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Abstract

This research proposes an utterance embedding model that provides disentangling and
scalable control over latent attributes in human speech. Our model is formulated as a
hierarchical generative model based on the Variational Autoencoder (VAE) framework,
integrated with the FastSpeech2 Text-to-Speech (TTS) system. The work demonstrates that
image initiative networks on hierarchical pattern learning can be adapted to model complex
distributions in speaking styles and prosody. This work merges advancements in VAE
research—particularly those addressing critical statistical challenges such as posterior
collapse and unbounded KL divergence—with recent studies focusing on structural
enhancements of architectures in VAEs. We introduce a hierarchical structure in latent
variable modeling and augment the learning objective with hierarchical information to
ensure the latent variables at each level are hierarchically factorized. This approach
learns the smooth latent prosody space and deepens our understanding of the relationship
between the hierarchical nature of prosody and neural network architecture. Through our
customized control mechanism, integrated into various levels of the latent spaces, the
model is capable of manipulation of prosodic elements, allowing for both independent and
scalable adjustments. By incorporating these techniques, our model is capable of capturing
a wide range of prosodic variations, offering a refined level of control and expressiveness
in speech synthesis in unsupervised learning contexts.
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1 Introduction

In recent years, many attempts have been made to integrate style information and
controllability into Text-to-speech (TTS) approaches. In most end-to-end setups, which
inherently learn prosody in the model, the style conversion or controllability is done by
integrating additional style modules in supervised and unsupervised ways. Among these
developments, extensions from the concept of Global Style Token (GST)(52) focus on
learning refined utterance-level prosody embeddings. In parallel, deep generative models
such as Normalizing Flows (NF)(48), Generative Adversarial Networks (GANs)(14),
and Variational Autoencoders (VAEs)(30) have emerged as powerful tools in latent
representation learning, particularly for complex data types like images and speech. Recent
studies based on generative models offer a framework to capture and manipulate hidden
patterns in data, bridging the gap between rigid style control, such as categorical label
usage, and dynamic variations inherent in natural speech. One of the primary challenges
has been generating informative single embeddings that represent all characteristics of an
utterance. To address this, recent studies such as (9) have developed a fine-grained encoder
capable of extracting variable-length style information from utterances. In a similar vein,
the Quantized Fine-Grained VAE (QFVAE)(53) was proposed to merge categorical clarity
with the adaptability of latent space modeling by quantizing prosody latent representations
into a set number of classes, thereby enhancing the naturalness of audio samples generated
from continuous latent spaces. To cater to the few-shot adaptation needs, especially in
multi-lingual and multi-speaker scenarios, TTS systems have adopted the strategy of
conditioning on multiple specialized embeddings, such as speaker embeddings, language
embeddings, and stress and tone embeddings(39).

In our research, inspired by the inherent hierarchy in human speech characteristics and the
architectural design of Nouveau VAE (NVAE)(58). We introduce hierarchical blocks in the
VAE structure and reinforce the learning objectives’ hierarchical nature through residual
distribution and leveled reconstruction losses. This hierarchical structure facilitates the
disentanglement of prosodic features, and we integrate a control mechanism across our
latent spaces, which allows independent and scalable manipulation of speaking styles. Our
model is able to capture a broad range of prosodic nuances and provides more expressive
and controllable speech synthesis.

1.1 Motivation and Use Case

Data privacy is a critical concern, especially in protecting Personally Identifiable
Information (PII). Traditional masking techniques, such as distortion or pixelation, have
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been widely used to conceal PII in images. Recently, this focus has broadened to cover
more multimedia types, such as speech and video data. For audio data, confidentiality
concerns extend beyond mere content to encompass elements like voice characteristics
and background noise, which could reveal geographical locations or personal identifiers.
Early approaches to address speech privacy employed techniques like adding nonsensical
masking noise to obscure speech information or voice distortion, which often lacked
naturalness and intelligibility. With the advent of data anonymization techniques in image
domains, such as the website- This Person Does Not Exist, anonymity has become more
sophisticated while retaining robustness. Although there are existing anonymous voice
generators that allow users to adopt various voices, including those of celebrities or
fictional characters, these techniques often have potential security vulnerabilities and lack
naturalness. In this regard, we aim to provide a system that offers vivid and explicit voice
masking capabilities while still maintaining control over the output. This balance of privacy
with usability opens new possibilities for secure and private speech communication.

1.2 Research Question

In this research, we build a controllable TTS system by integrating an utterance
embedding generator based on a hierarchical variational autoencoder (HVAE) with a
control mechanism at the latent space level. The objective is to obtain disentangling
and scalable style representation and enable flexible speech generation control. Besides,
we are particularly interested in the difference between features learned in different
hierarchical levels and the relation between them within our proposed framework. The
research questions can be broken down into the following points:

1. Implementation of Hierarchical VAE as Embedding Function: How can a
hierarchical VAE be developed as an utterance embedding function within a TTS
system?

2. Control Integration in Non-Isotropic Latent Spaces: How can controls be
integrated in latent spaces beyond the isotropic prior distribution p(z) in VAEs?

3. Speaking Style Control and Hierarchical Analysis: How does the hierarchical
structure of the VAE influence the system’s ability to capture varying levels of
speaking style? What is the interrelationship between these captured features across
different levels and dimensions?

4. Disentanglement and Scalability of Prosodic Features: To what extent can the
controlled prosodic features be disentangled, combined, and scaled?
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2 Theoretical Background

In this section, we introduce the theoretical background of our work, including the
concepts behind different deep generative models and their recent advancements in various
applications, especially in image and speech domains. This serves as the cornerstone for
us because it provides related frameworks for modeling complex data distributions and
the possible integration with the control mechanism. In our work, we integrate VAE as a
backbone model to the TTS system to model the latent characteristics in human speaking
styles and other potential hidden features, like microphone characteristics and noise levels.
We extend the concept of generative models and focus more on latent representation
learning by looking into methods for encoding and decoding speech data into meaningful
latent space. Next, we introduce more general TTS methods and compare different variance
modeling and prediction methods essential for capturing the variability inherent in human
speech and enabling dynamic control over speech synthesis. In the end, with the hierarchy
nature of acoustic features, we look into the relationship between speaking style and
model architecture, illustrating how our proposed model leverages hierarchical structures
to achieve fine-grained control over various aspects of speech, such as pitch, pace, and
energy.

2.1 Deep Generative Model

Generative models have become a common tool in diverse subfields of artificial intelligence
and machine learning due to their power of content creation and creativity. Integrating deep
neural networks for parameterizing these models has marked a significant advancement,
particularly with the strides made in stochastic optimization techniques, increasing the
potential for scalable and efficient modeling of complex and high-dimensional data and
capturing more underlying dynamics. The core concept behind generative models is to
learn the underlying patterns or distributions of data to generate similar or new data. The
concept of autoregressive models plays a vital role in developing and evolving modern
generative modeling techniques. The complex data distributions can be used in different
ways, such as latent space exploration and reconstruction, reversible transformations,
adversarial training by integrating discrimination, or a stochastic denoising process. These
methods can be generalized into the based generative models like VAEs, Flow-based
models, GANs, and Diffusion-based models(21), with relative strengths and weaknesses.
For example, in optimizing the closeness between the distributions of data and model
distributions, autoregressive models are good at accurately assessing how well they
fit the data distribution by offering tractable likelihoods. However, they lack a direct
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mechanism for abstract feature learning, focusing mainly on sequence prediction. On
the one hand, VAEs benefit from learning latent feature representations of data through
their encoding-decoding structure. Still, they face a limitation in directly computing the
marginal likelihoods of data samples because they rely on variational methods, which
approximate the true data distribution, thus providing a bound on the likelihood rather than
an exact value. In contrast, the flow-based models and diffusion-based models have similar
approach, which learns to convert from a simple prior distribution to the unknown complex
target feature distribution corresponding to the conditional information, but with different
approaches in likelihood computation and sample generation, where flow-based models
offering exact likelihood computations and tractable modeling of the complex distributions
by applying reversible transformations and bijective mappings; whereas diffusion models
focusing on sequences of stochastic denoising steps that iteratively refining noise into
structured data. Lastly, GANs solve these issues differently by turning to likelihood-free
training but with indirect quality assessment measures. They focus on generating data that
cannot be distinguished from real data to a discriminator network that avoids the direct
computation of likelihoods. We will give more details into the distribution modeling and
latent representation learning in the next section 2.2.

Based on these natures of different backbone models, nowadays, researchers have taken
their strengths and extended to focus on adding expressiveness and controllability in
the generation process. In the image domain, recent research, such as DALL-E 2(44)
and GLIDE(41), use discrete image tokens guided by text diffusion models for direct
image generation. Specifically, both are based on diffusion models; DALL-E 2 employs
a complex process in which the model constructs visual content by gradual denoising a
random noise pattern, thereby translating textual input into a coherent visual representation.
Similarly, GLIDE extends the concept of diffusion models by conditioning the model on
additional textual information, thereby enabling text-conditional image generation. As
in the speech domain, different topics also benefit from integrating generative models in
realizing speech enhancement and style adaptation. For example, Stylebook (38) proposes
methods for any-to-any voice conversion by extracting content-dependent target style
embeddings and feeding them into a diffusion-based U-Net (49) decoder to generate the
styled speech mel-spectrogram. Similarly, Noise-Aware Speech Enhancement (NASE)
(24) also utilizes diffusion, and it realizes speech enhancement by adding noise-specific
information inside noisy speech to guide the reverse denoising process based on the
conditional diffusion probabilistic model. Moreover, to increase accuracy in variance
prediction, VarianceFlow(34) integrates normalizing flow to a traditional deterministic
variance predictor to capture the full range of speech characteristics during the training
stage. We will introduce more recent TTS approaches and discuss the controllability and
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variance that can be made deeper in Section3.

