forming a closed layer (see Appendix B5).  

XAS and XMCD spectra (normal incidence) at the Fe L3,2-edge and the Co L3,2-edge are shown in 

fig.6.13 for three interlayer thicknesses.  

 

Fig. 6. 13 Normalized XAS and XMCD spectra of exchange-spring multilayers (t0, t1 and t2) at the Fe L3,2-

edges and the Co L3,2-edges at RT in saturation field and at normal incidence. The spectra were corrected 

for  self-absorption and Pt peaks. 

Despite of the correction of the self-absorption, the Fe spectra of the t2 sample shows the smaller 

XMCD. The t0 sample has the highest dichroism intensity. It is assumed that it contains a softer 

magnetic region in an L10-FePt layer with higher magnetization. The intensities of Co spectra are 

depending on the thickness of protection layer, despite of the Pt peaks correction. To obtain spin and 

orbital magnetic moments from the data by applying the Sum Rules, a step function and polarization 

degree of X-rays of 81% for Fe and 84 % for Co were applied. The number of holes nh is taken 3.705 

for Fe and 2.49 for Co.[12, 134]  

 

The sum rules results of spin, orbital, total magnetic moments and ml/ms ratio are summarized in Table 

6.4, and Fig. 6.14. 
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NI  ms [μB] ml [μB] mtotal [μB] ml/ms ratio 

Fe 

Ref. 40 nm 2.21 0.25 2.47 0.11 

t0 2.63 0.19 2.81 0.07 

t1 2.51 0.22 2.73 0.09 

t2 2.28 0.26 2.54 0.11 

Co 

t0 1.84 0.22 2.06 0.12 

t1 1.44 0.18 1.61 0.12 

t2 1.42 0.16 1.58 0.11 

Table 6. 4 The Sum Rules results of XMCD measurement at normal incidence: Spin, orbital and total 

magnetic moment and the ratio of orbital to spin moments.  

 
Fig. 6. 14 Sum Rules results of tuned exchange-spring multilayers. The perfectly coupled ES magnet has 

enhanced spin magnetic moment. The orbital moment of Fe is reduced, while the orbital moment of Co is 

increased by coupling. 

The Fe results a tendency can be seen due to coupling. The 40 nm thick FePt sample was measured 

and analyzed with the result: ms: 2.21, ml: 0.25, mtotal: 2.47 and ml/ms ratio: 0.11. The Fe result in 

exchange-spring magnets has higher spin moment than bulk (40 nm thick) of pure FePt. The coupling 

apparently generates a larger stray field, like a bulk sample. The Co results of the perfectly coupled 

sample t0 and decoupled sample t2 can be understood by coupling effects. It can be assumed, that the 

Co soft magnetic region in partially coupled sample has two regions. One of the parts is coupling to 

the near edge of the hard magnet, while the other part far away from the hard magnet at the top of the 

Co layer is decoupled. In this situation, the two parts can compete for the out-of-plane magnetization 

direction.  

A result of the same propensity is shown in angle-dependent measurement on sample t1 sample, too. 

The angle dependent measurements have been performed to investigate the anisotropy and the TZ term 

of dipole moment. The results indicate a rather small TZ value. The results of the angle dependent 

measurement were put in Appendix B.6. 
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6.2.5 Hysteresis with XMCD 
The advantage of XMCD is that one can do element specific measurement. This is in particular helpful 

to understand the coupling behavior. By this method, the magnetic reversal process for the Fe and Co 

moment can be observed directly. Appendix B. 7 shows normalized hysteresis curves of Fe, Co and 

SQUID measurements and how they can be used together with that the total number of atoms and the 

total magnetic moments to reproduce the hysteresis loops.  

By these hysteresis results, the magnetic reversal process can be modeled directly. The magnetic 

reversal process of the hard and soft phase in perfectly coupled exchange-spring multilayer t0 shows 

that the magnetization of both metals, Co and Fe, proceeds almost in parallel. The reversal process of 

the partially coupled sample t1 displays connection between both phases. The Co soft magnetic layer 

starts somewhat earlier to reverse; the FePt hard magnetic layer follows. Moreover, before 180 ° flips 

of the soft magnet, the hard magnet reaches to coercive field. In contrast, the reversals of two phases in 

the decoupling sample t2 proceed almost independently. Fig. 6.15-17 is shown an illustration of 

assumed magnetization reversal process as derived from the XMCD hysteresis loop results. 

 

Fig. 6. 15 Illustration of magnetic reversal process in L10-FePt/ Co /Pt exchange-spring multilayer, t0. The 

reversal of both magnetic phases proceeds almost parallel. 
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Fig. 6. 16 Illustration of magnetic reversal process in L10-FePt/ Pt/ Co/ Pt exchange-spring multilayer, 

t1. The reversal of the Co soft layer starts earlier than that of the L10-FePt hard layer. However, hard 

magnet follows to reverse, soon. 

 

Fig. 6. 17 Illustration of magnetic reversal process in L10-FePt/ Pt/ Co/ Pt exchange-spring multilayer, 

t2. The reversal of the Co soft and the L10-FePt hard layers proceed almost individually. 
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6.3 Conclusion: Influence of the thickness of a Pt 

interlayer between a L10-FePt hard and a Co soft 

magnetic layer on the magnetic behavior of exchange-

spring nanomagnets 
 

Granular nanostructured 7 nm L10-FePt/ x nm Pt/ 3 nm Co/ Pt (x = 0, 0.5, 1 and 2) exchange-spring 

multilayer magnets with various thicknesses of Pt interlayer were obtained by magneto sputtering on a 

MgO (100) substrate at 800ᵒC. The Pt and Co layers were deposited at RT. The nanomagnets were 

investigated by detailed SQUID measurement, by which the micromagnetic parameters are deduced. 

Element specific XMCD measurements have been studied, the spin- and orbital moments have been 

deduced and the element hysteresis determined. According to the tuned exchange-coupling strength 

(tuned by the thickness of the interlayer), the magnetization reversal and the magnetic anisotropy show 

prominent changes. 

The thickness of the interlayer can regulate the exchange-coupling strength between the magnetically 

hard and soft magnetic layers. It can be adjusted to provide perfect coupling, partial coupling and 

decoupling. Perfectly coupled exchange-spring multilayer exhibit a one-step hysteresis loop without a 

kink, fully decoupled multilayer has a two-steps hysteresis loop with kink. The following statements 

could be made: 

1. The size of the nanograins (real grain diameter: d) is similar to the critical domain size (critical 

domain diameter: DC). The real grain size is obtained by SEM image. d are from 34 nm to 56 

nm and  DC are from 34 nm to 43 nm.  

2. The microstructural parameter α and Neff obtained from the magnetic hysteresis loops at 

various temperature reveal the coercive mechanism. The reason for the reduction of the 

coercive field when compared to the theoretical expected value can be understood from the 

change of the parameter α. Moreover, demagnetization also reduces the coercive field. The 

effective demagnetization factor, Neff depends on the exchange coupling between two phases.   

3. The extended FORCs density shows the extent of the exchange-coupling and irreversibility. 

The variation of the coercive field distribution and the interaction field distribution with 

different coupling indicates magnetic reversal and that there exists a distribution of various 

hysterons.  

4. The spin, orbit and total magnetic moments are analyzed by Sum Rules calculation of XAS 

and XMCD spectra. The obtained total moments are adjusted to normalized elements specific 

hysteresis loop with the total number of Fe and Co atoms. We observe the expected increase 

of the Fe spin and orbital moment as well as the ml/ms ratio. The SUQID hysteresis can be 

well explained by XMCD hysteresis for Fe and Co taken at the L3-edge. It is helpful to 

understand the magnetic reversal process in exchange-spring multilayers. 
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Chapter 7  

 

Results: Realized high coercive field and maximum energy 

product (BH)max with ultra-hard nanomagnets 
 

 Since a view decades L10 chemically-ordered FePt has been investigated and discussed as 

rare-earth free hard magnet, as component in exchange-spring magnets and in terms of application as 

excellent candidate for ultra-high density information storage media. In this study, the control and 

especially the increase of coercive field and energy product in FePt thin film of the nanogranular 

structure is addressed. This was already subject of many of groups, since from theoretical calculations 

L10-FePt about 12 T coercive fields and with a huge magnetocrystalline anisotropy of 6.6 MJ/m3 have 

been predicted in the thin film system.[135] However, the reported experimental coercivity, HC in 

similar systems one of third from the expected value.[97] The main reason for the small coercive field 

is assumed from oxidation and amorphous FePt component on surface and distortion of crystal 

structure by lattice mismatch with the substrate. 

