
Scalable Graph Partitioning for
Distributed Graph Processing

Von der Fakultät Informatik, Elektrotechnik und Informationstechnik
der Universität Stuttgart zur Erlangung der Würde eines Doktors der

Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung

Vorgelegt von

Christian Mayer

aus Breisach

Hauptberichter: Prof. Dr. rer. nat. Dr. h. c. Kurt Rothermel

Mitberichterin: Prof. Dr. rer. nat. Melanie Herschel

Tag der mündlichen Prüfung: 24.07.2019

Institut für Parallele und Verteilte Systeme (IPVS)
der Universität Stuttgart

2019

2

Acknowledgements

First and foremost, I would like to express my deep gratitude to my mentor, Prof. Dr. Kurt
Rothermel. His trust, guidance, and role model formed the basis of my progress in research and
life. Most importantly, he showed me how to think critically and analyze situations rationally
—serving as a role model of fairness, integrity, and work ethics from which I will benefit all
my life. For his constant support, guidance, and mentoring I will be forever grateful.

I would like to give my thanks to Prof. Dr. Melanie Herschel for being a part of my Ph.D.
committee and reviewing my thesis.

Over the years, I have had three postdoctoral supervisors who all shared their great wisdom
with me and gave me guidance and support. I would like to thank my supervisor and mentor Dr.
Muhammad Adnan Tariq for trusting me and for being a beacon in a confusing ocean of pos-
sible research directions—his contribution to my research career was outstanding. Moreover, I
would like to thank my supervisor Dr. Ruben Mayer for his years of friendship, guidance, and
inspiration—he truly made the ship go faster! Finally, from the bottom of my heart, I would
like to thank my supervisor Dr. Sukanya Bhowmik who was both a friend and a role model for
positive thinking and focus—she showed me how to enjoy the journey and gave me a glimpse
into the true value of collaboration.

I would like to thank my esteemed colleagues for creating a work environment full of friend-
ship, fun, and inspiration. I am truly honored about having been given the opportunity of
working together with such inspiring friends. Zohaib Riaz was the second half of my brain in
our “thinking-aloud sessions”. Thomas Bach and David Schäfer who took me in and made my
time so much more enjoyable. Johannes Kässinger showed me the value of true comradeship.
Henriette Röger inspired me to produce and perform on a higher level. Ben Carabelli made me
always feel heard—he truly is a great scientist. Thomas Kohler, Otto Bibartiu, and Christoph
Dibak always made me smile and enjoy the time in the department. My students Larissa Laich,
Jonas Grunert, Heiko Geppert, Lukas Rieger, and Lukas Epple contributed greatly to this re-
search and I am very grateful for their creativity and “hands-on” mentality. Special thanks go to
Eva Strähle who is an inspiring and positive woman—never tired of helping one out. I consider
it a great privilege to have worked together with such admirable people.

3

4

My deepest gratitude goes to my wife Anna Altimira—she is the love of my life. All I have
achieved in life is as much her accomplishment as it is mine. She helped me raise two wonderful
kids, Amalie and Gabriel, who were my main source of motivation and recreation. I cannot put
in words how grateful I am to have such a supporting family.

I would like to thank my family and friends for supporting me during this process. My parents
Vera and Ulrich Mayer, my sister Kerstin Mayer, my brother Sven Mayer, and my in-laws
always supported me and encouraged me to pursue my goals. I cannot give enough thanks
to all my friends who play an integral part in my life—especially my very best friend and
intellectual sparring partner, Nathan Prins, as well as Tobias Miltenberger, without whom I
probably wouldn’t have started my newest venture.