2.2 Latent Representation Learning

Earlier speaker embedding generation approaches in TTS systems involved techniques like
one-hot encoding, clustering, and factor analysis. These methods either directly encoded
categorical speaker information or learned speaker embeddings based on the distribution
of speech data. However, they were limited in their ability to generate new samples as they
did not model the full probability distribution of the data. As introduced in the previous
section, deep generative models such as VAEs and GANs have been employed to learn
an approximate mapping between Gaussian latent variables and data samples, especially
when the true latent variables have an intractable posterior distribution (30). GANs, in
particular, have shown promise in achieving relative and explicit control over generated
outputs. A typical GAN optimizes the following objective function:

(1) min
G

max
D

Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]

This formula reflects the adversarial game between the generator (G) and the discriminator
(D), where the generator strives to produce data-like samples, and the discriminator
aims to distinguish between real and generated samples. Recent GAN-based approaches
realized both relative control and explicit control over image generation by exploiting the
inherent disentanglement properties of their latent space and leveraging conditional GANs,
respectively. For example, InterFaceGAN (51) used off-the-shelf binary classifiers to find
separation boundaries in the latent space where each side of the boundary corresponds to
an opposite semantic attribute (e.g., young v.s. old). In conditional GANs, which have been
widely used in the image domain, the generator is conditioned on some input variables,
such as a class label, an attribute vector, or a style code, which enables explicit control
over the generated images. Some recent approaches introduced additional regularization or
disentanglement techniques, such as adversarial regularization or information bottleneck,
to encourage the generator to learn a disentangled representation of the input variables.
While these methods provide flexibility and the prospect of optimizing different objectives
for high likelihood and high-quality sample generation, GANs do not explicitly measure
how well the generated samples match the data distribution. This can lead to the generator
producing only a limited set of samples, resulting in a lack of diversity in the generated
samples. This can be problematic in the context of posterior approximation. Though an
improvement can be made to posterior approximation by using Wasserstein Distance as an
objective function (3), the control mechanisms remain a challenge.
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On the other hand, the objective function of VAEs ensures that the generated samples
are diverse and representative of the true distribution. The vanilla VAE has been used to
Tacotron2 (52) to learn the latent representation of speaking style. The approaches that
try to increase controllability to VAE can be divided into 2 categories. The first group
of works focuses on solving the Kullback-Leibler (KL) vanishing problem and tries to
exercise control over KL-divergence to add diversity to the output yet maintain authenticity.
The objective function of VAEs, consisting of log-likelihood and KL-divergence

(2) logp✓(x) � LVAE = Eq�(z|x)[log p✓(x | z)]� KL(q�(z | x) k p✓(z))

which posts a trade-off between reconstruction accuracy bounds and the manipulation of
output diversity. �-VAE blindly controlled the KL-divergence by adding a hyperparameter
� as a weight. Following this work, to improve dynamic adjustment to the weight and avoid
the large reconstruction error, ControlVAE (50) deployed a non-linear Proportional Integral
(PI) controller (4) to further tune the hyperparameter � by reducing the distance between
desired KL-divergence and the actual KL-divergence using the concept of PID control
(4). These approaches usually sacrifice interpretability and have less stable controllability.
As the latent space is continuous, one problem with using the vanilla VAE is that the
decoder may not capture all variations in the original data distribution because the prior
distribution is assumed to be a Gaussian unit. As a result, another group of works proposed
more recently focuses on making variations, such as adding conditions and multiple layers.
This then increases the flexibility in modeling the data distribution and allows the model
to learn different levels of features. To make use of the hierarchical property of speech
data, latent spaces can also be modeled in different levels to learn latent variables in
different hierarchies (22) (31). In work (22), one level is a categorical variable, and the
second level, conditioned on the first, is a multivariate Gaussian variable; the two levels
are responsible for the attribute group (e.g., clean/noisy), and the attribute configurations
(e.g., noise level, speaking rate) respectively. With a similar concept, NAVE proposed a
deep hierarchical VAE to improve the expressiveness of the model by partitioning the
latent variables into different groups based on the complexity of the embedding to capture
hierarchical structures in the image data.

GANs and VAEs have demonstrated great variations and flexibility, though they still face
challenges in explicitly learning the probability density function of real data. Flow-based
models can address this limitation with the aid of normalizing flows(48). Utilizing the
property of the Jacobian of invertible functions and the change of variables formula,
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Flow-based models approximate the data distribution of x using the following relationship:

(3) p✓(x) = p✓(z)

�����det
@f

�1

@x

�����, logp✓(x) = logp✓(z) + log

�����det
@f

�1

@x

�����

Here, the log determinant term in Equation 3 is replaced by the sum of the log determinants
of each intermediate Jacobian, as shown in Equation 4:

(4) logp✓(x) = logp✓(z) +
KX

i=1

log

�����det
@f

�1
i

@zi

�����

This formulation enables the model to be trained directly using maximum log-likelihood.
Consequently, the training objective of a Flow-based generative model is the negative
log-likelihood (NLL) over the training dataset D, as specified in Equation 5:

(5) L(D) = � 1

|D|
X

x2D

logp✓(x)

In contrast to VAEs and GANs, which approximate the lower bound of the log-likelihood
(ELBO) and rely on discriminator-generator optimization, respectively, Flow-based
models offer a more direct and flexible approach. This makes them ideally suited for
modeling variational distributions that are complex enough to encompass the true posterior
distribution.

2.3 Variance Modelling and Prediction

One of the critical issues in the TTS system is the one-to-many mapping problem, where a
given text can be pronounced in multiple ways depending on the speaker’s characteristics,
speaking styles, and other variances. More explicit variance prediction approaches in TTS
models, such as FastSpeech (47) and its variant FastSpeech 2 (45), have been trained
to predict the ground-truth variance factors based on the input text using mean squared
error (MSE) loss. The variance is explicitly modeled through pitch, energy, and duration
predictors. FastSpeech 2 addressed the complexity of energy and pitch by using a quantile
regression network to predict the quantiles of the energy distribution and deploying
continuous pitch representation respectively (55; 19). Another approach to predicting
non-textual information, including variance and speaking style, is to consider them as
a representation in the latent space and use them as conditions with the input signal. In
some extension works for prosody control based on Tacotron (61), this is achieved by
introducing a reference encoder to learn a fixed-dimensional embedding as the prosody
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space from the reference signal (52). Flowtron (59) used a flow-based Mel-spectrogram
encoder as the latent encoder, proposed in GMVAE-Tacotron (22), to map the distribution
over Mel-spectrograms to a latent space. The aforementioned works often have problems
modeling complex variance patterns and controlling those factors independently because
of their deterministic prediction approaches and assumptions on dimensionality. To address
these issues, recent approaches have shown growing interest in using stochastic methods
to model and predict the distribution of variance features. For example, in VAE and NF,
variance prediction can be seen as the posterior distribution approximation. Since they do
not make common simplifying assumptions about the marginal or posterior distribution,
they have higher flexibility in target distribution approximation. In particular, flow-based
generative models can capture complex multi-model distributions of speech variance and
speaker characteristics by transforming simple distributions into more complex ones using
a series of invertible transformations. The Mel encoder in Flowtron (59) is the first TTS
application that uses affine coupling layer (12) as building blocks in their invertible
neural networks. The concept is further deployed to a stochastic duration predictor,
which learns the joint distribution of the estimated phoneme duration in Variational
Inference with adversarial learning for end-to-end Text-to-Speech (VITS) (27). In this
case, the forward and inverse transformations control the learning flow between the input
distribution (a complex distribution, e.g., phoneme duration labels) and output distribution
(a simple distribution, e.g., Gaussian random variables). To overcome the limitations of
discontinuation and high dimensionality, duration is dequantized and augmented using the
methods of variational dequantization (20) and data augmentation (8). Based on FastSpeech
2, VarainceFlow (34) used similar approaches to replace the deterministic functions in
variance predictors with flow-based stochastic pitch and energy predictors.

2.4 Hierarchy in Speaking Style

Recent research has highlighted the hierarchical nature of speech features, covering the
spectral elements processed in the auditory cortex to the semantic understanding in higher
brain areas. This hierarchical representation is important for TTS systems, particularly
in unsupervised expressive speech synthesis (UESS), which the concept is proposed
in (2). The models with similar UESS concepts aim to synthesize expressive speech
without relying on explicit speech expression labels. While labels have been shown to
aid in modeling, unsupervised methods are increasingly preferred due to the ease of
obtaining expressive speech from sources like online videos or audiobooks, where manual
annotation is impractical(13). Also, the reliability of manually annotated labels, such as
those categorizing emotions(18), can vary significantly, with differences in expression
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intensity within the same category.

Focusing on latent representations for styles and prosody, recent TTS studies have utilized
VAEs (2; 22; 54). These studies acknowledge that speech features manifest distinctly
across various levels, such as phonetic, word, and utterance. For instance, the work
(54) proposed a multilevel model integrated with a hierarchical latent variable model
based on Tacotron 2(61) captures prosody representations at both the utterance level
and finer levels like words and phones. NVAE is one of the first works that proposed
adding hierarchy in VAEs to enhance the expressiveness and controllability of latent
variables. This is achieved by learning a hierarchical prior p✓(z) and partitioning it
into disjoint groups z = {z1, z2, . . . , zL}, where L represents the number of groups.
The prior and approximated posterior are represented by p(z) =

Q
l p(zl|z<l) and

q(z|x) =
Q

l q(zl|z<l,x), respectively. Each level in the hierarchy l has a posterior, as
shown in Equation 7, modeled by individual VAE layers that stack to form a hierarchical
structure. Each VAE layer, both in the encoder and decoder, models a specific level of
abstraction corresponding to a group of latent variables. The generator p(x, z) in each
VAE is a top-down network that generates parameters of conditional distributions by
sampling from each hierarchy (group), passing each sampled latent variable zl to the next
group z>l. During inference, a bidirectional encoder infers these latent variable groups
sequentially, maintaining the order between q(z|x) and p(z). This method has shown great
performance in addressing high-fidelity images through downscaling and upscaling images
in different groups. Though utilizing latent representations of speech, such as speaker
embeddings, does not take advantage of the spectral format as images do, the nature of
speech characteristics and works based on this assumption provides similar opportunities
for representation and control.