 
Fig.7. 1 The idea of reduction of coercive field. Oxidized material on the surface, and the lattice mismatch 

at the interface between FePt and substrate can contribute. To solve those problems, after grown the FePt 

on MgO(001) substrate, films were post-annealed at 800° C for 1 hour. To reduction lattice mismatch, also 

LSAT can be chosen as substrate. The lattice constant of MgO is 4.212 Å and of LSAT is 3.87 Å. The 

lattice constant a of L10-FePt is 3.85 Å. 
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To further increase the coercivity, we applied and compared two types of methods. One is heat 

treatment (post-heating) with quenching (rapid cooling) and the other is a selection of a better 

substrate in terms of lattice match. Fig.7.1 illustrates the influence of heat treatment and lattice 

mismatches. 

This three kinds of samples were prepared by Magneto co-sputtering. We chose a layer thickness of 7 

nm because which shows the highest coercivity as determined in previous work in our group.[133] 

Crystal structure and morphologies were confirmed by x-ray diffraction (XRD) patterns and scanning 

electron microscopy (SEM). Magnetic properties were studied with superconducting quantum 

interference device (SQUID) magnetometry. For X-ray magnetic circular dichroism (XMCD) 

investigation at the Fe- L- edges, new samples were prepared and covered with 3 nm of Au capping 

layers to provide conductivity of the sample and as oxidation protection.  

 

7.1 L10-FePt island structure 

Uncovered sample 

L10-FePt (fct: face-centered tetragonal) has lattice constants a: 3.85 Å and c: 3.71 Å. The lattice 

constant of MgO (100) substrate is a: 4.212 Å resulting in a considerable lattice mismatch. In contrast,  

the lattice constant of LSAT (LaAlO3)0.3-(Sr2AlTaO6)0.7 (100) substrate provides with 3.87 Å much 

better match. FePt films were prepared by Magneto co-sputtering Fe and Pt targets directly onto single 

crystalline MgO (100) substrates and LSAT (100) substrate commercially fabricated by CrysTec in Ar 

atmosphere, (base pressure: 3 × 10−8  mbar, Ar pressure during sputtering: 5 × 10−3  mbar). The 

substrates were heated to 800 ° C during sputtering for the hard magnetic L10-FePt film with out-of-

plane texture. After deposition, the chamber temperature of 800 ° C was kept for one hour in  vacuum. 

The composition of FePt thin films has been adjusted with tuning the sputtering power of Fe and Pt. It 

is determined to be Fe51Pt49 with electron probe X-ray microanalysis (EPMA).  

The first sample is as grown on MgO substrate. FePt can be perfectly formed in the L10-phase at 800 ° 

C deposition temperature. During decreasing of temperature; the phase can be distorted at the interface 

between FePt and MgO substrate while atoms set equilibrium points according to temperature.  The 

distorted phase influences to magnetic properties.  

The second sample was prepared the same way with the first one. Additionally, FePt thin film on MgO 

substrate was post-heat treatment with a heating parameter of 800 ° C in Ar atmosphere for 1 hour. 

The heat treatment the sample was quenched (rapid cooling). The quenching process does not give 

enough time to thermos-equilibrium of FePt to the substrate and can hold the L10-phase of FePt. 

Moreover, some oxidized FePt layer on the surface also vanished.  

The third sample was deposited on LSAT (100) substrate also at 800° substrate temperature without 

further heat treatment. The distortion of FePt at the interface is expected to be significantly reduced 

due to the better match of the lattice constants.  

These three samples are called MgO, Heat, and LSAT, respectively.  
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Au covered sample 

Au covered samples were prepared for XMCD measurement. The 7 nm thick L10-FePt on MgO (100) 

substrate and LSAT (100) substrate were deposited with the same condition. In addition a 3 nm Au 

layer were magnetron sputtered at room temperature. The 3 nm Au capping layers give conductivity 

and protect from oxidation. However, the heat treated sample is assumed to formed few nanometer 

dilutions at the interface between FePt and Au.  

These three samples are called Au MgO, Au Heat and Au LSAT, respectively. 

 

7.1.1 Crystal structure 

To verify ordering of samples, X-ray diffraction (XRD) were measured. In fig. 7.2, XRD patterns of 

samples show 001 (at ~24 °), 002 (at ~49 °) and 003 (at ~76 °) peaks of FePt and substrate peaks ~ 42 ° 

for MgO (002) and ~46 ° for LSAT (002). The peak of LSAT substrate is closer to FePt (002) peak 

than MgO substrate peak. Long-range chemical ordering parameter S of L10-FePt films has been 

calculated with XRD spectra. All of the samples are well ordered. Heat treatment gives the highest 

ordering with S value of 0.91 and LSAT sample also has quite high S parameter with S = 0.9. The 

ordering parameter of MgO sample is also good with S = 0.86.  

 

Fig.7. 2 X-ray diffraction patterns of as-grown on MgO (black), heat treatment (red) and as-grown on 

LSAT (green). All of the samples are shown FePt 001, 002 and 003 peaks. It formed L10-phase (fct). 

Chemical ordering parameter S= 0.86, 0.91 and 0.90 respectively. 
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7.1.2 Morphology 

In Fig. 7.3 scanning electron microscopy (SEM) images are presented, from which the distribution and 

the particle diameter can be deduced which are also shown in Appendix. C.1. The packing ratios are 

quite different despite the same thickness obviously by lattice mismatch. The packing ratios are 58.6% 

for MgO, 53.8 % for Heat and 56.4% for LSAT. Au covered samples are 3 nm thicker and more 

packed than uncovered samples. The packing ratios are obtained 65.0% for Au MgO, 60.6% for Au 

Heat and 62.2% for Au LSAT. The grains of samples are well separated expect the Au Heat system 

which some interconnection seems to be present. MgO has bigger diameter with davg = 55±17 nm and 

similar distribution with Heat. The Heat and LSAT show well separated grains with a broader 

diameter distribution with a similar with average value davg = 48±17 nm for Heat and davg = 43±22 nm 

for LSAT. 

 

Fig.7. 3 SEM images and particle size distributions of (a) as-grown on MgO, (b) heat treatment on MgO 

and (c) as-grown on LSAT. Both of as-grown samples on MgO and LSAT have bigger size grains. 

Samples of heat and LSAT with fewer rate mismatches have small size grains 
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7.2 Characterizations of magnetic properties 

7.2.1 Magnetic hysteresis curves 

The magnetization hysteresis loops with out-of-plane and in-plane direction were measured at room 

temperature proving that all of the samples have huge anisotropy with the magnetization preferential 

to out-of-plane (Fig. 7.4 (a-c)).  In-plane curves of as-grown MgO and LSAT samples indicate small 

in-plane easy axis component. Especially, the in-plane curve of heat sample shows perfectly 

proportional slope behavior. In the possible maximum field of 7 T only the MgO sample has reached 

saturation. Therefore an additional hysteresis measurement was performed to LSAT sample using a 

using 14 T physical property measurement system (PPMS) (see the blue line in fig.7.4 c)). It can be 

saturated above 7.5 T field. Hysteresis loops of Au covered samples are shown with initial curve in fig. 

7.4 (d-f). Hysteresis loops without Au capping layer indicate tiny two phases with two steps shape. 

The results with capping layer cannot be seen any step.  It is surmised that capping layer protects the 

surface of FePt. The results show that the coercivities are smaller than without capping layer, but 

obviously the saturation magnetization is increased considerably (increased 7 % for MgO, 15 % for 

Heat and 18 % for LSAT,  it summarizes in table7.1).  

 

Fig.7. 4 Out-of-plane (easy-axis) and In-plane (hard-axis) hysteresis loops of a) MgO b) Heat and c) 

LSAT samples. Out-of-plane hysteresis loops hysteresis loops of d) Au MgO, e) Au Heat and f) Au LSAT 

at RT. 
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To determine magnetocrystalline anisotropy, the difference of magnetization curve between out-of-

plane and In-plane directions was used, the shape anisotropy was determined by demagnetizing factor 

and magnetization. As expected by results of in-plane magnetization curves, the heat sample without 

Au has highest magnetic anisotropy energy. The magnetic properties are set in table 7.1. 

 

Sample HC [T] JS[T] K1 [MJ/m3] (BH)max [MGOe] 

MgO 4.14 1.72 5.644 65.7 

Heat 6.06 1.76 6.618 75.6 

LSAT 6.17 1.72 6.087 73.6 

Au MgO 3.81 1.85 - 80.2 

Au Heat 4.93 2.03 - 92.2 

Au LSAT 5.22 2.03 - 97.1 

Table 7. 1 The coercivity, saturation polarization, magnetocrystalline anisotropy energy and maximum 

energy product of 7 nm FePt and 7 nm FePt/ 3nm Au samples. 