Contents

Abstract 19

Deutsche Zusammenfassung 21

1 Introduction 23
1.1 Research Statement . 24

1.1.1 Traffic-aware Graph Partitioning and Processing 25

1.1.2 Latency Trade-off between Graph Partitioning and Processing 25

1.1.3 Query-centric Graph Partitioning and Processing 25

1.1.4 Neighborhood-centric Partitioning of Skewed Hypergraphs 26

1.2 Contributions . 26

1.3 Structure of the Thesis . 28

2 Background 29
2.1 Distributed Graph Processing . 29

2.1.1 System Model . 29

2.1.2 Data Graph . 30

2.1.3 Synchronization Model . 31

2.1.4 Programming Model . 31

2.2 Graph Partitioning . 33

2.2.1 Edge-cut Partitioning . 33

2.2.2 Vertex-cut Partitioning . 34

2.2.3 Comparison Vertex-cut and Edge-cut Partitioning 34

3 Heterogeneous Partitioning for Distributed Graph Processing 37
3.1 Preliminaries and Problem Formulation . 39

3.1.1 Preliminaries . 39

3.1.2 Network- and Traffic-aware Dynamic Vertex-cut 42

3.2 Partitioning Algorithms . 45

3.2.1 H-load: Initial Partitioning . 46

3.2.2 H-adapt: Distributed Migration of Edges 48

5

6 CONTENTS

3.3 Graph Algorithms . 55
3.3.1 Subgraph Isomorphism . 55
3.3.2 Cellular Automaton . 59

3.4 Evaluations . 61
3.4.1 Summary of Evaluation Results . 68

3.5 Related Work . 69
3.6 Chapter Summary . 70

4 Adaptive Window-based Streaming Partitioning 71
4.1 Problem Statement and Analysis . 73

4.1.1 The Vertex-cut Graph Partitioning Problem 74
4.1.2 Streaming Partitioning . 74
4.1.3 Window-based Streaming Partitioning 77

4.2 ADWISE . 78
4.2.1 Adaptive Window Algorithm . 80
4.2.2 Lazy Window Traversal . 81
4.2.3 Scoring Window Edges . 82
4.2.4 Spotlight Partitioning . 85

4.3 Evaluation . 86
4.3.1 Efficacy of ADWISE to Minimize Total Graph Latency 87
4.3.2 Spotlight . 93
4.3.3 Summary of Evaluation Results . 93

4.4 Related Work . 94
4.5 Chapter Summary . 95

5 Query-aware Multi-query Graph Processing 97
5.1 Research Gap and Contributions . 99
5.2 Problem Description . 100
5.3 Q-Graph System . 103

5.3.1 System Overview . 103
5.3.2 Q-cut: Centralized Query-aware Partitioning 104
5.3.3 Hybrid Barrier Synchronization for Multi-Query Graph Processing . . 109
5.3.4 Adapting to Dynamic Query Workload 111

5.4 Evaluations . 112
5.4.1 Experimental Setup . 112
5.4.2 Adaptive Q-cut Partitioning: . 114
5.4.3 Scalability and Hybrid Barrier . 117
5.4.4 Summary of Evaluation Results . 118

5.5 Related Work . 119
5.6 Chapter Summary . 119

CONTENTS 7

6 Massive Hypergraph Partitioning with Neighborhood Expansion 121
6.1 Research Gap and Contributions . 121
6.2 Problem Formulation . 122
6.3 Hypergraph Partitioning with Neighborhood Expansion 124

6.3.1 Neighborhood Expansion Idea . 125
6.3.2 HYPE Algorithm . 126
6.3.3 Balancing Considerations . 132
6.3.4 HYPE Pseudocode . 133
6.3.5 Complexity Analysis . 134

6.4 Evaluations . 136
6.4.1 Performance Evaluations . 138
6.4.2 Discussion of the Results . 140

6.5 Related Work . 141
6.6 Chapter Summary . 142

7 Summary and Future Work 143
7.1 Thesis Summary . 143
7.2 Conclusions . 145
7.3 Future Work . 146

Bibliography 147

8 CONTENTS

List of Figures

2.1 Scaling mechanisms for distributed graph processing (one CPU core per worker). 30

2.2 Example PageRank algorithm. 32

2.3 Vertex-cut and edge-cut partitioning. 33

2.4 This star graph with hub vertex u can be cut through either one vertex or four
edges. 35

3.1 (a)-(c) Distribution functions of vertex traffic for PageRank, subgraph isomor-
phism, and cellular automaton. (d) Latency between worker machines intra-
Availability Zone (AZ), inter-AZ and intra-region, and inter-region. 40

3.2 Message Flow of a single GAS iteration for vertex v. 42

3.3 (a) Vertex-cut minimizing replication degree. (b) Network- and traffic-aware
vertex-cut minimizing communication costs. 43

3.4 Approach Overview H-load. 46

3.5 Example: bag-of-edges migration to reduce inter-partition traffic. 49

3.6 Lost update problem for parallel edge migration. 54

3.7 (a) Subgraph isomorphism example – perspective of vertex v2. We show the
path of a single message. (b) The algorithm considers only messages that travel
within the matching subgraph. 56

3.8 Agent-based social simulations via cellular automaton. 59

3.9 (a) Traffic- and (b) network-awareness reduce communication costs. 62

3.10 (a) H-adapt reduces communication costs with low overhead. (b) Pre-partitioning
with H-load reduces communication costs. 62

3.11 (a)-(b) H-adapt reduces network traffic. 63

3.12 (a) H-adapt reduces replication degree. (b) GrapH reduces total workload. (c)-
(d) H-adapt reduces latency. 63

3.13 Heterogeneity in single data center, scale-up scenario. 65

3.14 (a)-(b) Prediction methods influence migration efficiency. 67

3.15 (a)-(b) Adaptive-α outperforms other prediction methods. 67

9

10 LIST OF FIGURES

4.1 Research gap – adaptive window-based streaming vertex-cut partitioning. Par-
titioning strategies: Hash [34], Grid [50], DBH [140], Greedy [34], HDRF
[101], NE [150], H-move [87], and Ja-Be-Ja-VC [106] 72