LVAE(x) := Eq(z|x)[log p(x | z)]

� KL(q(z1 | x) k p(z1))�
LX

l=2

Eq(z<l|x)[KL(q(zl|x, z<l) k p(zl)|z<l))]
(6)

(7) q(z<l|x) :=
l�1Y

i=1

q(zi|x, z<i)
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3 Related Work

Initial efforts in end-to-end expressive TTS models primarily focused on explicit style
control using categorical labels like emotions and speaker identity (36). These early
methods, however, faced challenges such as the intensive labeling effort and limited
expressive diversity. Subsequently, the field evolved towards unsupervised approaches,
notably through the use of reference encoders. These encoders extract global style tokens
(GSTs) from reference audio, as seen in (52). Further developments include multi-scale
reference encoders, which capture both global-scale and local-scale prosodic features
(37), and reference attention mechanisms for finer alignment of prosody embeddings with
phoneme sequences (35). Recently, some researchers had taken the success in text and
image generation guided by a text description prompt and applied the concept to the
speech domain. PromptTTS (17) guides the TTS process using style prompts and content
prompts that control the acoustic features and synthesized content, respectively. Similarly,
StyleTagging-TTS (ST-TTS)(28) proposes a non-autoregressive expressive TTS model
utilizing style tags, which are extremely short sentences like ”in a loud voice” as additional
style modules. The style encoder in instructTTS (63) consists of an audio encoder that
encodes style information from the target mel-spectrogram, then uses the style information
in the ground-truth audio.

There is growing interest in developing controllable speaker embeddings by customizing
model architectures based on the nature of prosodic characteristics in different speech
types. These embeddings, essentially low-dimensional vector representations, encapsulate
information relevant to an individual’s speaking style (6). To achieve control using speaker
embeddings, auxiliary generative models have been deployed, as seen in works like
(22). These models aim to learn speaker embeddings that are both representative and
controllable, allowing for precise manipulation of speech characteristics. One major
challenge is interpreting the phone-level latent space, as latent dimensions can entangle.
Consequently, some works, motivated by goals similar to our research in modeling speaking
styles, focus on model engineering to learn disentangled latent representations for prosody.
This involves adding conditions in VAEs to learn controllable speaker embeddings (22) (2)
or imposing multilevel modeling strategies in VAEs, taking advantage of the hierarchical
structure of spoken language (54).
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Figure 1: Architecture of the Controllable TTS System

4 Methods

4.1 System Architecture

The overall model architecture of a controllable TTS system is shown in Figure 1, which
consists of two main components: the speaker embedding function and the TTS model.
Our TTS component is adapted from the variance adaptor in FastSpeech2 (45) integrated
with the Flow-based post-processing network from PortaSpeech (46). We use pre-trained
GST model(62) introduced in Tacotron (61) as the speaker embedding generator to create
a training dataset for our controllable utterance embedding function, which we employ
a hierarchical Variational Autoencoder (HVAE) framework with multiple levels within
the encoder and decoder, integrated with control mechanisms in the latent representation
spaces. Once our utterance embedding function is trained, the GST model is frozen, and
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the embeddings are sampled and controlled via the latent space in the specified levels.

4.1.1 GST as Speaker Embedding Function

The pre-trained speaker embedding function comprises two main components: a reference
encoder and a style token layer, shown in the left part of Figure1.

Reference Encoder: The reference encoder, adapted from an extension to the Tacotron
architecture (52), comprises an N -layer stack of 2D convolutions. Each convolutional
layer utilizes 3⇥ 3 filters with a 2⇥ 2 stride, followed by batch normalization and a ReLU
activation function. The final layer is a Gated Recurrent Unit (GRU) (10)layer. In our setup,
the pre-trained model uses N = 8 layers and has the following number of filters: 32, 32,
64, 64, 128, 128, 256, 256. The process of obtaining the reference embedding involves two
stages: first, the reference signal is downsampled by this CNN architecture. Secondly, the
intermediate output is then compressed into a single fixed-length vector using a recurrent
neural network with a single D-width GRU. The D-dimensional reference embedding of
the GRU is the pooled summarization of the sequence. Here, D denotes the number of
GST units, indicating the output dimension of the reference encoder. We use D = 256 in
our pre-trained model.

Style Token Layer: The reference embedding obtained from the reference encoder is
fed to the style token layer, which consists of a bank of K style token embeddings and a
Tanh activation function, followed by the Multi-Headed Attention module. The reference
embedding is used as the query vector to the attention module, which outputs a set of
combination weights that represent the contribution of each style token to the encoded
reference embedding. The weighted sum of the GSTs is the output style embedding. Here,
K implies the number of GST tokens, a set of learnable vectors within the model. Each
token represents a different aspect or ”style” of speech, such as intonation, rhythm, stress,
or any other stylistic characteristic that can be captured from speech data. Our pre-trained
model uses K = 2000, and the output style embedding is a 64-dimensional vector.

4.1.2 Text-to-Speech System

The TTS model comprises five main parts: a text encoder, a variance predictor, a
Mel-spectrogram decoder, a Flow-based Post-Net (26), and a HiFi-GAN (33) vocoder.
Both encoder and decoder have similar architectures as convolution-augmented transformer
(Conformer) (16) shown in Figure 2 (b). A Conformer block comprises two macaron-like
feed-forward layers with half-step residual connections sandwiching the multi-headed
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Figure 2: Architecture of the Variance Predictor and Conformer Blocks
Note: The figure illustrates the detailed structure of (a) the variance predictor, which is responsible for
capturing prosodic variations, and (b) the conformer blocks, which facilitate the encoding and decoding
processes within the TTS component.

self-attention and convolution modules. The input text is first turned into phonemes and
then vectorized as articulatory features ctext as the input to the text encoder to obtain the
encoded text, denoted as htext. With a framework similar to FastSpeech2, the variance
predictor consists of a pitch, energy, and duration predictor. Figure 2 (a) shows the structure
of the three predictors, consisting of a N -layer (pitch predictor:N = 5, energy, and duration
predictor: N = 2) 1D-convolutional network with ReLU as an activation function, followed
by a layer normalization layer and the dropout layer. The final layer is a linear layer for
projection. During training, taking the pitch predictor as an example, the encoded text
htext and observed pitch variance information are fed into the predictor to obtain the pitch
zpitch. The process involves modeling the feature values of pitch across the text using a
pitch predictor. The output is then further transformed using an additional embedding layer
comprising 1D convolutional layers, dropout layers, and a linear layer at the end. Once
the pitch and energy values are embedded, represented as zpitch and zenergy respectively,
they are integrated with the encoded texts as the input to the length regulator, which
utilizes predicted durations, denoted as zduration, to adjust the temporal structure of
the encoded sequence. This ensures the duration of each phoneme in the encoded text
aligns with the durations predicted by the model. The duration predictor uses the phoneme
duration obtained by forced alignment as training objectives, allowing for more accurate
mapping. The system has additional pitch and energy variance scaling functions to tune
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Figure 3: Affine Coupling Layer in Glow Module
Note: In this example, the posterior flow module transforms Gaussian noise zq into random variables u and v

to approximate the posterior distribution q�(u, v|x, h0
text). This approximation is achieved by learning the

complex distribution x0. The forward coupling employs piecewise rational quadratic and log transforms,
while the inverse coupling performs the reverse transformation to approximate the likelihood q�(x0|zq, h0

text).

these prosodic features to enhance speech expressiveness. Adjusting these factors impacts
the dynamic range of speech; above the standard midpoint, it increases variance for more
expressiveness, while below, it yields a more uniform pitch or energy profile. Similarly,
duration scaling affects the overall speech length, with variations influencing the speed
and flow of the utterance. Additionally, a separate factor for pause duration scaling finely
tunes the rhythm and pacing of speech. In the pre-trained model, we employ a standard
scaling value of 1.0 (midpoint) for all three factors, ensuring a balanced modulation of
these prosodic elements.

The encoded texts, enriched with variance information, are fed into the mel-decoder
to obtain the predicted spectrogram denoted as cspeech. The integration of the speaker
embedding uttembed and the encoded text htext is realized by adding projection layers,
which normalizes the embedding along their feature dimension and concatenates it with the
latent text embedding. In the first projection layer, followed by the text encoder, speaker
embedding is integrated with the encoded text htext using a linear bottleneck layer before
projection.

Glow Module: In our TTS model, we incorporate a flow-based post-net as an enrichment
layer to enhance the quality of the generated mel-spectrograms. The central element
of this post-net is the affine coupling layer, shown in Figure 3. This layer transforms
mel-spectrogram samples into a latent prior distribution, typically an isotropic multivariate
Gaussian, during the training phase. This transformation is achieved through a series of
invertible functions known as flow steps. As illustrated, the architecture of our post-net
is conditioned on the outputs of the preceding network layers and encoder, similar to
the configuration in PortaSpeech(46). During training, the post-net computes the exact
log-likelihood of the data by executing a forward transformation. This transformation
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process involves converting the mel-spectrogram samples cspeech into the latent prior
distribution (isotropic multivariate Gaussian z) through a chain of K transformations fk,
where z = fK � fK�1 � . . . � f2 � f1(x).