We tried to measure hysteresis loops from 50 K to 350 K temperature for the microstructural 

parameter. However, the heat and LSAT samples have a coercivity of 6 T at room temperature. The 

maximum magnetic field of 7 T is not enough to saturate at low temperature. Only for the MgO 

sample the hysteresis loops could be measured in the temperature range of 50 K to 350 K. The 

microstructural results were shown in Chapter 6 for a reference sample of exchange spring magnet. 

The initial magnetization curves study is shown in Appendix. C.2. 

 

7.2.2 Energy product 

The corresponding magnetic energy product of nanostructured samples were calculated and compared. 

Fig. 7.5 illustrates B-H curves and maximum energy product (BH)max of uncovered and Au covered 

samples. To calculate energy product, packing area were utilized for volume. The measured (BH)max 

for the MgO sample is 65.2 MGOe. The Heat sample (BH)max reaches 75.6 MGOe. LSAT stretches to 

75.2 MGOe. Heat and LSAT exceed the value for MgO about 15 %. This (BH)max enhancement 

indicates effective heat treatment and fewer mismatches. 

Au covered samples have a higher energy product (BH)max than uncovered samples. The shapes of 

hysteresis loops are almost rectangular with a high ratio of remnant magnetization. The coercive field 

is still high. It gives high maximum energy product (BH)max.of 80.2 MGOe. The Au Heat (BH)max 

reaches 92.2 MGOe. Especially, LSAT stretches over Au Heat sample with a value of 97.1 MGOe. 

With Au capping layer, the maximum energy product (BH)max is increased above 1.2 times in all 

samples determined up to now as shown in Table 7.2. 
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Fig.7. 5 (BH)max  illustration and Vertex of a parabola for energy product of out-of-plane at RT of as-

grown on MgO (black), heat treatment (red) and as grown on LSAT (blue). 

 

 Theoretical limit [MGOe] Experimental highest value [MGOe] 

FePt  54 [136] 

NdFeB 64 [137] 59 [13] 

FePt/ Fe3Pt  53 [138] 

NdFeB/ FeCo  61 [139] 

FePt / Fe 90 [140]  

FePt/ FeCo 97 [141]  

SmFeN/ FeCo 120 [88]  

Our results 
FePt  75.6 

FePt/Au  97.1 

Table 7. 2 List of reported high maximum energy product (BH)max and our result.  
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7.2.3 X-ray Magnetic Circular Dichroism Results 

Au covered samples 

For XMCD measurements the system at WERA beamline in ANKA set up, where the spectra are 

recorded with total electron yield (TEY) method. This mode needs conductive targets. Since, thin 

films are formed nanoisland which is perfectly isolated from each other it is not possible to study 

XMCD. Au covered samples were prepared with 3 nm Au capping layers, which provide the required 

conductivity and furthermore protect the surface from oxidation.  

XMCD measurement 

XAS and XMCD measurement were carried out at the Fe L3,2-edges from 690 eV to 750 eV with 

applied maximum field of 7 T magnetic field and alignment of normal incident (NI) direction at RT. 

XMCD was determined by absorption measurement with energy scans in ± 7 T applied field and 

positive and negative helicity. The shapes of spectra were compared with the spectrum of 40 nm 

thickness FePt. Fig. 7.6 shows the normalized XAS and XMCD spectra at the Fe L3,2-edges in the Au 

MgO and Au Heat and Au LSAT samples. A standard two-step-like function is subtracted to separate 

the electron excitations to unoccupied d states.  

 

Fig.7. 6 XAS and XMCD spectra at RT for FePt a) on MgO, b) Heat treatment and c) on LSAT at the Fe 

L3, 2-edges. 
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By applying the XMCD sum rules, spin magnetic moment, μS and orbital magnetic moment, μl are 

determined. The theoretical numbers of d holes nh=3.705 were used for calculation. The sum rules 

results of spin, orbital, total magnetic moments and ml/ms ratio are summarized in Table 7.2. And Fig. 

7.7 shows comparison of spin and orbital magnetic moment each sample. The Au Heat sample has 

highest spin moment while lowest orbital moment. Both as-grown samples on MgO and LSAT have 

smaller spin moment than reported values of ~2.4 μB. All of samples have higher magnetic moment 

than reported values of ~0.2 μB. 

 ms [μB]  ml [μB] mt [μB] ml/ms 

MgO 2.18(4) 0.26(1) 2.45 0.12 

Heat 2.62(3) 0.22(3) 2.85 0.086 

LSAT 2.22(1) 0.25(2) 2.47 0.114 
Table 7. 3 The obtained spin and orbital magnetic moment by Sum Rules. 

 

Fig.7. 7 Spin and orbital moment of  MgO, Heat and LSAT samples consisting of 7 nm thickness FePt 

and 3 nm thickness Au by Sum Rules. 

It is obvious, that the MgO and LSAT systems show a lower moment than expected for the FePt L10 in 

general (~3 μB). This seems to be in contradiction to the enhanced polarization. This needs further 

intensive studies to clarify the occurrence of the highest energy product found so far. 
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Hysteresis loops with XAS 

Fig. 7.8 shows a comparison between SQUID hysteresis loops and XAS hysteresis at Fe L3-edge. The 

curves are normalized to the saturation magnetization. The saturation field is 7 T. As expected; 

hysteresis loops indicate hard magnetic behavior with the huge coercive field. The coercivity of 

hysteresis from L3-edge XAS are larger than SQUID results. We assumed that, L2-edge XAS 

hysteresis loops will be compensated with L3-edge result. 

 

Fig.7. 8 Comparison of SQUID and XAS hysteresis loops. Lines are SQUID hysteresis loops, and 

scattered data are L3-edge XAS hysteresis loops. Coercive fields of Fe by XAS are bigger than total 

magnetic hysteresis loops by MPMS. The capping layer reduces coercivity. The surface of heat treatment 

sample is diluted by Au capping layer during post heat treatment 
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7.3 Conclusion: Realize huge coercive field and maximum 

energy product (BH)max with ultra-hard nanomagnet  

The L10-chemically ordered FePt granular nanostructured hard magnets were modified by two lattice 

mismatch reduction method, heat treatment (post-annealing) and changes the substrate. The 7 nm 

thickness of FePt that has the highest coercivity of ~4 T depends on thickness was chosen to realize 

huge coercive field. The coercivity of FePt is expected to reach 12 T with theoretical calculation. 

 

The reasons of less coercivity are assumed A1 phase with amorphous or oxidation of material on 

surface and lattice mismatch between FePt and substrate. The heat treatment can effect to phase and 

oxidized Fe atoms on the surface. The 7 nm thickness FePt on MgO (100) substrate heated up to 800 º 

C and kept for 1 hour at Ar gas atmosphere. The phase of FePt in the thin film becomes L10-phase (fct: 

face-centered tetragonal). After that, quenching process (rapid cooling) can keep the phase at the 

interface with avoidance of thermos-equilibrium.  

The lattice constants of L10-FePt are a=3.85 Å and c=3.71 Å. The MgO (100) substrate has a lattice 

constant of a=4.212 Å. The lattice mismatch is about 10 %. The lattice constant of (LaAlO3)0.3-

(Sr2AlTaO6)0.7 (100) substrate is a= 3.87 Å with a lattice mismatch of ~0.005 %. 

 

The magnetic properties of three samples were studied by superconducting quantum interference 

device (SQUID) magnetometry and X-ray magnetic circular dichroism (XMCD) spectroscopy. 

Hysteresis loops are obtained for saturation magnetization and coercivity. The maximum energy 

product (BH)max is also calculated. The coercivity is reached to ~6T by both methods ar RT. The 

maximum energy product values are increased to 97 MGOe by the Au layer.   

 

For the XMCD measurement, new samples were prepared with covering of 3 nm Au. The 7 nm FePt 

thin film has no conductivity due to nanoinsular structure. The Au layer makes it to be able to measure 

with TEY mode. The magnetic moments of Fe atom were determined using XMCD spectra and Sum 

Rules. The number of Fe atom are not big different each sample. However, the saturation 

magnetizations are Heat > LSAT > MgO. The magnitude order of magnetization is the same as the 

value order of magnetic moment of Fe atom in thin films for MgO and LSAT.   

 

Magnetization curves are the difference between results by L3-edge XAS and SQUID. A single Fe has 

bigger coercivity than total magnetization curve. Especially, the heated sample has two phases by 

dilution on the surface with Au capping layer. 