4.2 Streaming partitioning model. 77

4.3 Approach overview ADWISE. 79

4.4 Degree-aware vertex-cut partitioning. 83

4.5 Clustering Score Example. 85

4.6 Spotlight partitioning reduces spread of partitioners to reduce the impact of
balancing considerations on the partitioning decisions. 86

4.7 Trade-off graph partitioning latency against processing latency. 88

4.8 Replication degree for different partitioning strategies and settings. For all pre-
sented results, the partitions are balanced, i.e., maxsize−minsize

maxsize < 0.05 (see Sec-
tion 4.2.3). 89

4.9 Efficacy of spotlight optimization on Brain. 93

5.1 Query-agnostic partitioning optimizes edge-cut and query-aware partitioning
optimizes query-cut.1 . 103

5.2 System Architecture. 104

5.3 The Q-cut algorithm operates on a high-level query representation to improve
low-level graph partitioning. 106

5.4 Perturbation example. 108

5.5 The hybrid barrier synchronization integrates: A) limited and B) local query
barriers, and C) global barriers. 110

5.6 Hybrid Barrier Protocol for a single query q1. The multi-query approach uses
this protocol for each query independently. 111

5.7 (a)-(b) Adaptive query-aware partitioning reduces query latency over time. . . 115

5.8 (a)-(b) Q-cut reduces query latency for different partitioning strategies for SSSP
and (c) for POI compared to static partitioning Hash and Domain. (d) The query
latency decreases with better partitioning and hybrid barrier synchronization. . 116

5.9 (a) Workload Balancing. (b) Percentage of local query executions. 116

5.10 Perturbation overcomes local minima (SSSP on BW). 117

5.11 Q-Graph scalability. 118

6.1 A small extract of the global Reddit graph. 123

6.2 High-level idea of neighborhood expansion. 126

6.3 Limiting the fringe size s to a small value (e.g. s = 10) keeps partitioning
quality intact while reducing runtime significantly (StackOverflow hypergraph). 127

6.4 The external neighbors metric determines which vertex to move into the fringe. 129

6.5 Limiting the number of fringe candidate vertices r to r = 2 leads to the best
partitioning quality (StackOverflow hypergraph). 131

LIST OF FIGURES 11

6.6 The caching optimization for external neighbors score computation keeps par-
titioning quality intact while reducing runtime by up to 20% on the Stackover-
flow hypergraph. 132

6.7 Evaluations on the Github hypergraph (lower is better). 135
6.8 Evaluations on the StackOverflow hypergraph (lower is better). 137
6.9 Evaluations on the Reddit hypergraph (lower is better). 139
6.10 Evaluations on the Reddit-L hypergraph (lower is better). 140

12 LIST OF FIGURES

List of Tables

3.1 Notation overview. 44
3.2 Heterogeneous network link costs for AWS (Jan 2018). 45
3.3 Real-world graphs for evaluations. 61

4.1 Notation overview. 75
4.2 Real-world graphs for evaluations. 87

5.1 Research gap: multi-query graph processing with adaptive partitioning maxi-
mizing query locality. 97

5.2 Notation overview. 101
5.3 Q-Graph API. 105

6.1 Notation overview. 124
6.2 Real-world hypergraphs used in evaluations. 130

13

14 LIST OF TABLES

List of Algorithms

1 Migration algorithm on worker m. 48
2 Determining the bag-of-edges to exchange. 50
3 Implicit locking scheme. Does worker m have the lock for vertex v? 55
4 Subgraph isomorphism algorithm. 58
5 Cellular automaton algorithm of vertex u. 60
6 Window-based streaming vertex-cut algorithm. 81
7 Iterated local search algorithm for Q-cut partitioning. 106
8 Local search heuristic to find local minimum. 107
9 HYPE algorithm for hypergraph G = (V,E). 133
10 The function upd8_fringe() updates the fringe Fi with vertices from the ver-

tex universe V ′. 133
11 The function upd8_core() updates the core Ci with vertices from the fringe Fi. 134

15

16 LIST OF ALGORITHMS

List of Abbreviations

17

18 LIST OF ABBREVIATIONS

ACID Atomicity Consistency Isolation Durability
ADWISE Adative Window-based Streaming Edge Partitioning

API Application Programming Interface
AWS Amazon Web Services

AZ Availability Zone
BSP Bulk Synchronous Parallel
BW Baden-Wuerttemberg
CA Cellular Automaton

CDF Cumulative Distribution Function
CGA Concurrent Graph Query Analytics
CPU Central Processing Unit
DBH Degree-Based Hashing

EA Exponential Averaging
EC2 Amazon Elastic Compute Cloud
GAS Gather Apply Scatter