During inference, the process is reversed: x = zK = fK � fK�1 � . . . � f2 � f1(z),
where latent variables sampled from the Gaussian distribution are transformed back into
mel-spectrogram features, resulting in high-quality speech synthesis. Based on the exact
likelihood estimation of normalizing flow, this method differs from simpler loss-based
(L1 or MSE) or VAE-based models. Still, it addresses the issue of over-smoothing, often
encountered in speech synthesis, thereby producing more realistic and detailed outputs.

4.1.3 Hierarchical VAE as Utterance Embedding Function

Our controllable utterance embedding function is adapted from the NVAE framework,
initially formulated for 3-dimensional image datasets; modifications include redesigning
the network architecture for 1D data, integrating hierarchical loss functions, and
establishing a control mechanism within the latent space across various levels. The
architecture comprises six hierarchical levels in both the encoder and decoder, characterized
by the following downsampling and upsampling dimensions: [56, 48, 40, 32, 24] and
[24, 32, 40, 48, 56], respectively, as Figure 5 shown. Within the encoder and decoder blocks,
as illustrated in Figure 4 (a), (b), we employ a combination of 1D convolutions, batch

Figure 4: Architecture of Downsampling and Upsampling Blocks
Note: This figure details the architectural components of the VAE embedding function, delineating (a) the
encoder’s downsampling blocks, (b) the decoder’s upsampling blocks, and (c) the implementation of the 1D
Squeeze-and-Excitation (SE) as the last layer in both the encoder and decoder blocks.
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Figure 5: Architecture of Hierarchical VAE Model

normalization, and the Swish activation function, where the Swish function is defined as
swish(x) = x · sigmoid(�x) = x

1+e��x . This is followed by a Squeeze and Excitation (SE)
layer (23), a channel-wise gating mechanism, to enhance the representational power of the
model.

The input of the model is batches of style embeddings X 2 RB⇥C⇥L with the shape of
(B,C, L), obtained from the GST model. Here, B, C, and L denote the batch size, the
number of channels(1 in our case), and the temporal dimension (length of the embedding) of
the input, respectively. Each encoder block first outputs the intermediate feature map from
level l (denoted as xenc

l where xenc
l 2 xs = [xenc

1 , . . . ,xenc
l ] and l = 1, 2, 3, . . . , N � 1)

for the hierarchical reconstruction loss calculation. Each block is followed by a residual
condition layer to predict further the mean (denoted as µl) and variance (denoted as �l

2)
independently. The reparameterization for each mean and variance within the batch is
conducted using:

(8) zl = µl + ✏l · exp
✓
1

2
log(�2

l )

◆

to obtain the latent variables Z. During the decoding process, with a similar structure as
the encoder, intermediate decoded feature maps (denoted as ˆxdec

N�l where ˆxdec
N�l 2 x̂s =

[ ˆxdec
1 , . . . ,

ˆxdec
N�l]) are stored. Each block is followed by condition layers to obtain the

decoded mean and variance, as well as incorporate additional residual KL losses. These
layers work in combination to condition the latent variable z on both the previous layer’s
latent variable and the deterministic feature maps produced by the decoder. Section 4.2.1
explains the hierarchical losses obtained by modeling residual normal distributions within
the VAE framework.

To address long-range dependencies, a challenge in deep generative models, each block
is augmented with a residual connection consisting of 3 layers of 1D convolutions,
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Figure 6: Residual Cells in Encoder and Decoder
Note: The figure depicts the residual cells within the encoder and decoder structures. Each cell incorporates a
scaling factor of 0.1 applied to the output of the sequential convolutional and activation operations, enhancing
the learning stability by weighting the contribution of the residual connection.

batch normalization, and Swish activation. Figure 6 shows the architecture of each
encoder and decoder block. Residual connections help mitigate issues like vanishing
gradients, especially in KL loss optimization, by allowing direct paths for gradients during
backpropagation.

Feature Combination: In the decoding process, we follow similar tricks as the NVAE
framework to combine the sampled zl with deterministic feature maps, serving as the
info learned by the decoder during the generation process as the input to the next level to
improve the information flow. The concatenation is applied long temporal dimension, and
the integration is formalized at each layer l of the decoder as follows:

(9) hl = Dec Blockl(Res Blockl(hl�1 � zl)),

where � denotes the concatenation operation, hl�1 represents the deterministic feature
map from the previous layer, and Dec Blockl and Res Blockl indicates the upsampling
block and residual block operation respectively at the l-th layer. We expect each layer to
draw upon the randomness inherent in the samples and adapt to consistent, learned features,
leading to a more stable and effective generative process. We initialize the feature map as
zero tensor, and it is updated as the decoding progresses through different levels.

Squeeze and Excitation: In adapting the SE layer to accommodate our single-channel
data, we have implemented a modification focusing on recalibration across the temporal
dimension. It is realized through two-phase processes: a squeeze and an excitation phase.
In the squeeze phase, we apply global average pooling along the channel dimension of the
input hidden state tensor H 2 RB⇥C⇥L, transforming its shape from (B,C, L) to (B,L).
The squeeze operation for each batch b and temporal location l can be represented as:

(10) Sb,l =
1

C

CX

c=1

Hb,c,l,
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where S 2 RB⇥L is the output of the squeeze phase. Next, the excitation module consists
of two fully connected layers with ReLU and Sigmoid activation functions in the excitation
phase, as Figure 4 (c) shows. The first linear layer in the excitation module first processes
the temporally compressed representation, reducing the input dimensionality based on a
pre-defined reduction ratio, denoted as r. The second linear layer then expands back to
the original temporal dimension. Let FC1 : RL ! RL/r and FC2 : RL/r ! RL be the two
fully connected layers, where r is the predefined reduction ratio. The excitation operation
can be defined as:

(11) E = �(FC2(�(FC1(S)))),

resulting in E 2 RB⇥L, where � denotes the ReLU activation function and � represents
the Sigmoid activation function. The final output tensor Y , which maintains the shape
(B,C, L), is obtained by applying the excitation output to the original input tensor:

(12) Yb,c,l = Hb,c,l · Eb,l,

for b = 1, . . . , B; c = 1; and l = 1, . . . , L.

4.2 Training Stability in Hierarchical VAE

We implement several techniques to enhance training stability and extract more features
from 1-dimensional embedding data in our hierarchical VAE setup. Firstly, we incorporate
residual KL losses by modeling the residual normal distribution. This approach involves
sampling from a distribution at one level of the hierarchy and then, at the subsequent
level, constructing a normal distribution centered around that sample, repeated throughout
the hierarchy. Additionally, we employ hierarchical reconstruction and KL losses by
integrating the losses from each level into the overall optimization process. During the
initial experimental phase, we experimented with spectral normalization, utilizing Lipschitz
constant regularization as detailed in (15), applied to the residual cells along the temporal
dimension of the data. While spectral normalization helps to keep the latent variables
predicted by the encoder within a bounded range, thereby stabilizing the model’s response
to input variations, we observed that in our specific context, it led to over-generalization
in the output. This over-generalization resulted in a reduced variety within the learned
embeddings, leading us to ultimately exclude spectral normalization from our model.
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4.2.1 Residual Normal Distribution

In VAEs, a challenge lies in balancing the two objectives of the training process, particularly
in managing the unbounded KL divergence between the distributions q(zl | x, z<l) and
p(zl | z<l). This divergence is a critical component of our objective function, but its
unconstrained nature can lead to gradient explosion, adversely affecting the optimization
process. To mitigate this issue, we adapt the residual distribution approach to parameterize
q(z | x) relative to p(z) as mentioned in the original paper. Specifically, we define
the distribution of each latent variable zli within the layer zl as a normal distribution,
p(zli | z<l) := N (µi(z<l), �i(z<l)), based on the preceding layers z<l. For the approximate
posterior, we employ q(zli | z<l, x) := N (µi(z<l) + �µi(z<l, x), �i(z<l) · ��i(z<l, x)).
For levels other than the last level (l < N ), the KL divergence is calculated using this
approach13, allowing the model to capture more subtle variations in the data by learning
adjustments (�) relative to a stable baseline distribution (the prior), rather than learning
the entire distribution outright.

(13) KLl<N(q(z
i | x) k p(zj)) =

1

2

X

i

✓
(�µi)2

�
2
i

+��
2
i � log(��

2
i )� 1

◆
,

, where �µi and ��i are the deviations in the mean and variance, respectively, of the
distribution q(zli | z<l, x) from those of the prior p(zli | z<l).

(14) KL(q(z1 | x) k p(z1)) = �1

2
(1 + log(�2)� µ2 � �2),

We take the KL losses from Equation 13 and the standard KL term14, calculated between
the reparameterized z1 from the mean µ and variance �2 outputted from the encoder
and the Gaussian distribution q(z | x), as our hierarchical KL loss, denoted as LVAE. The
reparameterization in upper-level loss terms stabilizes the training by preventing dramatic
shifts in the distribution parameters. It ensures a more efficient encoding of information,
enhancing the model’s ability to learn complex hierarchical representations.

4.2.2 Hierarchical Losses

The optimization process in VAEs typically involves two fundamental loss components:
the KL divergence and the reconstruction loss. The KL divergence principally aligns
the latent space distribution z with a Gaussian distribution, a standard objective in VAE
architectures as mentioned in section4.2.1, where we introduce the hierarchical and residual
relationship in KL losses from different levels. In our utterance embedding function
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framework comprising N levels, we extend this hierarchical concept by incorporating
hierarchical reconstruction losses. This dual approach is suggested to further enhance the
mapping accuracy between successive blocks or levels within the intermediate output from
the encoder and their corresponding reconstructed feature maps. We denote the output of the
encoder at the lth level as xenc

l and their corresponding decoded output as ˆxdec
N�l across each

hierarchical level l where l = 1, 2, 3, . . . , N�1. Both standard reconstruction loss between
input embedding (denoted as x) and predicted embedding (denoted as x̂) and intermediate
reconstruction losses at level l are calculated using a composite function, a combination of
L1 loss, cosine similarity, and mean squared error (MSE). Their corresponding weights
denoted as wL1 , wCos, and wMSE, respectively. Equation 15 shows how one loss is calculated
in one level. In our setup, we give different weights (wRec and wKL) to standard losses (`rec0

and `
kl
0 ) and intermediate losses (wrec/kl

l , `rec/kll ) in Equation 16.