 

With this study, the huge coercivity and maximum energy product (BH)max are realized till 6 T and 97 

MGOe by reduction of lattice mismatch.  
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Chapter 8  

 

Summary 

 

The aim of the thesis was to study the magnetic properties of the highly coercive FePt L10 phase in 

combination soft magnetic Co layers by 

- tuning  exchange-spring nanomagnets L10 FePt/Co by nanostructuring,  

- modifying the coupling of L10 FePt/Pt/Co tuned by the thickness of  the Pt interlayer between 

two phases  

- enhancing the coercive field and energy product of L10-FePt single of 7 nm layer by heat 

treatment and reduction of the lattice mismatch with the substrate 

The main material is L10-chemically ordered FePt (fct: face-centered tetragonal) which has large 

coercive field with huge anisotropy constant (𝐾1 ≈ 6.6 𝑀𝐽/𝑚3). A continuous hard magnetic L10-

FePt thin film with out-of-plane texture was deposited by Magneto co-sputtering on heated at 800 °C  

MgO(100) and LSAT substrates and partly subsequent heat treating. The Co and Pt protection layers 

were deposited also by magnetron sputtering at room temperature. The quality of multilayers was 

verified with X-ray diffraction (XRD) for crystal structure and scanning electron microscopy (SEM) 

and partially TEM to determine the film morphology. The nanostructures were realized by 

nanoimprint routes. The magnetic properties were investigated using SQUID, MFM and XMCD 

techniques. 

 

Artificial regular nanopattern of L10-FePt / Co exchange spring magnets 

 Three different composition nanopatterns were produced with 20 nm thickness of L10-FePt at 

room temperature. A layer of Co with a thickness of 3 nm and 7 nm were additionally deposited. 

These multilayers were structured into a regular nanopattern with a diameter of 60 nm and 150 nm 

periodicity over a total area of 2 mm × 2 mm by nanoimprint lithography. The combination of IPS® 

and STU® imprinting processes were used with the ICP-RIE plasma etching process, subsequently. 

The imprint parameters like pressure, time, temperature and etching time were optimized. The quality 

of the nanopattern structures were studied by AFM and MFM. We could get large-area exchange-

spring nanopatterned magnets, successfully. TEM investigations have proven the real thickness and 

composition of Co layers. The nanodot structure is hemispheres due to a dome structure on the top of 

dots in the stamp. Co layers are not flat on FePt.  

Magnetic hysteresis loops of structured exchange-spring nanomagnets show an out-of-plane texture. 

The coercivity has been significantly tuned from 1.72 T (without Co) to 1.03 T (for 7 nm Co). The 

out-of-plane hysteresis loop of the pure L10-FePt hard magnet is only one step. The 3 nm and 7 nm Co 

coupled partially with a hard magnet showing two steps hysteresis with kink.  

By the hysteresis loops the intrinsic material parameters, saturation polarization JS, anisotropy constant 

K1, exchange constant A and the critical temperature T0 were determined and microstructural 

parameter α and Neff deduced. Increasing the thickness of Co influences those parameters. It gives a 

reduction of anisotropy and coercive field and rises the saturation polarization, the exchange constant 
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and critical temperature. Moreover, the α-values explain a significant effect of the soft layer by 

coupling. The larger α-value indicates a nucleation hardened magnetic reversal mechanism. On the 

other hand, smaller α value of the partially coupled magnet is dominated by Co soft layer.  

To investigate the origin of magnetic behavior further, FORCs measurements were performed on these 

nanopatterned exchange-spring magnets. The FORCs density shows the distribution of interaction 

field and coercive field. The FORCs density diagrams indicate the broad distribution of coercive field 

of all samples, and partially coupling samples have two peak regions for non-coupling and coupling.   

Only FePt and the 3 nm Co decorated exchange spring nanomagnet patterns switch as single-domain 

such as bit (just up and down) with one step hysteresis loop. Especially, hysteresis loop of 20 nm FePt/ 

7 nm Co (partially coupled exchange-spring magnet) is two steps with kink due to the non-coupling 

area. In this system a single nanomagnet is composed of multi-domains as confirmed with MFM 

image at selected fields showing a top view of magnetic structures with out-of-plane direction.  At 

second reversal field range, each magnet behaves as single-domain magnets. 

 

The tuned coupling by interlayer on L10-FePt/ Pt/ Co exchange spring nanograin 

magnets 

In these systems the coupling strengths have been modified by the thickness of a Pt interlayer between 

hard and soft magnetic layer in exchange-spring magnets. The 7 nm thickness of L10-FePt with the 

coercivity of about 4 T has been chosen for the hard magnetic layer, and the 3 nm thickness of Co with 

the saturation polarization of 1.76 T has been deposited as a soft magnetic layer. Pt layers with 

thickness of Pt layer of 0.5 nm, 1 nm and 2 nm were sandwiched between two materials. The L10-FePt 

hard magnet was deposited by Magneto co-sputtering at 800 °C, the Pt interlayer and Co soft layer 

were deposited at room temperature to prevent dilution of materials. The crystal structure and 

morphology of nano insular exchange-spring magnet were verified with XRD and SEM images. The 

crystal structure of all samples has high ordering with chemical ordering parameter S ≥ 0.86. SEM 

images indicate insular nanostructures with average island size of 34 nm to 56 nm. These values are 

similar to the critical diameter of 7 nm thickness FePt (DC ~ 55 nm). 

The magnetic properties were determined by SQUID magnetometry. Throughout for all tuned 

exchange-spring nanomagnets, the magnetic hysteresis loops indicate a preferred out-of-plane texture 

at room temperature. By the thickness of Pt interlayer of 0.5 nm and 1 nm thickness partially coupling 

was observed, and 2 nm thicknesses shows decoupling between L10-FePt hard and Co soft magnetic 

layers. The perfectly coupled ES magnet is of a clear one step type. The partially coupled ES magnet 

starts to show tiny kink at soft magnetic reversal region. Moreover, decoupled ES magnet has two 

steps hysteresis loop with kink. Coercive field is also controlled by modification of coupling with a 

thickness of interlayer, while the saturation polarization values are similar. Coupling reduces HC. By 

decoupling, the coercivity of FePt tended to be recovered. For micromagnetic studies, from 

temperature dependent magnetic hysteresis loops the saturation magnetization JS, coercivity HC, 

magnetic anisotropy K1 and exchange stiffness A were determined. Those parameters provide 

information of the domain characteristics like wall energy γ, exchange length lK and thickness of 

domain wall δ.  

The magnetic reversal mechanism has been analyzed by mean of the microstructural parameters α and 

Neff. Only FePt hard magnet thin film has highest α = 0.918 and Neff = 1.93 to be close to α = 1 and Neff 

= 0 in the ideal nucleation case. The perfect coupling reduces the nucleation field a factor of 1/5.  

Decoupling is correlated to a reduction in parameter values of α = 0.414 and Neff = -0.076 of 2 nm 

thickness of interlayer. The negative Neff indicate incomplete domain walls. However, the coercive 
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field and parameter of the FePt hard magnet are not reached to due to influence of the soft magnetic 

layer. Especially, the αex values are increased by decoupling, which explains directly coupling strength.  

The extended FORCs can be interpreted in term of the irreversibility of domains. The FORCs density 

diagrams of all samples show a broad distribution of the coercive field. But the effect of the soft 

magnetic layer, even of the decoupled sample, cannot be seen. However, the extended FORCs indicate 

a moving of the interaction field distribution at HC=0 caused by soft magnetic reversal.  

The x-ray magnetic circular dichroism measurements were performed to investigate the element 

specific magnetic property in a quantitative manner. The absorption spectra were obtained in the 

surface-sensitive total electron yield mode (TEY) at Fe L3,2-edges for FePt hard and Co L3,2-edges for 

the soft magnet. As expected the total magnetic moments of Fe are increased by coupling from 2.54 

μB/ atom of decoupling to 2.81 μB/ atom and for Co from 1.58 μB/ atom to 2.06 μB/ atom. Moreover, 

XAS hysteresis loop at L3-edge was also measured demonstrating that the Fe and Co components 

behave similar in the perfectly coupling exchange spring magnet. However, in decoupled magnet the 

Co hysteresis of the soft magnet is switched earlier than Fe hysteresis of the hard magnet. The results 

of SQUID measurements and by XAS were compared and confirmed matching each other.  

 

Realize high energy product with the large coercive field of L10-FePt nanoisland thin films. 

The L10 chemically-ordered FePt phase is one of the hard magnetic systems with highest coercivity. 

Since in thin layers a maximum value was expected for  the 7 nm thickness of FePt the corresponding 

were prepared on MgO (100) substrate and (LaAlO3)0.3-(SrTaAlO6)0.7 (100) substrate at the same 

conditions. The lattice constants of L10-FePt are a = 3.85 Å and c = 3.17 Å. The lattice constant of 

MgO and LSAT is a = 4.212 Å and a= 3.87 Å, respectively. The main idea is a reduction of lattice 

mismatch by heat treatment and new substrate between material and substrate. MgO sample heated up 

to 800 C for 1 hour and rapidly cooled to hold the L10-phase at surface and interface between FePt and 

MgO substrate 

The MgO sample has a coercivity of 4.14 T, by heat treatment the coercivity is enhanced to 6.06 T. 