GB Gigabyte
GPS Global Positioning System, Graph Processing System
GPU Graphics Processing Unit

GY Germany
HDRF High-Degree are Replicated First

ILS Iterated Local Search
KB Kilobyte

LDG Linear Deterministic Greedy
MA Moving Average
MB Megabyte
NP Nondeterministic Polynomial Time
NY New York
PG PowerGraph

POI Point of Interest
PR PageRank

RAM Random-Access Memory
SI Subgraph Isomorphism

SSSP Single-Source Shortest Path
TCP Transmission Control Protocol

VLSI Very Large-Scale Integration

Abstract

Distributed graph processing systems such as Pregel, PowerGraph, or GraphX have gained
popularity due to their superior performance of data analytics on graph-structured data such
as social networks, web document graphs, and biological networks. These systems scale out
graph processing by dividing the graph into k partitions that are processed in parallel by k
worker machines. The graph partitioning problem is NP-hard. Yet, finding good solutions for
massive graphs is of paramount importance for distributed graph processing systems because
it reduces communication overhead and latency of distributed graph processing. A multitude
of graph partitioning heuristics emerged in recent years, fueled by the challenge of partitioning
large graphs quickly.
The goal of this thesis is to tailor graph partitioning to the specifics of distributed graph process-
ing and show that this leads to reduced graph processing latency and communication overhead
compared to state-of-the-art partitioning. In particular, we address the following four research
questions. (I) Recent partitioning algorithms unrealistically assume a uniform and constant
amount of data exchanged between graph vertices (i.e., uniform vertex traffic) and homoge-
neous network costs between workers hosting the graph partitions. The first research question
is: how to consider dynamically changing and heterogeneous graph workload for graph par-
titioning? (II) Existing graph partitioning algorithms focus on minimal partitioning latency
at the cost of reduced partitioning quality. However, we argue that the mere minimization of
partitioning latency is not the optimal design choice in terms of minimizing total latency, i.e.,
the sum of partitioning and graph processing latency. The second research question is: how
much latency should we invest into graph partitioning when considering that we often have
to pay higher partitioning latency in order to achieve better partitioning quality (and therefore
reduced graph processing latency)? (III) Popular user-centric graph applications such as route
planning and personalized social network analysis have initiated a shift of paradigms in modern
graph processing systems towards multi-query analysis, i.e., processing multiple graph queries
in parallel on a shared data graph. These applications generate a dynamic number of localized
queries around query hotspots such as popular urban areas. However, the employed methods
for graph partitioning and synchronization management disregard query locality and dynamism
which leads to high query latency. The third question is: how to dynamically adapt the graph
partitioning when multiple localized graph queries run in parallel on a shared graph structure?

19

20 ABSTRACT

(IV) Graphs are special cases of hypergraphs where each edge does not necessarily connect
exactly two but an arbitrary number of vertices. Like graphs, they need to be partitioned as
a pre-processing step for distributed hypergraph processing systems. Real-world hypergraphs
have billions of vertices and a skewed degree distribution. However, no existing hypergraph
partitioner tailors partitioning to the important subset of hypergraphs that are very large-scale
and have a skewed degree distribution. Regarding this, the fourth research question is: how
to partition these large-scale, skewed hypergraphs in an efficient way such that neighboring
vertices tend to reside on the same partition?
We answer these research questions by providing the following four contributions. (I) We de-
veloped the graph processing system GrapH that considers both, diverse vertex traffic and het-
erogeneous network costs. The main idea is to avoid frequent communication over expensive
network links using an adaptive edge migration strategy. (II) We developed a static partition-
ing algorithm ADWISE that allows to control the trade-off between partitioning latency and
graph processing latency. Besides providing evidence for efficiency and effectiveness of our
approach, we also show that state-of-the-art partitioning approaches invest too little latency into
graph partitioning. By investing more latency into partitioning using ADWISE, total latency of
partitioning and processing reduces significantly. (III) We developed a distributed graph system
QGraph for multi-query graph analysis that allows multiple localized graph queries to run in
parallel on a shared graph structure. Our novel query-centric dynamic partitioning approach
yields significant speedup as it repartitions the graph such that queries can be executed in a lo-
calized manner. This avoids expensive communication overhead while still providing good
workload balancing. (IV) We developed a novel hypergraph partitioning algorithm, called
HYPE, that partitions the hypergraph by using the idea of neighborhood expansion. HYPE
grows k partitions separately—expanding one vertex at a time over the neighborhood relation
of the hypergraph. We show that HYPE leads to fast and effective partitioning performance
compared to state-of-the-art hypergraph partitioning tools and partitions billion-scale hyper-
graphs on a single thread.
The algorithms and approaches presented in this thesis tailor graph partitioning towards the
specifics of distributed graph processing with respect to (I) dynamic and heterogeneous traffic
patterns and network costs, (II) the integrated latency of partitioning plus graph processing, and
(III) the graph query workload for partitioning and synchronization. On top of that, (IV) we
propose an efficient hypergraph partitioner which is specifically tailored to real-world hyper-
graphs with skewed degree distributions.