Recon(xenc
l ,

ˆxdec
N�l) = wL1 · L1(x

enc
l ,

ˆxdec
N�l)

+ wCos · Cos(xenc
l ,

ˆxdec
N�l) + wMSE · MSE(xenc

l ,
ˆxdec
N�l),

(15)

LRecon =
N�1X

l=1

w
rec
l · Recon(xenc

l ,
ˆxdec
N�l) + wRec · Recon(x, x̂).(16)

The total loss for the model, denoted as LVAE, is the summation of the weighted hierarchical
reconstruction loss LRecon and KL loss LKL:

LKL = wKL · KL(q(z1 | x) k p(z1)) +
NX

l=1

w
kl
l · KLl<N(q(z

i | x) k p(zj)),(17)

LVAE = LRecon + LKL.(18)

4.3 Speaking Style Control Mechanism

The decoder of our HVAE model is structured hierarchically with latent variables
represented at each level, zl, where l denotes the level index. As the prior p(z) is an
isotropic distribution, which contains no information, our control mechanism is built
in other latent spaces between the conversion. The control mechanism alters the latent
variables sampled from other non-prior spaces in each decoder level, assuming that these
latent variables capture different features of the speech output.
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Initialization and Parameter Setup: A random Gaussian noise vector z is initialized as
the starting point:

(19) z 2 R1⇥1⇥16 ⇠ N (0, I),

where N (0, I) denotes a multivariate normal distribution with zero mean and identity
covariance matrix. In our architecture, the dimensionality of the latent variable z is
structured as a three-dimensional tensor, whose dimensions correspond to batch size,
number of channels, and feature space equal to 16 resulting from the downsampling
process the encoder. In our control mechanism, several parameters are introduced:

• freeze level: This parameter specifies the level in the decoder at which the latent
variables are frozen (’fixed’ mode). In our case, the controllable levels can iterate
from 0 to 4, representing the dimensional structure of the latent space at each
hierarchy of the decoder: level = {24, 32, 40, 48, 56}.

• mN : The specified parameters demarcate discrete dimensions within the latent
variables at freeze level. mN spans a range from 0 to N � 1, where N

is a constituent of the set level = {24, 32, 40, 48, 56}, contingent upon the
pre-established freeze level.

• ↵: Refer to as the control step size, this parameter determines the magnitude of
change applied to the controlled dimensions (mN ) of the latent variables. For
example, if mN = 0, then the 0th component of that latent variable will be adjusted
by ±↵. A smaller ↵ allows for finer, more subtle adjustments, while a larger ↵ leads
to more significant changes. This parameter is crucial for tuning the sensitivity of
the control mechanism.

• windowm: This parameter defines the window size to control the scope, which refers
to the number of dimensions affected during manipulation. For example, setting
windowm = 3 and mN = 5 implies that the modification, characterized by adding
↵ to dimension 5 (mN ), extends to the elements of the latent variable corresponding
to dimensions 4, 5, and 6.

Control Process: The control mechanism within our decoder navigates different levels
and dimensions during the decoding process, allowing for detailed manipulation of each or
windowed component(s) in latent variables during inference. Each control run starts when
a random noise z is initialized, and the modification is done with fixed feature maps by
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disabling the sampling during the inference. The control process at each decoder level l is
defined as follows:

(20) Zctrl
l =

8
<

:
f(zl), if l 6= lfreeze,

f(zl)�m ± ↵, if l = lfreeze,

where f(·) denotes the reparameterization function applied to the latent variables. This
function is defined as:

(21) f(µ, log �2
, c) = µ+ exp

✓
log �2

2

◆
· c,

where µ and log �2 represent the mean and log-variance of the latent variables, respectively.
The term c, denoting the constant prior, is a predetermined constant vector derived from a
predefined prior distribution. This ensures deterministic output for a given random input
in the ’fix’ mode for manipulation. Variables at levels other than lfreeze remain constant
during the inference process, maintaining stability in other aspects of the generated output.
Variables at level lfreeze are dynamically modified based on the adjustment �m by ↵,
representing changes to a specific dimension of zl.

Real-Time Interaction: During control, we capture keyword inputs to enable interactive
manipulation of the model’s output by varying parameters in dimensions at the freeze
level. This process involves a continuous loop of interaction, where new samples are
generated using the same z but with a delay time of 2 seconds setting for modifications.
With the predefined ↵, the changes can be made in real-time, including level adjustment,
modification of a single dimension, modification within a windowed dimension, and reset
to the base state, which is the state without any modifications.
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5 Experiments

5.1 Experimental Setup

5.1.1 Datasets

The speech datasets we use to build our speaker embedding training dataset include
subsets of the following datasets: LJ Speech Dataset (25), LibriTTS-R (32), Multilingual
LibriSpeech (MLS) Dataset (42), GigaSpeech Dataset (7), Emotional Voices Database
(EmoV-DB) (1), Emotional Speech Dataset (65), ADEPT Dataset (57), RyanSpeech
Dataset (64), Blizzard Challenge 2013 (29), Ryerson Audio-Visual Database of Emotional
Speech and Song (RAVDESS)(40), and Voice Cloning Toolkit (VCTK) (60) from Centre
for Speech Technology, differing in speaking styles, fidelity, microphone features, and
languages. Table 1 shows the features of each dataset and the amount of training data
included. All speech data is resampled to 16kHz, and then we normalize it by adjusting the
amplitude of the signal by its decibel levels, standardizing the loudness across different
speech data. We utilize the toolkit from Silero Voice Activity Detector (VAD)(56) to
remove the silence by detecting the non-speech segments from the speech based on the
timestamps of speech segments. In converting audio to Mel-spectrograms, we apply the
Short-Time Fourier Transform (STFT) from librosa, with the frame length of 1024, hop
length of 256, and a raised cosine (‘hann’) window function. The Mel filter bank is within
the frequency bounds between 40 Hz and 8000 Hz. We use the logarithmic transformation
to get the output log-Mel spectrogram.

These Mel-spectrograms are converted into speaker embeddings utilizing the GST model.
The total amount of our training data includes 1151017 embeddings extracted from
approximately 974 hours of audio.

5.1.2 Model Configuration

We train the VAE utterance embedding model with 6 hierarchical levels using
the 64-dimensional embeddings, and the model compresses this information into a
16-dimensional latent space.

5.1.3 Loss Balancing

To stabilize the training and balance between the reconstruction loss and KL loss in our
model, we employ a combination of Beta-annealing and cyclic annealing strategies on our
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Dataset Duration Feature Type
LJ Speech ⇡ 24 hrs Single speaker TTS
LibriTTS-R ⇡ 480 hrs Multi-speaker TTS with various styles and

accents
MLS ⇡ 107 hrs Multilingual, Multi-speaker ASR
Gigaspeech ⇡ 212 hrs Multilingual, Multi-speaker Conversations, Interviews,

and other spoken content
EmoV-DB ⇡ 80 hrs Multi-speaker Emotion
ESD < 1 hr Multi-speaker, Multilingual Emotion
ADEPT ⇡ 1 hr Multi-speaker TTS with prosodic variations
RAVDESS ⇡ 24 hrs Multi-speaker Emotion
VCTK ⇡ 43 hrs Multi-speaker TTS with various English

accents

Table 1: Datasets for Baseline VAE Model.
Note: This table provides an overview of datasets for training the baseline VAE model. It details the types
of content each dataset offers, ranging from TTS and automatic speech recognition (ASR) to emotional
speech and conversations in various languages. The ’Feature’ column describes whether the dataset includes
a single speaker or multiple speakers and notes the presence of emotional content or cross-lingual data.
’Type’ characterizes the primary use case of the dataset.

weighted reconstruction and KL terms 22 across different hierarchies, given the definition
of the loss function defined in Equations 16 and 17.

(22) weighted losses =

8
<

:
LRecon =

P5
l=1 w

rec
l ⇥ `

rec
l + (wRec ⇥ `

rec
0 ),

LKL = (wKl ⇥ `
kl
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rec
4 ), (wrec

5 ⇥ `
rec
5 )] with the corresponding dimension dimkl = [16, 24, 32, 40, 48, 56],

dimrec = [64, 56, 48, 40, 32, 24]. During our experiments, in the case of reconstruction
losses, the last reconstruction term `

rec
0 is the most difficult to optimize, as it corresponds to

the reconstruction between the input embedding. On the other hand, the first KL term `
kl
0

and the last KL term `
kl
5 are rather difficult to reduce. We weight the losses in different levels

by setting: wRec = 5.5, wrec
l = 1.0, wkl

l = 0.8, wKl = 1.0, wkl
5 = 10. The Beta-annealing

technique is applied to the KL loss component due to the KL vanishing issue as the
following:

(23) � =

8
<

:
�initial, if Scurrent < S0

�initial +
⇣

Scurrent
Sepoch

⌘
⇥ (�final � �initial), otherwise
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, where Scurrent, Sepoch and S0 represent the current step, the number of steps in each epoch,
and the number of steps where � stays zero at the beginning of each epoch, respectively.
Initially, the annealing factor � is set to �initial = 0.0000001. It remains constant until the
number of training steps exceeds S0 = 100 within one epoch. Beyond this point, beta
gradually increases linearly from �initial = 0.0000001 to �final = 0.0001, which helps in
warming up KL loss and smoothly transitioning the model’s focus from reconstruction at
the early stages to a balanced emphasis on both terms. Figure 7 shows the cyclic schedule
with an example of 7 epochs.