For the LSAT sample also a very high coercivity of 6.17 T was reached. The saturation polarization of 

1.72 T for MgO is also grown up to 1.76 T by heat treatment and 1.68 T by using a LSAT substrate. 

The increase of coercivity and saturation magnetization rises the maximum energy product (BH)max 

from 65.7 MGOe to 75.6 MGOe by heat and 73.6 MGOe by LSAT.  

New samples, which are covered with 3 nm thickness of Au conduction layer, were prepared for 

XMCD measurement by TEY mode. Due to Au layer on top of nanomagnets, the surface of samples is 

protected from oxidation. Surprisingly this coverage enhances the saturation polarization to 1.85 T for 

MgO and 2.03 for the heat and LSAT sample. Therefore despite of the reduced coercivity the 

maximum energy product (BH)max especially of LSAT is conspicuously increased to 97.1 MGOe by 

the Au coverage.  

XMCD results indicate the highest magnetic moment of heat sample with 2.85 μB/ atom of Fe, while 

the Fe moments for MgO and LSAT show a somewhat lower moment. The hysteresis loops by XAS at 

L3-edge show higher coercivity than SQUID results in all of the samples. The origin of this 

phenomenon could not be clarified and needs more highly precise XMCD studies which also are 

extended to the L2 – edge. Also the significant increase of the saturation polarization of the FePt 

nanograins by a simple coverage Au seems to be not reflected by the corresponding XMCD analysis 

and needs further combined SQIUD and XMCD studies. 
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However, in this thesis it could be demonstrated that heat treatment of 7 nm magneto-sputtered FePt 

L10 and the corresponding layers on a LSAT substrate provide a significant increase of the coercivity 

and maximum energy product. Additionally, an Au protection layer improves the saturation 

magnetization and magnetic energy product even further. The results achieved in this thesis 

demonstrate -to our knowledge- the highest energy product of all systems experimentally realized up 

to now. The value of 97 MGOe for 7 nm FePt L10 on LSAT exceeds the highest reported value of 61 

MGOe for FeCo/NdFeB by more than 50 %. 

 

  



119 

 

Chapter 9 

 

Zumsammenfassung 

 

Ziel dieser Doktorarbeit war die Untersuchung der magnetischen Eigenschaften der hochkoerzitiven 

FePt L10 Phase in der Kombination mit weichmagnetischem Co um 

- die Eigenschaften von „Exchange-Spring“ (ES) - L10 FePt/Co Nanomagneten durch 

Nanostrukturierung einzustellen. 

- die Kopplung in L10 FePt/Pt/Co durch die Dicke der Pt Zwischenschicht zwischen den zwei 

Phasen zu modifizieren. 

- das Koerzitivfeld und das Energieprodukt in 7 nm L10 FePt Einzellagen durch anschließende 

Wärmebehandlung und durch ein anderes Substrat (LSAT) mit besserer Gitteranpassung zu 

erhöhen. 

Das Basismaterial ist chemisch geordnetes L10 FePt (fct: flächenzentriert-tetragonal), das ein hohes 

Koerzitivfeld mit einer großen Anisotropiekonstante (K1 ~ 6,6 MJ/m3) aufweist. Ein durchgehender 

hartmagnetischer L10 FePt Film mit einer senkrechten Textur wurde mit Magneto-Kosputtern auf 

800 °C geheiztem MgO(100) und LSAT aufgebracht und teilweise einer anschließenden 

Wärmebehandlung unterzogen. Co und die Pt-Schutzschicht  wurden ebenfalls mit Kosputtern bei 

Raumtemperatur abgeschieden. Die Qualität der Vielschichten wurde über XRD für die 

Kristallstruktur und SEM für die Morphologie geprüft. Die Nanostrukturen wurden mit Nanoimprint-

Verfahren realisiert. Die magnetischen Eigenschaften wurden mit SQUID, MFM und XMCD 

Techniken bestimmt.  

 

Künstliche gleichmäßige Nanostrukturen aus L10 FePt/Co ES Magneten 

Drei unterschiedlich aufgebaute Nanomuster aus 20 nm dickem L10 FePt wurden bei Raumtemperatur 

produziert. Eine Co Lage mit jeweils 3 nm und 7 nm wurden zusätzlich aufgebracht. 

Diese Vielschichten wurden in regelmäßigen Nanomustern mit einem Durchmesser von 60 nm und 

einer Periode von 150 nm auf einer Fläche von 2  2 mm2 mit Nanoimprint-Lithographie hergestellt. 

Die Kombination eines IPS und STU Prozesses mit ICP-RIE Plasma wurde nacheinander genutzt. Die 

Prägeparameter wie Druck, Zeit, Temperatur und Ätzdauer wurden optimiert. Die Qualität der 

Strukturen wurde mit SEM, AFM und MFM studiert. TEM Untersuchungen überprüften erfolgreich 

die reale Dicke und die Zusammensetzung der Co Schicht. Die Nanopunkte sind halbkugelförmig auf 

Grund der Kuppelform der Oberfläche der Stempelstrukturen. Die Co Lagen sind nicht eben auf dem 

FePt.   

Die magnetischen Hystereseschleifen der strukturierten ES Nanomagnete zeigten eine senkrechte 

Textur. Die Koerzivität ist deutlich von 1,71 T (ohne Co) auf 1,03 T (für 7 nm Co) gezielt eingestellt 

worden. Die senkrechte Hystereseschleife ist nur einstufig für den reinen L10 FePt Magnet. Die 3 nm 

und 7 nm Co Lagen koppeln teilweise und zeigen eine 2-Stufen Hysterese mit einem Knick. 

Über die Hystereseschleife wurden die intrinsischen Materialparameter, die Sättigungspolarisation JS , 

die Anisotropiekonstante K1, die Austauschkonstante A und die kritische Temperatur T0 bestimmt und 
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die Mikrostrukturparameter  und Neff abgeleitet. Das Anwachsen der Dicke des Co beeinflusst diese 

Parameter. Es ergibt sich eine Verringerung der Sättigungspolarisation, der Anisotropie und des 

Koerzitivfeldes und es erhöht sich die Austauschkonstante und die kritische Temperatur. Weiterhin 

erklären die Größen  einen signifikanten Effekt des Weichmagneten durch die Kopplung. Größere 

Werte von weisen auf einen nukleationsgehärteten magnetischen Umkehrmechanismus. Auf der 

anderen Seite werden kleinere Werte von  der teilweise gekoppelten Magnete von der 

weichmagnetischen Co Lage dominiert. 

Um die Ursache des magnetischen Verhaltens weiter zu studieren, wurden an diesen ES-

Nanomagneten FORC Messungen durchgeführt. Die FORC Dichte zeigt die Verteilung des 

Interaktions- und Koerzitivfeldes. Das FORC Dichte-Diagramm weist auf eine breite Verteilung des 

Interaktions- und Koerzitivfeldes in allen Proben hin, wobei die partiell gekoppelten Proben zwei 

erhöhte Bereiche zeigen für fehlende und teilweise Kopplung. 

Nur das reine FePt und das mit 3 nm Co bedeckte ES Nanomagnetmuster schalten als eine Domäne 

wie ein Bit (nur oben oder unten) mit einer einstufigen Hysterese. Gerade die Hystereseschleife des 20 

nm FePt/7 nm Co (partiell gekoppelter ES Magnet) hat 2 Stufen mit einem Knick aufgrund der nicht-

koppelnden Bereiche. In diesem System besteht der Einzelmagnet aus vielen Domänen wie durch 

MFM Messungen bei ausgewählten Feldern bestätigt wurde, das die Obenansicht der 

Magnetstrukturen mit einer senkrechten Richtung zeigt. Ab einem zweiten Feldbereich verhält sich 

dann jeder Magnet wie ein Einzelmagnet. 

 

Einstellen der Kopplung durch Zwischenlagen in L10 FePt/Pt/Co ES nanogekörnten 

Magneten 

In diesen Systemen wurde die Kopplungsstärke modifiziert über die Dicke einer Pt Zwischenschicht 

zwischen der hart- und weichmagnetischen Lage in einem ES Magneten. Die Dicke von 7 nm der 

FePt-L10 mit einer Koerzivität von etwa 4 T wurde als hartmagnetische Phase gewählt und eine 3 nm 

Co Schicht mit einer Sättigungspolarisation von 1,76 T als weichmagnetische Lage aufgebracht. Pt 

Lagen mit einer Dicke von 0,5 nm, 1 nm und 2 nm wurden zwischen den beiden Materialien 

eingebracht. Der FePt-L10 Hartmagnet wurde über Magnetron-Kosputtern bei 800 °C deponiert, die 

weiteren Pt- und Co-Lagen wurden bei RT aufgebracht um eine Vermischung der Materialien zu 

verhindern. Die Kristallstruktur und Morphologie der nanoinselartigen ES Magnete wurden mit XRD 

und SEM überprüft. Die Kristallstruktur aller Proben zeigte eine hohe Ordnung mit einem chemischen 

Ordnungsparameter von S ≥ 0,86. SEM Aufnahmen zeigten eine inselartige Struktur mit einer 

mittleren Inselgröße von 34 bis 56 nm. Diese Werte sind dem kritischen Parameter von 7 nm dickem 

FePt (DC ~ 55 nm) ähnlich. 