Deutsche Zusammenfassung

Verteilte Systeme zur Analyse von Graphen, wie Pregel, PowerGraph, oder GraphX, verbrei-
teten sich rapide in den letzten Jahren aufgrund ihrer überlegenen Performanz auf großen Gra-
phen wie sozialen Netzwerken, Webgraphen, und biologischen Netzwerken. Diese Systeme
skalieren die Graphanalyse indem sie einen Graphen in k Partitionen unterteilen und diese par-
allel auf k Maschinen verarbeiten. Das Problem der optimalen Partitionierung von Graphen ist
NP-hart. Gleichzeitig werden gute Lösungen benötigt um den Kommunikationsmehraufwand
und die Latenz der verteilten Graphanalyse zu reduzieren. In den letzten Jahren wurde eine
große Anzahl von Heuristiken zur Partitionierung von Graphen entwickelt. Diese Heuristiken
können große Graphen schnell partitionieren, und erreichen gleichzeitig eine moderate Parti-
tionierungsqualität.
Das Ziel dieser Dissertation ist die Entwicklung von Algorithmen zur Partitionierung von Gra-
phen, die speziell auf die verteilte Graphanalyse optimiert sind. Diese spezifischen Algorithmen
führen zu schnellerer Latenz der verteilten Graphanalyse und reduzieren den Kommunikations-
aufwand während der verteilten Graphanalyse im Vergleich zu modernen Partitionierungsalgo-
rithmen. Um dieses Ziel zu erreichen, beantworten wir die folgenden vier Forschungsfragen. (I)
Aktuelle Partitionierungsalgorithmen basieren auf der unrealistischen Annahme, dass der Da-
tenverkehr zwischen Knoten, sowie die Netzwerkkosten zwischen Maschinen, homogen und
konstant ist. Wie können wir diese sich dynamisch ändernde und heterogene Arbeitslast bei der
Partitionierung von Graphen berücksichtigen? (II) Moderne Partitionierungsalgorithmen stre-
ben minimale Latenz an, insbesondere auf Kosten der Qualität der Partitionierung. In dieser
Arbeit zeigen wir, dass die einfache Minimierung der Partitionierungslatenz nicht die optimale
Entwurfsentscheidung darstellt. Stattdessen sollte die Minimierung der Gesamtlatenz das Ziel
sein, also der Summe aus der Latenz der Partitionierung und der Graphanalyse. Wieviel La-
tenz sollten wir in die Partitionierung investieren unter Berücksichtigung, dass eine bessere
Partitionierungsqualität (und damit reduzierte Latenz der Graphanalyse) oftmals eine höhere
Partitionierungslatenz erfordert? (III) Moderne Anwendungen im Bereich der Graphanalyse
rücken den Endnutzer ins Zentrum, beispielsweise bei der Routenplanung und der personali-
sierten Analyse von sozialen Netzwerken. Dieser Paradigmenwechsel verlangt von Graphsy-
stemen die Unterstützung von gleichzeitiger Verarbeitung von mehreren Anfragen auf einem
gemeinsamen Graphen. Diese Anfragen sind lokalisiert, beispielsweise Routenanfragen in der