5.1.4 Training and Evaluation of VAE Model

Traning: The VAE utterance embedding model is trained using a single NVIDIA GeForce
GTX TITAN X GPU, with a batch size of 512 for 5000 epochs. We use the Adamax
optimizer with default beta coefficients, �1 = 0.9 and �2 = 0.999, and the LambdaLR
scheduler defined using a lambda function where the learning rate � for each epoch
is defined as � = �0 ⇥ ↵

epoch, where �0 = 0.01 represents the initial learning, and
↵ = 0.8 denotes the scheduler rate that controls the rate of decay. The scheduler implies an
exponential decrease in the learning rate with each epoch. We apply the gradient clipping
with the max norm of 1.0 and the early stopping with the patience of 5 epochs. During the
training, we discovered that the deepest KL loss from the last level has high instability,
often manifesting as gradient explosion, which poses a challenge in achieving a balanced
training dynamic. Figure 7 compares the sum of KL losses from all levels and the one
excluding the last level. However, the trade-off of the deepest-level KL loss plays a crucial
role in stabilizing the KL losses at the other levels, allowing the steady decrease and
mitigating the KL vanishing issue. In hierarchical models, deeper levels often capture more
abstract and complex features of the data, however this is different in our setup, where the
first-level KL loss is the most essential and standard, as it ensures that it aligns well with
the assumed prior distribution. As a result, we adopt a strategy that, while acknowledging
the deepest-level KL loss’s role in providing regularization and indirect guidance to other
levels, intentionally de-emphasizes its optimization to prevent it from dominating the
training process.

Evaluation: In our evaluation framework, we evaluate our base VAE model by comparing
the differences between the distribution of our input embeddings and the distribution
obtained from the decoded embeddings over the latent space by taking 1000 data points
from both. Given that these embeddings are in a high-dimensional space, we employ
the dimensionality reduction using the t-Distributed Stochastic Neighbor Embedding
(t-SNE) technique to obtain a 2-dimensional representation of our embeddings to enable
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Figure 7: Cyclic-Beta Annealing and KL Losses in Training
Note: The left plot illustrates the cyclic beta values applied over training steps, indicating the annealing
strategy employed to regulate the contribution of the reconstruction loss. The right plot provides the sum of
KL losses over the training steps, distinguishing between the total KL loss and the sum excluding the final
level. This delineation allows observation of the training stability and the effect of excluding the last level’s
contribution to the overall loss.

the visualization. The distributions are visualized in two ways: through a scatter plot and
a kernel density estimation (KDE) plot. The scatter plot visually differentiates between
the generated and real samples using distinct colors, visually representing how closely
the VAE-generated embeddings align with those taken from the dataset. Furthermore,
we also include kernel density estimation (KDE), as KDE is a non-parametric method
used to estimate the probability density function of a random variable. In our analysis,
we apply KDE to both axes of the 2D embeddings for both predicted and real samples.
This is achieved by fitting a Gaussian kernel to the data, which provides a smooth density
estimate. We set the bandwidth to 0.1, giving us a more detailed curve that closely follows
the data. Then, we plot these densities for both the x and y axes, using different colors to
distinguish between the predicted and real data. As KDE plots offer deeper insights into
the distributional properties of the embeddings, they give a bit more information on the
consistency of the x and y-dimensional mapping.

5.2 Experiments on Speaking Style Control

In this section, we first introduce the general control setup, standard pre-trained models,
and objective metrics employed for evaluation in both single-feature and multi-feature
control setups. Subsequently, we explain our investigation of the independence between
controlled features within the multi-feature control setup and explore the scalability in
feature modulation depth achieved through varying control step sizes, assessing how
changes in alpha values influence the extent of feature alteration and if it is in a consistent
direction.
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5.2.1 General Control Setupt and Metrics

In our experiment, we focus on the control of the following acoustic features: pitch,
pitch range, duration, energy, and spectral tilt, as the sentence-wise control in these five
intuitive prosodic features is stated to be efficient enough to generate a wide variety of
speaking styles(43). We calculate the average pitch and the pitch range using Yin pitch
estimation algorithm(11). For the five features, as described in Section 4.3, we set the
control parameters with freeze level = 4, ↵ = 0.5, mN = x, and windowm = 3, and
apply both positive and negative adjustments using ↵ by 3 steps. Here, x means the linked
dimension of the component controlling the target features. Beginning from the base latent
state, denoted as zB representing the state without any ↵ modifications, we adjust the
compoment at mN dimension in zB by adding it with ↵ for three consecutive steps, leading
to z

mN
B + 3↵. Subsequently, we revert to the base zB and then substracting it by ↵ for

another three steps, resulting in z
mN
B �3↵. This process results in a total of 7 seven different

states for each sample, ranging from z
mN
B � 3↵ to z

mN
B + 3↵, through the unmodified

base state zB. After being decoded and synthesized, the outputs are initially structured as
S = [(S0), S1, S2, S3, S4, S5, S6, S7], where S0 represents the initial output decoded from
the base state without any control. Positive adjustments are applied first, resulting in S1 to
S3 gradually, and S4 is the manually reset state where we switch to negative adjustments.
To be more intuitive, we restructure the outputs as S = [S3, S2, S1, Sreset, S5, S6, S7]. We
evaluate the effectiveness of our manipulations by calculating the average values for the
seven states and determining the average differences between these characteristics for the
six consecutive state pairs.

Besides the five acoustic features, we additionally measure the possible gender switches
and the timing of the transitions at a higher level. We utilize the audio classification
model finetuned from XLM-R for Speech(5), a Facebook AI’s large-scale multilingual
pre-trained model, on Librispeech-clean-100 for gender recognition. In this experiment, we
resample the synthesized audios to 16000Hz due to the model configuration, and we adopt
a setup using freeze level = 4, ↵ = 0.5, and mN = 12. Adjustments are made to z

12
B

by modifying it with ↵ for six consecutive steps in both positive and negative directions,
resulting in a range of z12B ± 6↵ to enable more precise evaluation on the gender switch.

Duration, Energy, and Pitch: For each i-th audio file, we calculate the duration (denoted
as Di), energy (denoted as Ei), and pitch (denoted as Pi). The duration Di is computed
as the audio file length divided by the sampling rate. The energy Ei is calculated as the
average RMS energy across all frames. For the average pitch, we take the mean from the
voiced array where each element corresponds to the estimated pitch (in Hz) for a given
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frame. The following shows the formulas for the three:

Di =
Li

sr
, Ei =

1

N

NX

n=1

RMS(fi,n), Pi =

8
<

:

1
V

PV
n=1 pn if V > 0

0 otherwise

where Li is the length (number of samples) of the i-th file, and sr is the sampling rate (set at
240000 Hz). In the case of RMS, fi,n is the n-th frame of the i-th file, pn represents the pitch
of the n-th frame that is voiced, N is the total number of frames in the file; and V is the total
number of voiced frames in the i-th audio file, determined by filtering the pitch estimates
to include only positive values. The difference in these three features between consecutive
files is calculated as �Di = |Di �Di�1| for the duration, �Ei = |Ei � Ei�1| for energy,
and �Pi = |Pi � Pi�1| for pitch. These calculations provide the duration difference �Di,
the energy difference �Ei, and the pitch difference �Pi between each pair of consecutive
files. The overall average and the average difference between consecutive files for each
feature are calculated using the following formulas:

X̄ =
1

7

7X

i=1

Xi, �̄X =
1

6

7X

i=2

�Xi

where X represents either the duration (D), energy (E), or pitch (P) of the files. X̄ denotes
the average value of X over the seven inputs, and �̄X represents the average difference
in X between each pair of consecutive files. These analyses provide insights into the
variations in duration, energy, and pitch across the controlled audio samples, offering
information to determine if the changes are significant.

Pitch Range: For each i-th audio file, the pitch range (denoted as Ri) is calculated by
taking the difference between the minimum and maximum pitch values within the voiced
segments as:

Ri = max(pvoiced,i)�min(pvoiced,i), R̄ =
1

M

MX

i=1

Ri

where pvoiced,i represents the array of pitch estimations for all voiced frames within that
file (similar to how we calculated Pi earlier). We calculate the average pitch range, denoted
as R̄, across 7 audio files in the dataset.

Spectral Tilt: For each i-th audio file, the spectral tilt (denoted as Ti) is evaluated to
characterize the slope of the log power spectrum concerning frequency and to look into
spectral energy distribution across frequency components within the audio signal. We
calculate it by using linear regression on the log power spectrum against the frequency
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bins. The formula for calculating the spectral tilt is given as:

Ti = LinearRegression(fi, log(Pi)), T̄ =
1

7

7X

i=1

Ti

Here, fi represents the frequency bins, and log(Pi) denotes the logarithm of the power
spectrum for the i-th file. This procedure is executed for each audio file, outputting
individual spectral tilt values. Additionally, the average spectral tilt (denoted as T̄ ) is
computed across the seven audio files. The average difference in spectral tilt (denoted
as �Ti) between consecutive files is also evaluated, following a similar approach to the
calculations of �Di, �Ei, and �Pi for the duration, energy, and pitch respectively. Other
than comparing Ti and T̄ , we also evaluate it by plotting each audio file’s spectral centroid
over time. As the spectral centroid represents the ’center of mass’ of the power spectrum,
providing a measure of the brightness or sharpness of a sound, we think it is relevant to see
the possible differences in microphone features.