Die magnetischen Eigenschaften wurden mit SQUID Magnetometrie bestimmt. Durchgehend für alle 

eingestellten ES Nanomagnete zeigte die Hystereseschleife eine bevorzugte Richtung aus der Ebene 

bei RT. Für eine Dicke von 0,5 nm und 1 nm der Pt Zwischenlage wurde eine teilweise Kopplung 

beobachtet, bei 2 nm Dicke zeigte sich eine Entkopplung der magnetisch harten FePt-L10 und weichen 

Co Lage. Der perfekt gekoppelte ES Magnet ist klar von einstufigem Typ. Der teilweise gekoppelte 

ES Magnet beginnt einen Knick bei der weichmagnetischen Umkehrregion zu zeigen. Weiterhin hat 

der entkoppelte ES Magnet eine zweistufige Hysterese mit einem Knick. Das Koerzitivfeld wird auch 

kontrolliert über die Modifikation der Kopplung über die Dicke der Zwischenlage, während die 

Sättigungspolarisation sehr ähnlich ist. Die Kopplung reduziert HC. Bei der Entkopplung tendiert die 

Koerzivität des FePt dazu wieder anzuwachsen. Für mikromagnetische Studien wurde aus den 

temperaturabhängigen Hystereseschleifen die Sättigungspolarisation JS, das Koerzitivfeld HC, die 
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Anisotropiekonstante K1 und die Austauschsteifigkeit A bestimmt. Diese Parameter liefern 

Informationen über die Domänencharakteristika wie Wandenergie , Austauschlänge lK und die Dicke 

der Domänenwand . 

Der magnetische Umschaltmechanismus wurde im Hinblick auf die Mikrostrukturparameter  und 

Neff analysiert. Nur der hartmagnetische FePt Film hatte das höchste  = 0,92 und Neff = 1,93 nahe bei 

 = 1 und Neff = 0 im idealen Nukleationsfall. Die perfekte Kopplung reduziert das Nukleationsfeld 

auf 1/5. Die Entkopplung ist korreliert mit einer Reduktion der Parameterwerte zu  = 0,41 und Neff = 

– 0,08 für 2 nm Dicke der Zwischenlage. Der negative Wert für Neff deutet auf unvollständige 

Domänenwände hin. Aber das Koerzitivfeld und die Parameter des Hartmagneten FePt wird nicht 

erreicht auf Grund des Einflusses der weichmagnetischen Schicht. Insbesondere steigt der Wert von  

bei Entkopplung an, was direkt die Stärke der Kopplung erklärt. 

Diese umfassenden FORCs können über eine Irreversibilität der Domänen interpretiert werden. Die 

FORC Dichte Diagramme aller Proben zeigen eine breite Verteilung des Koerzitivfeldes. Aber ein 

Einfluss der weichmagnetischen Lage, auch für die entkoppelten Proben, kann nicht beobachtet 

werden. Allerdings weisen die ausgedehnten FORCs eine Verlagerung der Interaktionsfeldverteilung 

bei HC = 0, verursacht durch das weichmagnetische Umschalten. 

Messungen des zirkularen magnetischen Röntgendichroismus (XMCD) wurden durchgeführt um die 

elementspezifischen magnetischen Eigenschaften quantitativ zu untersuchen. Die Absorptionsspektren 

wurden im oberflächensensitiven Sekundärelektronenausbeutemodus (TEY) an der Fe L2,3-Kante im 

harten FePt und an der Co L2,3-Kante im weichen Magneten erhalten. Wie erwartet ist das gesamte 

magnetische Moment des Fe erhöht von 2,54 µB/Atom für Kopplung auf 2,81 µB/Atom für 

Entkopplung und für Co von 1,58 µB/Atom auf 2,06 µB/Atom. Weiterhin wurden Hystereseschleifen 

ebenfalls an der L3-Kante gemessen, die zeigen, dass sich die Fe und Co Komponenten ähnlich 

verhalten im perfekt gekoppelten ES Magneten. Hingegen schaltet im entkoppelten Magneten die Co 

Hysterese des Weichmagneten früher als die Fe Hysterese des Hartmagneten. Die Resultate der 

SQUID und XMCDMessungen wurden verglichen und bestätigt, dass sie übereinstimmen. 

 

Realisierung hoher Energieprodukte mit hohen Koerzitivfeldern in L10 FePt 

inselartigen Nanostrukturen dünner Filme 

Die chemisch geordnete FePt Phase ist eine der hartmagnetischen Systeme mit höchster 

Koerzivität. Da in dünnen Schichten ein höchster Wert für 7 nm Dicke von FePt erwartet wird, 

wurden die entsprechenden Lagen auf einem MgO (100) und einem (LaAlO3)0.3(SrTaAlO6)0.7 

(100) Substrat unter gleichen Bedingungen abgeschieden. Die Gitterkonstante beträgt für L10-FePt a = 

3,85 Å und c = 3,17 Å. Die Gitterkonstante von MgO und LSAT sind a = 4,212 Å und a = 3,87 Å. Die 

Grundidee war eine Reduktion der Fehlanpassung zwischen beiden Systemen durch 

Wärmebehandlung bzw. die Wahl des neuen Substrates. Die MgO Probe wurde dabei auf 800 °C für 

eine Stunde geheizt und dann schnell abgekühlt um die L10 Phase an der Ober- und Grenzfläche zu 

stabilisieren. 

Die ursprüngliche Probe MgO (im Folgenden MgO genannt) zeigte eine Koerzivität von 4,14 T. Nach 

der Wärmebehandlung (im Folgenden Heat genannt) war diese Koerzivität auf 6,06 T angewachsen. 

Für die FePt-Schicht auf LSAT (im Folgenden LSAT genannt) wurde ebenfalls eine hohe Koerzivität 

von 6,17 T erreicht. Auch die Sättigungspolarisation erhöht sich leicht durch Wärmebehandlung auf 

1,76, war aber bei LSAT mit 1,68 etwas kleiner. Die Erhöhung der Koerziviät bei entsprechender 
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Sättigungsmagnetisierung führt zum Anwachsen des Energieproduktes (BH)max auf 65,7 MGOe für die 

MgO-Probe, 75,6 MGOe für die Heat-Probe und 73,6 MGOe für die LSAT Probe. 

Neue Proben, die mit Au mit einer Dicke von 3 nm bedeckt wurden als leitende Schicht, wurden für 

XMCD Messungen im TEY Modus präpariert. Durch die Au Lage auf der Oberfläche der 

Nanomagnete ist diese geschützt vor Oxidation. Überraschenderweise erhöhte diese Bedeckung die 

Polarisation zu 1,85 T für die MgO und 2,03 T für die Heat- und LSAT Probe. Dadurch ist trotz der 

etwas reduzierten Koerzivität das maximale Energieprodukt (BH)max auffällig angewachsen 

insbesondere stark für die LSAT Probe zu 97,1 MGOe nur durch Aufbringen der Au Bedeckung.  

Die XMCD Resultate zeigten ein höchstes magnetisches Moment für die Heat Probe mit 2,85 µB pro 

Eisenatom, während die Fe Momente für Heat und LSAT kleiner waren. Die Hystereseschleifen 

aufgenommen an der Fe L3-Kante zeigten eine höhere Koerzivität als die SQUID Resultate für alle 

drei Systeme. Die Ursachen dieses Phänomens konnte bisher nicht geklärt werden und erfordern 

weitere hochpräzise Messungen, die auch auf die L2-Kante ausgedehnt werden sollten. Auch die 

signifikante Erhöhung der Sättigungspolarisation der FePt Nanokörner durch eine einfache Au 

Bedeckung spiegelt sich nicht in der entsprechenden Analyse der XMCD Daten wieder, was weitere 

kombinierte SQUID und XCMD Studien notwendig macht. 