21

22 ZUSAMMENFASSUNG

Nähe eines populären Stadtzentrums, und treten in dynamischer Häufigkeit auf. Die existie-
renden Arbeiten zur Partitionierung und Synchronisation von Graphen ignorieren die Lokali-
tät und dynamische Häufigkeit dieser Anfragen. Dies führt zu einer hohen durchschnittlichen
Anfragelatenz. Wie können wir die Graphanalyse dynamisch an die sich ändernden Anfragelo-
kationen anpassen und gleichzeitig mehrere Anfragen parallel auf dem gemeinsamen Graphen
ausführen? (IV) Graphen sind spezielle Fälle von Hypergraphen, wobei jede Kante nicht not-
wendigerweise exakt zwei, sondern eine beliebige Anzahl von Knoten verbindet. Wie Graphen
müssen Hypergraphen partitioniert werden als Vorverarbeitungsschritt einer verteilten Hyper-
graphanalyse. In der Praxis häufig vorkommende Hypergraphen haben Milliarden von Kno-
ten und besitzen eine sogenannte “asymmetrische Wahrscheinlichkeitsverteilung” der Knoten-
und Kantengrade. Allerdings gibt es derzeit keinen Hypergraphpartitionierer, der sich speziell
auf große Hypergraphen fokussiert, die eine assymetrische Wahrscheinlichkeitsverteilung der
Knoten- und Kantengrade aufweisen. Deshalb lautet die vierte Forschungsfrage: Wie können
wir diese großen, asymmetrischen Hypergraphen effizient partitionieren, sodass Nachbarkno-
ten mit möglichst hoher Wahrscheinlichkeit auf derselben Partition liegen?
Wir beantworten diese vier Forschungsfragen folgendermaßen. (I) Unser System zur Graph-
analyse GrapH berücksichtigt den heterogenen Datenverkehr zwischen Knoten, sowie die he-
terogenen Netzwerkkosten zwischen Maschinen. Die Grundidee ist die systematische Vermei-
dung der Kommunikation über teure Netzwerkverbindungen durch eine adaptive Kantenmigra-
tionsstrategie. (II) Der statische Partitionierungsalgorithmus ADWISE ermöglicht eine Kosten-
Nutzen-Abschätzung zwischen Latenz der Partitionierung und der Graphanalyse. Wir demon-
strieren die Effizienz und Effektivität unseres Ansatzes und gelangen zu der Erkenntnis, dass
moderne Partitionierungsansätze zu wenig Latenz in die Partitionierung von Graphen investie-
ren. Indem wir mithilfe von ADWISE mehr Latenz in die Partitionierung investieren, kann die
Gesamtlatenz der Partitionierung und Graphanalyse signifikant reduziert werden. (III) Wir ent-
wickelten ein verteiltes System zur Analyse von mehreren gleichzeitigen Anfragen auf einem
gemeinsamen Graphen, genannt QGraph. Die Idee, die Lokalität der Anfragen in den Fokus
der Partitionierung zu rücken, führt zu einer signifikanten Reduzierung der durchschnittlichen
Anfragelatenz. Der Grund hierfür ist, dass unser Algorithmus den Graphen dynamisch partitio-
niert, sodass Anfragen zu jedem Zeitpunkt möglichst lokalisiert ausgeführt werden. Dies ver-
meidet teuren Kommunikationsaufwand und ermöglicht gleichzeitig eine balancierte Arbeits-
last der Maschinen. (IV) Wir entwickelten einen neuen Algorithmus zur Hypergraphpartitionie-
rung, genannt HYPE, der auf der Idee der Nachbarschaftsexpansion basiert. HYPE vergrößert
sukzessive k Partitionen indem er Knoten über die Nachbarschaftsbeziehung expandiert. Wir
zeigen, dass HYPE zu schnellerer und effektiverer Partitionsperformanz führt im Vergleich zu
gängigen Hypergraphpartitionierern—auf nur einem einzigen Thread.

1
Introduction

Graphs are fundamental data structures in computer science. Wide-spread digitalization gen-
erates massive amounts of interconnected, graph-structured data in diverse areas. These in-
clude information retrieval from semantic web graphs [114], product recommendation based
on product rating graphs [126], communities detection in social networks [97], centrality com-
putation in web document graphs [8], probabilistic inference on graphical models [146], social
movement pattern simulation on urban cellular networks [87], shortest path calculation on road
networks [149], cellular clustering in biological networks [2], disease propagation analysis in
socio-temporal networks [10], and images retrieval from image similarity graphs [52]. This
non-exhaustive list shows the variety and importance of emerging graph processing applica-
tions. Graphs have been, are, and will stay ubiquitous in the field of computer science.

In the last decade, two trends have had a sustainable impact on graph processing: (i) grow-
ing data volume and (ii) increasing processing complexity. (i) Web graphs link trillions of
documents [22], social networks connect hundreds of billions of users [21], the semantic web
consists of trillions of RDF triples describing relations between entities [148], recommendation
graphs connect millions of people to billions of products, movies, or songs [16], and deep neu-
ral networks comprise of billions of highly connected artificial neurons [25]. (ii) Many impor-
tant graph algorithms are iterative, complex, and long-running. Examples are PageRank [96],
subgraph isomorphism [79], k-clique [139], belief propagation [53], graph coloring [34], sin-
gle source shortest path [80], graph clustering [117], and collaborative filtering [72]. As data
tends to grow faster than processing power [92], parallelizing computation of complex graph
algorithms on large graphs is crucial for many real-world applications [90]. This has led to
the advent of specialized distributed graph processing systems such as, in chronological order,
Pregel [80], GraphLab [77], PowerGraph [34], GPS [115], GraphX [35], Giraph [21], Power-
Lyra [18], GraM [138], and GrapH1 [87]. These systems adopt a user-friendly programming

1See Chapter 3

23

24 1. INTRODUCTION

paradigm, i.e., application programmers, think like a vertex [80] by defining vertex functions
that workers execute in parallel on the vertices of the distributed graph. Vertices iteratively
update their local state at runtime based on the state of neighboring vertices.