Gender: To obtain more reliable information on the timing of the gender switch, we
analyze 13 consecutive audio segments. For each i-th audio, we extract the audio features
and feed them into the specified pre-trained gender detection model and evaluate mainly
the number and timing of gender switches. Let Si represent the binary gender classification
(0 for ”female” and 1 for ”male”) for the i-th audio segment. We analyze the sequence S =

[(S0), S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13], where S0 and S7 are the original
baseline conditions. After S0 is automatically generated, we first conduct a sequence of
adjustments by +↵, then reset the condition back to the baseline (S7), and subsequently
perform a negative control. A gender switch is identified when Si 6= Si+1 and i 6= 6. The
switching time (ST ) is calculated by counting the number of gender classification changes
across the sequence, excluding the transition from S6 to S7. For this experiment, we repeat
the process 10 times by randomly sampling 10 latent variables with the same parameter
setting, resulting in 10 sets of 13 audio segments. We calculate the average of the switching
points (AvgSP ) and switching times (AvgST ) across the 10 runs.

5.2.2 Multi-Feature Control Setup

In the multi-feature control setup, we configure the parameters as follows: freeze level =

4, ↵ = 1.0, and for multiple features mNi = xi, where we increase ↵ from 0.5 to 1.0 in
order to record more obvious changes in the multi-feature setup. In this setup, given a base
latent state zB, we manipulate the feature dimensions corresponding to the target paired
features, both individually and in combination. This manipulation is achieved by alternating
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between the level and dimension, facilitated by our real-time interaction mechanism.

5.2.3 Scalabililty Control Setup

To measure the scalability of feature changes in response to varying values of the control
parameter ↵, where we aim to assess whether larger or smaller values of ↵ correspondingly
result in more substantial or minor alterations in the features. To this end, the experiment
is structured using a single feature control setup with two distinct values of ↵, ↵ = 0.5

and ↵ = 1.0. As the random seeds differ, this is quantified by only observing the average
difference �̄X between the controlled inputs when applying different ↵ values.

5.2.4 Scalability Control Setup

To measure the scalability of feature changes in response to different values of the control
parameter ↵, the investigation is conducted using a single feature control setup, employing
two distinct ↵ values: ↵ = 0.5 and ↵ = 1.0. In this way, we aim to know whether larger or
smaller values of ↵ correspondingly result in more substantial or minor alterations in the
features. Given that different random seeds are used and we have different initial inputs
z to the VAE model, a direct comparison of average values across different inputs is not
meaningful. Instead, the focus is placed on analyzing the average difference �̄X between
the controlled inputs under varying ↵ settings and keeping the other control parameters
identical. This approach allows for assessing the effect of ↵ on the degree of feature change,
independent of the initial state variations.
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6 Experimental Result

In this section, we first present the results of our HVAE base model’s performance,
followed by its capability to control speaking style. This includes an assessment of the
general effectiveness of control, its consistency and scalability, as well as the degree of
disentanglement achieved.

6.1 HVAE Basemodel Evaluation

Our evaluation of the HVAE base model’s performance employs a visualization approach,
as shown in Figures 9 and 10. Figure 9 presents a 2D scatter plot representation of the input
and predicted distribution formed by the sampled embeddings, while Figure 10 portrays
the kernel density estimation of these embeddings across various training epochs. The
model reaches convergence after 1500 epochs, and in most of our experiment runs, the
distribution along the y-axis appears to converge faster than along the x-axis. Figure 8
shows the loss curves along the training process, with the left plot showing the sum of
reconstruction losses and the right plot displaying the sum of KL losses from the first five
levels, excluding the last level. The reconstruction loss has a sharp decline in the initial
epochs, followed by a plateau, and the KL loss plot, on the other hand, highlights the
model’s learning of the efficient latent space representation, as evidenced by the rapid
initial decrease and subsequent stabilization. At the end of our training, the two losses are:

LRecon :[1.669e� 06, 4.247e� 14, 0.192, 0.157, 0.023, 0.081],

LKL :[2.384e� 07, 1.490e� 07, 0.097, 0.0002, 0.007, 146.863]

During the experimental phase, we tried to calculate the Jensen-Shannon (JS) distance
between the two distributions by taking the high-dimensional embeddings and the 2D ones.
We discovered that the non-overlapping distributions in specific dimensions led to infinite
average distance values. This occurs even when distributions are close; as long as one
is not entirely encompassed by another, the metric becomes infinite. In our hierarchical
setup, which complicates distribution modeling due to the combination of hierarchical
losses considered, using JS distance gives us relatively little information about how the
distributions look.
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Figure 8: The Reconstruction Loss and KL Loss

Figure 9: Evolution of HVAE Base model: 2D Scatter Plot Representation.
Note: This scatter plot shows 1000 input (green) and 1000 reconstructed (blue) embeddings. It is arranged
chronologically from epochs 0 to 1200, with each subplot representing a distinct 300-epoch stage.

6.2 Speaking Style Control

6.2.1 Control Consistency

Throughout our experiments, we observed a consistent control mechanism across various
aspects, including the dimensionality, control direction, and the effect magnitude of control
step size. First, we found that the dimensionality remains constant for different randomly
initialized inputs, where the selected dimensions influence the intended acoustic features,
regardless of the initial state or different parameters. Moreover, the direction of influence
exerted by the selected controlling factors also exhibited uniformity. For instance, if adding
↵ within the first dimension consistently decreases the duration across one sample, this
directional influence remains identical across all samples and different ↵ sizes. Lastly, the
effect magnitude of ↵ on the controlled features is the same given the same controlling
factor. During the preliminary stages of our experiment, we explored a broad range of ↵
values, from 0.1 to 2.0, across different features. However, for analytical simplicity and to
avoid the complexities introduced by an overabundance of variables, we standardized the
same ↵ value for all features during analysis. From Table 2, we can see that, even with
this standardization, different features have varying degrees of sensitivity to larger control
steps. Detailed insights are further discussed in Section 6.2.3.
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Figure 10: Evolution of HVAE Base model: Kernel Density Estimation Representation
Note: The figure shows kernel density estimations of speaker embeddings, with x-axis distributions in the top
row and y-axis distributions in the bottom row. The sequence of plots, ordered from left to right, represents
the evolution from epoch 0 to epoch 1200 in 300-epoch increments, contrasting the predicted embeddings
(blue solid lines) with the actual embeddings (red dashed lines).

6.2.2 Controlled Features

From a hierarchical level perspective, modifications done at the highest hierarchy level
(dim = 56) have the most significant control over the five target features. From a
dimensional perspective fixed at the last level, most of the five features can be individually
controlled through single-dimensional adjustments, showing the independence among
neighboring dimensions. For example, at this level, while dimension 5 is responsible for
controlling pitch, its adjacent dimensions, dimension 4 and dimension 6, exhibit distinct
behaviors: dimension 4 shows no substantial influence, acting as a neutral element, and
dimension 6 is involved in controlling the unstable noise level. Among all the target
features, the pitch range is controlled by the components at dimensions 15 to 17 using
the windowed control. Table 2 gives an overview of the latent variable’s controlling factor
(dimension) and the metrics, including average value X̄ , the average difference between
the seven controlled inputs �̄X , and the interval when ↵ = 0.5.

Pitch: Our experiments have identified that multiple components across various levels
and dimensions influence pitch control. However, many exhibit inconsistent behaviors and
limited scalability. Our experiments indicate that the 5th and the dimensions spanning 7th

to 9th in the final level of the latent variable exhibit the highest stability. Among these
options, the 7th to 9th dimensions demonstrate stable control in only one direction—either
consistently increasing or decreasing pitch with the addition of ↵, but not inversely.
Consequently, the 5th dimension has been designated as the principal factor for pitch
control. There is a positive relationship between pitch values and ↵ adjustments: positive
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Feature Index Control Step: ↵ = 0.5/↵ = 1.0
pitch (Hz)
(dim=6)

avg.
avg. gap
interval

(↵ = 0.5) 126.51
(↵ = 0.5) 11.99 (↵ = 1.0) 14.21
[171.09, 155.64, 137.62, 116.34, 101.94, 102.56,
100.42]

pitch range (Hz)
(dim=16 ⇠ 18)

avg.
avg. gap
interval

(↵ = 0.5) 76.870
(↵ = 0.5) 7.934 (↵ = 1.0) 8.02
[44.160, 69.658, 71.010, 83.350, 87.912, 90.239,
91.762]

duration (seconds)
(dim=2)

avg.
avg. gap
interval

(↵ = 0.5) 1.682
(↵ = 0.5) 0.117 (↵ = 1.0) 0.274
[1.440, 1.472, 1.504, 1.536, 1.728, 1.952, 2.144]

energy (norm. units)
(dim=17)

avg.
avg. gap
interval

(↵ = 0.5) 0.058
(↵ = 0.5) 0.019 (↵ = 1.0) 0.092
[0.136, 0.100, 0.0619, 0.0401, 0.028, 0.021, 0.021]

spectral tilt (dB/octave)
(dim=25)

avg.
avg. gap
interval

(↵ = 0.5) -0.00064
(↵ = 0.5) 3.79e-05 (↵ = 1.0) 1.04e-04
[-6.16e-4, -6.48e-4, -5.89e-4, -6.80e-4, -6.61e-4,
-6.49e-4, -6.33e-4]

gender
(dim=13)

AvgSP

AvgST

(↵ = 0.5) 9.1 (↵ = 1.0) 7.9
(↵ = 0.5) 0.9 (↵ = 1.0) 1.0

Table 2: Result of Acoustic Feature Control

↵ adjustments lead to an increase in pitch, whereas negative ↵ adjustments result in a
decrease. The graph in Figure 11 illustrates these pitch variations, where the spectral
representation provides a visual confirmation of the pitch modulation in response to the ↵

adjustments.

Duration: Duration is controlled by the first component in the latent variable at the last
level and has a clear response to changes in the control parameter ↵. Table 2 shows that
an increase in the value of ↵ correlates with a reduction in the duration output, whereas
a decrease in ↵ increases the length. Figure 11 suggests that the model exhibits greater
sensitivity to negative adjustments than positive ones. As for the scalability, when ↵ is
increased from 0.5 to 1.0, there is a notable augmentation in the average gap of the duration
feature, underscoring the model’s ability to modulate feature duration effectively.