Dennoch konnte in dieser Doktorarbeit gezeigt werden, dass die Wärmebehandlung von 7 nm 

magneto-gesputterten FePt L10 und das Aufbringen der entsprechenden Lagen auf LSAT eine 

deutliche Erhöhung der Koerzivität und des maximalen Energieproduktes zur Folge hat. Zusätzlich 

verbessert eine Au Schutzschicht die Sättigungsmagnetisierung und damit das Energieprodukt noch 

weiter. Die Resultate, die in dieser Dissertation erhalten wurden, zeigen – unseres Wissens nach – das 

höchste Energieprodukt, das jemals bis heute experimentell realisiert wurde. Der Wert von 97 MGOe 

für 7 nm FePt L10 auf LSAT übersteigt die höchsten bisher publizierten Werte von 61 MGOe für 

FeCo/NdFeB um mehr als 50 %. 
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Appendix A 

 

A. 1 Sputtering condition for Fe51Pt49  

The used magneto co-sputtering device can sputter three kinds of material together. To deposit high-

quality thin films, the condition of sputtering has to be optimized for the purpose. The FePt is formed 

two phase of A1 phase (face-centered cubic, fcc) and L10 phase (face-centered tetragonal, fct) from 

Fe45Pt55 to Fe65Pt35. The purpose of our work is to fabricate L10-FePt hard magnet as the atomic ratio 

of Fe51Pt49.  

The conditions for sputtering are vacuum pressure, temperature, sputter power and film growth rate.   

The base vacuum pressure is 3 × 10−8 mbar. Moreover, Ar pressure during sputtering is 5 ×

10−3mbar. The temperature is set for FePt phase to 800 °C. 

The attempts and WDX results were failed and succeed to be Fe51Pt49 are shown by Tables A1-3. 

Power for Fe: 95 W 

Power for Pt: 30 W 

Time per nanometer: 6.7 s/nm 

Film growth rate : 0.149 nm/s 

K-Ratio 

Fe 

K-Ratio 

Pt 

t ρ[μg/cm2] wt% 

Fe 

wt% 

Pt 

at% 

Fe 

at% 

Pt 

Density Thickness t [nm] 

0.03150 0.10600 70.30 24.59 75.40 53.34 46.66 15.08 46.90 

  ±     0.74 0.27 0.27 0.36 0.36 0.050 0.50 

Table A 1.1 This condition made Fe53Pt47 with thicker than the target thickness.  

 

Power for Fe : 90 W 

Power for Pt : 30 W 

Time per nanometer : 7.46 s/nm 

Film growth rate : 0.134 nm/s 

K-Ratio 

Fe 

K-Ratio 

Pt 

t ρ[μg/cm2] wt% 

Fe 

wt% 

Pt 

at% 

Fe 

at% 

Pt 

Density Thickness t [nm] 

0.02150 0.09320 59.90 20.42 79.58 47.36 52.64 15.880 37.72 

Table A 1.2 This condition made Fe47Pt53 with thinner than target thickness 

The optimized condition of sputtering for L10-Fe51Pt49 is 

Power for Fe: 105 W 

Power for Pt: 30 W 

Time per nanometer: 7.27 s/nm 

Film growth rate : 0.137 nm/s 

K-Ratio 

Fe 

K-Ratio 

Pt 

t ρ[μg/cm2] wt% 

Fe 

wt% 

Pt 

at% 

Fe 

at% 

Pt 

Density Thickness t [nm] 

0.02520 0.09380 62.30 22.92 77.08 51.05 48.95 15.390 40.48 

Table A 1.3 This condition made L10-Fe51Pt49 with proper target thickness 
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A. 2. The nanoimprint lithography (NIL) process (IPS, 

STU, O2 Plasma treatment and ICP-RIE) 

The nanosized patterns of exchange-spring magnets are fabricated by NIL. The optimized NIL process 

will be shown in this section. 

The NIL uses a master stamp. The schematic of nanostructure in Fig. 5.6 shows transfer process from 

the master stamp to the real nanomagnet pattern. In this work, the stamp is fabricated on Si wafer with 

Electron beam lithography by Obducat. The structured wafer is covered with the anti-sticking layer. 

Fig A2.1 shows master stamp image from obducat. The feature size is 60 nm diameters, 150 nm 

periods and 90 nm heights. 

  

 

Fig A.2.1 The master stamp structure. The optical microscopy and AFM images from Obducat 

and SEM image from our institute. 

The fabrication steps. 

1. Photoresist coating on thin film 

2. IPS (Intermediate Polymer Stamp) imprint step to make replica 

3. STU (Simultaneous Thermal and UV) imprint step on lacquer 

4. O2-Plasma treatment to remove the resist and to open the film 

5. ICP-RIE (Inductively Coupled Plasma-Reactive Ion Etching) to etching the film 
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The optimized fabrication process 

1. The photoresist on thin film: The photoresist TU-7 is spin coated on cleaned thin film with 

3000 rpm for 60 s. 

Spin coated resist on thin film is baked for 60 s. 

2. NIL process (Eitre 3, Obducat) 

IPS imprint: The master stamp is covered with IPS foil for a negative replica. 

IPS foil is imprinted with thermal imprinting. Increasing the temperature above glass 

temperature, give pressure and decrease the temperature below glass temperature, demolding. 

Increasing temperature at 160 °C and pressure of 40 bars for the 60s. 

Decreasing temperature at 60 °C and demold the IPS foil from the master stamp. 

Fig A2.2 shows SEM and AFM images of IPS negative replica. 

 

Fig A2.2 SEM and AFM images of IPS negative replica. 

 

STU imprint: The negative replica is transferred to resist by the same structure with a master 

stamp. The resist on thin film is covered with IPS foil to transfer the structure to lacquer. 

STU imprint is combined thermal and UV imprint. During thermal imprint, UV light is 

exposed to the photoresist. 

Increasing temperature at 70 °C and pressure of 30 bars for the 60s 

Expose the UV light for the 60s under the temperature and pressure. 

Keep the temperature and pressure for 120s without UV light and demold the foil form a thin 

film. 

AFM image showing 60 nm diameter and 150 nm period nanopattern is imprinted on the resist, 

in fig. A.2.3. 
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Fig. A.2.3 AFM image of 60 nm / 150 nm pattern on resist after NIL process 

 

3. O2-plasma treatment (prep.2, GaLa Instrument). 

To open material between dots over keeping dots structure, the power and time have to be 

optimized O2-plasma with consideration of etching ratio.  

This work is used 30 Watt power and 5 min.  

4. ICP-RIE (Plasmalab 80plus, Oxford Instruments): The structures are transferred to thin film.  

The etching ratio depends on several factors, such as temperature, chamber pressure, gas flow, 

ICP generator power, RF generator power and etching time. In this work, only physical 

etching is used with Argon gas, no chemical etching, 

Temperature set at -10 °C due to hitting of ions increase the sample temperature. 1.8e-6 Torr 

pressure, 20 sccm gas flow, 100 W ICP generator power, 300 W RF generator power are used 

for few seconds. The etching rate of the resist is a factor of 2.7 larger than the etching rate of 

FePt.  

 

After all of the process done for fabrication, AFM and MFM images are shown in Fig. 5.6. 
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A. 3. The structured pattern images of 3-D and down 

scale. 

The regular arrange of nanomagnet pattern, and the height of 80 – 90 nm of each nanodot are 

confirmed by 3-D AFM image.  
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A. 4 EDX results of t3 and t7 nanodots 

The 3 nm and 7 nm thickness of Co layer are formed nanoinsular structure no thin film. The 

thicknesses of Co layer in exchange-spring nanomagnet were verified by EDX measurement. 

 

Fig. A.4 Confirmation of cobalt and FePt thickness in t3 and t7 by EDX measurements 
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A. 5. Magnetic parameters of exchange-spring 

multilayers. 

The experimental result of magnetic parameters (HC, JS, K1, and A) in exchange spring multilayers 

with different thickness of the Co soft magnetic layer is presented.  
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A. 6. The in-plane hysteresis loops of nanopatterns 

Temperature dependent hysteresis loops of nanopatterns t0, t3, and t7 samples. The ES magnet patterns 

which include Co soft layers are shows easy to magnetize to in-plane direction. 
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A. 7 The minor loops of FORCs measurement 

The three kinds of ES nanomagnet patterns have been measured first order reversal curves methods. 

Fig. A.7 shows minor loops of FORcs before analysis to FORCs density.  
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A. 8 The switching field distribution (SFD) by 

derivation 

The switching field distribution SFD is obtained from FORCs density at peak of coercivity distribution. 

The pure L10-FePt has broader distribution with higher coercivity. The perfectly coupled ES magnet 

has narrower distribution while higer intensity. The partially coupled ES magnet has two parts of 

reversal behavior with decoupled and coupled parts. The integration of FORCs explains the each 

nanomagnet becomes a hysteron in Preisach model. 

 

Fig. A 8 The coercive field distribution at Hu=0 Oe. 

   

 HC FWHM [Oe] Hu FWHM [Oe] 

t0 ~9900 ~2800 

t3 ~4900 ~1800 

t7 ~7300 ~2900 
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A. 9 The microscopic magnetic reversal process by the 

MFM images at the certain field. 