To parallelize graph execution on k workers, these systems divide the graph into k partitions
such that the number of vertices and/or edges are balanced and maximally localized, i.e., neigh-
boring vertices and edges preferably reside on the same partition. For instance, if neighboring
vertices reside on the same partition, exchanging data between two vertices is inexpensive.
Otherwise, if vertices reside on different partitions, data has to be sent via TCP or other means
of inter-process communication. This problem is denoted as balanced k-way graph partition-
ing. The graph partitioning problem is computationally hard, even simplified variants are NP-
complete [32]. But graph partitioning is also an important problem: Developing fast and effec-
tive algorithms provides a large value for industry and academia in terms of reduced latency,
communication overhead, and monetary costs. The combination of hardness and practical im-
portance has driven research in the area of graph partitioning for decades — with constantly
changing scale, performance, and assumptions.

In this thesis, we motivate, develop, and analyze novel graph partitioning algorithms tailored to
distributed graph processing. Graph partitioning plays a key role in distributed graph processing
regarding several important performance metrics such as scalability, latency, CPU utilization,
and communication overhead [133]. Moreover, efficient graph partitioning algorithms are cru-
cial for various other domains such as image segmentation [121], identifying communities in
biological protein interaction networks [112] and in social networks [102], parallel process-
ing of specific graph algorithms using message passing [45], speeding up Dijkstra’s algorithm
in road networks [93], and very large-scale integration (VLSI) [58]. The rest of this chapter
presents research challenges, gaps, and hypotheses, followed by our contributions to the field
of graph partitioning for distributed graph processing.

1.1 Research Statement

This thesis focuses on four research gaps and problem domains in the area of graph partition-
ing (and the more generalized hypergraph partitioning). The main goal is to design dynamic
and static partitioning algorithms that are tailored to the unique characteristics of distributed
graph and hypergraph processing on real-world data sets. In this thesis, we show that a care-
ful consideration of these specific properties reduces latency and communication overhead of
partitioning and graph processing compared to state-of-the-art benchmarks and generalized
“out-of-the-box” graph partitioning algorithms.

1.1. RESEARCH STATEMENT 25

1.1.1 Traffic-aware Graph Partitioning and Processing

A wide-spread belief in the field of graph partitioning for distributed graph processing is the
following: The higher the number of neighboring vertices or edges residing on the same parti-
tion, the lower the communication costs during graph processing [34, 35]. But this holds only
under two assumptions: vertex traffic homogeneity, i.e., processing each vertex involves the
same amount of communication overhead, and network costs homogeneity, i.e., the underlying
network links between each pair of workers have the same usage costs [34,106,115]. We show
in Chapter 3 that both assumptions are not generally true. Instead, vertex traffic and network
costs are highly heterogeneous for many real-world applications.

This leads us to the research question: How can we tailor graph partitioning to distributed graph
processing by considering heterogeneous vertex traffic and network costs? Our hypothesis
is that this heterogeneity-aware graph partitioning leads to reduced communication costs and
graph processing latency.

1.1.2 Latency Trade-off between Graph Partitioning and Processing

Suboptimal graph partitioning causes higher graph processing latency due to the increased syn-
chronization and communication overhead between the worker machines [64,78,133]. In other
words, finding good solutions to the partitioning problem speeds up graph processing. But find-
ing better partitioning solutions is slow because of the NP-hardness of the partitioning problem.
There is a trade-off between the partitioning latency and the graph processing latency. Exist-
ing graph systems are positioned on one extreme of the trade-off: minimal partitioning latency
(which is close to the minimum partitioning latency of random partitioning [87,123]) and, thus,
only moderate partitioning quality.

A fundamental research question is whether it is always optimal to invest minimal partitioning
latency as done by the established systems. Our hypothesis is that for complex and long-
running graph algorithms that run on large graphs, investing more than minimal time into graph
partitioning leads to reduced total latency of graph partitioning and graph processing.

1.1.3 Query-centric Graph Partitioning and Processing

Novel graph applications have given rise to a shift of paradigms towards interactive (online)
graph queries on a shared graph structure [27, 143]. We identified three challenges for those
applications. (i) Locality: how to ensure locality of query execution? (ii) Multi-query: how to
manage the execution of multiple queries in parallel on a shared graph? (iii) Adaptivity: how
to adapt to dynamic query hotspots and query workloads? None of the existing graph systems
account for all three challenges.

26 1. INTRODUCTION

The research question here is whether taking into account the dynamic workload of graph
queries for graph partitioning (query-awareness) reduces total graph processing latency. Our
hypothesis is that this is in fact the case when executing multiple localized queries on the same
graph.