Energy: The energy feature is primarily governed by the 17th component of the latent
variable. While adjustments in other dimensions also result in some changes in energy, their
controls have less stability and consistency compared to the 17th dimension. As illustrated
in Table 12, the RMS energy of the controlled elements tends to increase with positive
adjustments in ↵, indicating a greater sensitivity to positive rather than negative changes.
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Figure 11: Variations in Duration and Pitch
Note: The left plot is a spectrogram displaying the frequency content over time, with the x-axis showing time
in seconds and the y-axis indicating frequency bins on a logarithmic scale. The right plot is the fundamental
frequency of the audio signals, with the x-axis representing sequential frames and the y-axis displaying pitch
in Hertz (Hz), ranging from 0 Hz to 200 Hz. Yellow-marked plots denote the base state.

However, as ↵ is varied from 0.5 to 1.0, the average differential in energy levels shows only
a marginal change, suggesting a nonlinear response to control parameter scaling. Figure
12 gives an example of the differences.

Spectral Tilt: Spectral tilt is controlled by the 24th dimension in the latent variable. It
demonstrates a positive correlation with the adjustment of ↵, where an increase in ↵ leads
to a rising trend, suggesting a tilt toward higher frequencies. In Figure 12, we can see
that as the positive adjustment is applied, the plot has more frequent peaks, indicating the
moments where the sound has higher frequency content and is assumed to be perceived
as brighter. Conversely, a decrease in ↵ yields smoother output fluctuations, with lower
centroid values, denoting a darker or more mellow sound quality. The average spectral tilt
T̄ across all seven samples is -0.00064, indicating a general bias toward lower-frequency
energy in the audio spectrum. And the slight average difference �̄T between consecutive
samples’ tilts shows that the changes in spectral tilt, controlled by ↵ = 0.5, are relatively
subtle.
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Figure 12: Varinations in RMS Energy and Spectral Centroid
Note: The left plot depicts the Root Mean Square (RMS) Energy of audio signals, measured in amplitude
units, with the x-axis representing time in seconds (s) and the y-axis indicating energy levels. The right
plot is the Spectral Centroid measurements for the corresponding audio files, where the x-axis denotes the
number of frames over time, and the y-axis displays the centroid frequency in Hertz (Hz), extending from 0
Hz to 5000 Hz. Yellow-marked plots denote the base state.

Gender: The 12th component in the latent variable at the last level is the most significant
factor controlling gender and fundamental frequency. A positive ↵ adjustment leads to a
more feminine direction change, while a negative ↵ adjustment shifts the voice towards
more masculine characteristics. The results from the 10 experiments show that the average
switching point (denoted as AvgSP ) is 9.1, and the average number of switches (denoted
as AvgST ) is 0.9. Figure 13 illustrates one of the runs where the switching point occurs
between S9 and S10, indicating a change in gender from female to male. Typically, a female
voice has a higher fundamental frequency than a male voice. We mark in spectrograms
using horizontal lines (harmonics) spacing to represent the F0 and its multiples: closer
spacing signifies a lower pitch, while wider spacing signifies a higher pitch. Additionally,
formant frequencies, particularly the first formant (F1) and the second formant (F2) are
often higher in female voices.
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Figure 13: Spectrogram and Energy Contour Illustration of Gender Transition

6.2.3 Feature Scalability

In our analysis, we measure the average difference, �̄X , which represents the average
change in feature X between each pair of consecutive files that differ in the amount of ↵
added or subtracted. As shown in Table 2, all six features, including pitch, pitch range,
duration, energy, spectral tilt, and gender, have varying degrees of difference in �̄X when
controlled using ↵ = 0.5 and ↵ = 1.0. Pitch and pitch range have a relatively high degree
of scalability, that there is a notable increase in �̄X when ↵ increases. On the contrary,
gender shows the least variability, suggesting lower scalability in response to changes
in ↵. It is assumed that gender switch is higher level and contains more factors than the
five intuitive prosodic features. The choice to limit the control to three positive and three
negative steps is based on our observations that, with ↵ = 1.0 and ↵ = 0.5, further steps
do not induce significant changes in the features. Additionally, excessive adjustment steps
can sometimes introduce noise into the output, particularly in less stable dimensions under
control.

6.2.4 Feature Disentanglement

Figure 3 presents four sets of multi-feature controls that we found to be stable and
informative. In these experiments, the interaction between duration and other prosodic
features, such as pitch or energy, demonstrates significant stability, suggesting a higher
degree of independence for duration in our model’s control mechanism. This finding
aligns with the intrinsic properties of these acoustic features, where duration appears to
be less correlated with pitch or energy, especially when juxtaposed with the correlation
observed between pitch and gender. In the second control set, which focuses on the control
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MultiFeature Control: ↵ = 1.0
Duration (seconds, dim=2) vs. Energy (norm. units, dim=17)

Set 1 Duration " Duration #
Energy " Di = 1.732, Ei = 0.088 Di = 1.505, Ei = 0.092
Energy # Di = 1.810, Ei = 0.071 Di = 1.603, Ei = 0.073

Duration (seconds, dim=2) vs. Pitch (Hz, dim=6)
Set 2 Duration " Duration #
Pitch " Di = 1.582, Pi = 163.552 Di = 1.210, Pi = 156.040
Pitch # Di = 1.591, Pi = 142.012 Di = 1.388, Pi = 138.263

Duration (seconds, dim=2) vs. Spectral Tilt (dB/octave, dim=25)
Set 3 Duration " Duration #
Spectral Tilt " Di = 2.089, Ti = �0.00072 Di = 1.600, Ti = �0.00069
Spectral Tilt # Di = 1.881, Ti = �0.00077 Di = 1.603, Ti = �0.00076

Pitch (Hz, dim=6) vs. Energy (norm. units, dim=17)
Set 4 Pitch " Pitch #
Energy " Pi = 211.562, Ei = 0.149 Pi = 189.105, Ei = 0.152
Energy # Pi = 214.002, Ei = 0.100 Pi = 183.720, Ei = 0.105

Table 3: Comprehensive MultiFeature Control

over duration and pitch, we observe that adjustments to duration have a dominant effect
over pitch. When we adjust pitch, the resulting changes in duration are relatively minor,
indicating that modifications in pitch have a limited impact on duration. This demonstrates
that duration maintains robust consistency in our model’s framework, highlighting its
relative independence and effectiveness in maintaining temporal aspects of speech.

In set 3, where duration and spectral tilt are controlled, the spectral tilt (Ti) remains
relatively stable despite substantial changes in duration. While the changes in spectral tilt
are subtle, they still exhibit a degree of independence and stability, reinforcing the model’s
capacity for nuanced control. Conversely, the control involving pitch and energy (Set 4)
reveals a more intertwined relationship. Modification in pitch leads to corresponding shifts
in energy levels, although these shifts are less significant compared to the direct impact
on pitch. This interdependence suggests that pitch and energy are more closely related
to acoustic features. Therefore, their simultaneous control presents more challenges and
offers less independence than controlling duration in conjunction with either of these
features.
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7 Conclusions

Our work introduces a novel utterance embedding function adapted from hierarchical VAE
to learn distributions in sequential data, such as speaker embeddings. Our function uses
scaling convolutions with residual cells, and we customize the loss function by integrating
the concept of residual distribution and symmetric mapping in feature maps. Regarding
training stability and generalization, we combine the techniques of Beta-annealing and
cyclic scheduling in weights in our hierarchical loss design to address the loss balancing
and KL vanishing issues. In response to our research questions, our controllable utterance
embedding function can capture the speaker embedding distribution and apply explicit
controls to the synthesized speech. This control is achieved by manipulating variables in
latent spaces that extend beyond the standard isotropic prior distribution. We found that
the deepest level in our model learns the most stable and disentangling acoustic features,
including pitch, pitch range, energy, duration, and spectral tilt. These features can typically
be controlled via a single factor in the latent space, offering scalable control at varying
intensities, and the controlling factors remain consistent across different random seeds.
Our exploration of feature disentanglement revealed that multi-feature control is stable and
exhibits independence between different features, especially when considering pairs of
features. The result highlights that duration demonstrates a high degree of independence,
particularly when controlled with features like pitch or energy. This independence is
less pronounced when pitch and energy are controlled together, reflecting their closer
relationship as acoustic features.

Overall, our results demonstrate the efficacy of hierarchical VAEs in enabling fine-grained
and independent control of multiple speech characteristics, providing deeper insights into
the correlation between the hierarchy of acoustic features and the hierarchical design in
neural networks. This understanding and our experiments offer new possibilities for more
expressive TTS applications.
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8 Discussions and Future Work

The primary challenges encountered in this work fall into three categories: optimizing
the information captured in speaker embeddings, managing the complexity of an
over-engineered model framework, and developing an intuitive and efficient control
mechanism. Initially, our efforts were focused on achieving convergence, mostly on
addressing the KL vanishing issue and only learning partial distribution. In the beginning
stage, we utilized 128-dimensional speaker embeddings with a 16-dimensional latent space,
assuming that higher-dimensional representations would capture more information within
a well-defined framework. While the 128-dimensional mode converged faster and required
fewer loss-balancing techniques, it captured a narrower range of speaking styles than the
64-dimensional mode. Consequently, we shifted back to the 64-dimensional data, applying
different techniques to balance the losses. This decision underscored the trade-offs between
convergence speed, model complexity, and the richness of captured features. Lastly, the
control setup in our work, although comprehensive, turned out to be non-intuitive and
involved a lot of factors, making it extra-consuming to navigate through every level and
variable across different dimensions and parameter combinations. This complexity led us
to believe that there might be undiscovered features or relationships between neighboring
levels or dimensions that have yet to be fully understood or utilized.
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