The hard and the soft layers in the t7 sample are partially coupled each other. MFM images of certain 

fields show magnetic switching behavior with domain structures. And the magnetic reversal behavior 

assumed and illustrated below. 
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A.10 AFM and MFM ridges at various fields 

To investigate the reason for the two steps of the hysteresis loop, several line intensity analysis of 

AFM and MFM measurements were performed at various fields. The results are shown in Figs A.10.1. 

The height and width of each nanomagnet can be directly derived from the AFM (black line), and 

magnetic switching from the MFM (green line). Fig. A.10.1 shows the AFM and MFM ridges at fields 

where both layers have either switched or not. The MFM images in this range are the same MFM 

images as in the as-etched state after fabrication. As can be seen from the figure, a thicker nanomagnet 

keeps the magnetization from switching. In fig.A.10.1 bottom, the magnets that switch latest, i.e. in 

highest field, only, can be seen. A higher height or a flat switch later.  

 

 

 
Fig. A. 10. 1 The profiles of AFM (black) and MFM (green) ridges at earlier switching, 1.1 T, 1.75 T and 

1.9 T. The domains represent colors of blue (up) and sky-blue (down). Smaller magnets are earlier 

switched. 

At field of 0.75 T and 1 T, two domains are formed, as visible in the top view of MFM images. They 

are indicated by dark and light blue colors. A nanomagnet, which contains both colors, seems to have 

two magnetic domains. The earlier switched nanomagnets (i.e. switched at lower field) show less hight 

in MFM. The decoupled parts of the Co layers in each nanomagnet are switch from 0 to -1 T. 
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Appendix B 

B. 1 The grain size distributions 

The grain size distributions of L10-FePt/ Pt/ Co/ Pt exchange-spring multilayers on MgO(100) 

substrate, were counted and calculated from SEM images. The average size and the particle size 

distributions are analyzed. A total thickness increases, the packing area and grain size increases. The 

average grain diameters d and diameter range are t0: 42 ± 15 nm, t0.5: 34 ± 11 nm, t1: 46 ± 19 nm and t2: 

56 ± 18 nm. The t2 sample has bigger than 100 nm grains, too. The particle sizes are related to the 

critical domain size, DC and the switching diameter DSW 
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B. 2 Hysteresis loops of magnetic moment and 

Switching field distribution (SFD) by derivation. 

The out-of-plane hysteresis loops (magnetic polarization and magnetic moments) and switching field 

distribution (SFD) of L10-FePt/ Pt/ Co/ Pt exchange-spring magnetic multilayers and FePt thin film on 

MgO(100) substrate at RT. 

 

 

B. 3 The minor loops of FORCs measurement 

The tuned exchange spring multilayer by interlayer thickness have been measured by FORCs methods 

using SQUID magnetometry 
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B. 4 The reversibility of exchange-spring multilayers. 

Moreover, reversibility, η is calculated by 𝜂 = 𝜒𝐹𝑂𝑅𝐶/𝜒𝐻𝑦𝑠𝑡 in section 4.2.3.2. The η results support 

influence of the Co soft magnet layer in exchange-spring multilayers. Fig shows the η variations. The 

soft magnet pushes the hard magnet to reverse. Despite equal quantities of hard and soft, according to 

coupling strength, reversibility is also affected.   

 
 

B. 5 XAS and XMCD spectra of FePt of bulk (40 nm 

thickness)  

The pure L10-FePt have been investigated by XMCD measurement. The shape of spectra in ES 

magnet was compared with L10-FePt spectra of 40 nm. The magnetic moments of bulk sample of 40 

nm thickness were analyzed by Sum Rules. Fe has orbital moment of 0.25 bohr magneton and spin 

moment of 2.21 bohr magneton. 
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B. 6 Angle dependent XMCD measurements for ξ and TZ 
To study anisotropy change, 60ᵒ angle-dependent measurements were fulfilled. The XAS and XMCD 

spectra with angle are in fig. B 5.1. 

 

Fig B 5.1 Normalized XAS and XMCD spectra. XAS and XMCD spectra were measured at RT and 

saturation field with 60ᵒangle dependent measurement. 

The angle dependent spectra also show highest intensities spectra of t1 in Fe edges and t2 in Co edges. 

The spectra of angle-dependent measurements at RT and 6 T were analyzed sum rules in Table 6.6. 

AD  ms [μB] ml [μB] mtotal [μB] ml/ms ratio 

Fe 

t0 2.64 0.28 2.92 0.1 

t1 2.31 0.25 2.56 0.11 

t2 2.01 0.24 2.24 0.12 

Co 

t0 1.81 0.17 1.98 0.09 

t1 1.46 0.15 1.61 0.1 

t2 1.41 0.13 1.54 0.1 

Table B 5.1 The sum rules results of XMCD measurement at 60ᵒ angle incidence. Spin, orbital and total 

magnetic moment and the ratio of orbital to spin.  

The overall behaviors are similar both NI and AD results.  

The magnetic dipole moment term <Tz>, the variation of orbital magnetic moment ∆𝑚𝑙 and spin-orbit 

constant ξ can be calculated with NI results and AD result. 

AD  Tz [μB] ∆𝑚𝑙 MAE [meV/atom] ξ [meV] 

Fe 

t0 -0.002 -0.12 3.96 10.12 

t1 0.026 -0.05 4.47 14.13 

t2 0.034 0.03 7.21 29.91 

Co 

t0 0.004 0.07 0.702 3.61 

t1 -0.003 0.04 0.634 3.85 

t2 0.002 0.03 0.253 1.56 

Table B 5.2 The dipole moment TZ, the variation of orbital magnetic moment ∆𝒎𝒍, magnetocrystalline 

anisotropy energy, MAE of atom and spin-orbit constant ξ of exchange-spring multilayers.  
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All of the dipole terms are negligible. It is less than 1% to spin moment. Nevertheless, the tendency 

according to coupling can be confirmed. The variation of the orbital magnetic moment of Fe is 

increased by decoupling. Whereas ∆𝑚𝑙 of Co is increased by coupling. The spin-orbit constant ξ of Fe 

is corresponded to increasing of the magnetocrystalline anisotropy energy and orbital moments. The 

Co is released from L10-FePt hard magnets by decoupling. All of XMCD analysis results are displayed 

to see tendency each values by interlayer thickness in B 5.2. 

 

Fig. B 5.2 The sum rules results from XAS and XMCD spectra. Spin magnetic moment (up-left), 

orbital magnetic moment (up-right) and total magnetic moment (down-left) are analyzed by Sum 

Rules. The spin-orbit constant ξ are obtained Bruno model which is a relation of anisotropy, spin, orbit 

moment and energy split.  
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B. 7 Normalized hysteresis loops at L3-edge 

Normalized hysteresis loops measured by SQUID and XAS are compared. According to coupling, 

magnetic reversal behavior of the Co soft layer is changed. The coercivity of Co in perfectly coupled 

sample is similar with Fe. In partially coupled sample, it reduced half of Fe coercivity. The switching 

of Fe and Co is behaved, independently in de-coupled sample. (Fig. B. 6. 1 upper) The angle 

dependent measurements are also similar. (Fig. B. 6. 1 bottom) 

 
Fig B.6.1 The hysteresis XMCD and SQUID data. Upper line: in normal incidence (NI) and bottom 

line: in 60° angle-dependent measurements (AD) of exchange-spring multilayers with different 

interlayer thickness. Left to right is samples t0 to t2.  

 

Fig B.6.2 Comparison of Fe and Co hysteresis loops by each samples. Upper left : Fe normal 

incidence (NI), Upper right: Co NI, bottom left: Fe angle dependent (AD) and bottom right: Co AD. 
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Appendix C 

C. 1 Distribution of grain size of uncovered 7 nm L10-

FePt samples. 

MgO has bigger grain size. MgO and Heat have similar distribution. However, Heat and LSAT have 

smaller area.  
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C. 2 The initial magnetization curves 

The MgO sample is first increased at low field, next is LSAT, and last is Heat sample. The critical size 

of FePt is 40- 60 nm depends on the thickness of films. For 7 nm FePt is Dc = ~34 nm by experiment. 

All samples are bigger than the critical size. Those grains are formed multi-domains. The multi-

domains are magnetized even lower field. Heat and LSAT samples have many of single domain grains. 

To rotate the magnetization of single domains, it needs more energy. So, increasing of magnetization 

in heat sample is started at higher field. However, the LSAT sample has grain sized distributions 

variously from single domains to multi-domains. So, LSAT shows two steps behavior at the low and 

high field.  

 

 

C. 3 MFM image 

The 7 nm thickness L10-FePt thin film is granular structure. Few grains form the magnetic domain 

with the same direction. 
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