1.1.4 Neighborhood-centric Partitioning of Skewed Hypergraphs

Graphs are special cases of hypergraphs. In a hypergraph, each edge does not necessarily con-
nect exactly two but an arbitrary number of vertices. Real-world hypergraphs have billions of
vertices (e.g. the group-based WhatsApp social network [83]) and a skewed degree distribu-
tion (i.e., a small percentage of vertices have extremely high degree while most vertices have a
small to medium degree). We show in Chapter 6 that both edge and vertex degrees resemble a
power-law distribution.

Regarding this, an interesting research question is how to partition these large-scale, skewed
hypergraphs in an efficient way such that neighboring vertices tend to reside on the same par-
tition? There is a significant research gap because no existing hypergraph partitioner tailors
partitioning to the important subset of hypergraphs that are very large-scale and have a skewed
degree distribution—considering the practical need to optimize for partitioning speed. Our hy-
pothesis is that a simple neighborhood-centric partitioning algorithm—with a bias towards op-
timal partitioning of hypervertices with low degree—generates competitive partitioning quality
with reduced partitioning latency compared to state-of-the-art approaches, even for billion-scale
hypergraphs.

1.2 Contributions

This thesis focuses on improving scalability, communication overhead, and latency of dis-
tributed graph computation by solving the graph partitioning problem for distributed graph
processing. The following contributions are based on work performed and published as part of
the PhD thesis [86], [87], [89], [85], [84], [82], [88], [83].

1. To address the research statement in Section 1.1.1, we developed GrapH, a distributed
graph processing system for in-memory data analytics on graph-structured data2. GrapH
is aware of both, heterogeneous dynamic vertex traffic and heterogeneous network costs.
Considering this information, it adaptively partitions the graph at runtime to minimize
overall communication costs by systematically avoiding frequent communication over
expensive network links.

2https://github.com/GrapH2/GrapH2.0

https://github.com/GrapH2/GrapH2.0

1.2. CONTRIBUTIONS 27

In particular, we propose a fast linear-runtime partitioning algorithm and a fully dis-
tributed edge migration algorithm for runtime refinement. The distributed edge migration
algorithm incorporates a method for online vertex traffic prediction that treats each ver-
tex as an independent learner and thereby is able to predict diverse and dynamic vertex
traffic patterns. Moreover, we propose two novel distributed algorithms plus implementa-
tion in the vertex-centric (think like a vertex) API solving two important graph problems:
subgraph isomorphism to find arbitrary subgraphs in the graph, and agent-based cellular
automaton to simulate physical phenomena such as mobility of citizens. These contri-
butions have been published in [86, 87, 89]. The author of this thesis contributed around
70%, 45%, and 70% of the scientific content, respectively.

2. To address the research statement in Section 1.1.2, we developed ADWISE, a novel
window-based streaming partitioning approach3. Our result regarding the trade-off be-
tween partitioning latency and graph processing latency is the following. For complex
graph problems, we can reduce runtime significantly when investing approximately three
times the partitioning latency of state-of-the-art partitioning algorithms that optimize
mainly for partitioning latency.

In particular, we propose an algorithm that uses an edge window rather than only a single
edge to determine the best partitioning decisions. We employ methods to automatically
adapt the window size at runtime in order to control the partitioning latency via a latency
preference parameter. Our algorithms considers multiple objectives – including diversity
and skewness of the graph edges – to quantify partitioning decisions pertaining to the
edges in the window. We employ multiple performance optimizations such as focusing
computation on a subset of most promising window edges to avoid redundant compu-
tations. Finally, we propose an optimization for parallel graph partitioning on multiple
ADWISE instances where partitioning instances work on disjoint sets of partitions. This
tremendously improves partitioning quality and can be applied on top of any existing
streaming graph partitioning algorithm. These contributions have been published in [85].
The author of this thesis contributed around 70% of the scientific content.

3. To address the research statement in Section 1.1.3, we developed the open-source sys-
tem QGraph for CGA applications4. We use a centralized controller to maintain global
knowledge about the queries running on each worker to perform high-level query-aware
partitioning. We show that query-awareness of partitioning and synchronization speeds
up CGA applications – as a result of improved query locality and workload balancing
compared to query-agnostic and static edge-cut partitioning algorithms.

In particular, the query-aware partitioning algorithm partitions the graph based on a his-
tory of queries reaching high query locality. Moreover, we introduce a novel hybrid

3https://github.com/GraphPartitioning/WISE
4https://gitlab.com/qgraph/GRADES2018

https://github.com/GraphPartitioning/WISE
https://gitlab.com/qgraph/GRADES2018

28 1. INTRODUCTION

synchronization model to account for both local and global graph queries. Finally, our
partitioning adaptation algorithm optimizes the graph partitioning at runtime to dynamic
query hotspots using the centralized global query knowledge. These contributions have
been published in [84]. The author of this thesis contributed around 70% of the scientific
content.

4. To address the research statement in Section 1.1.4, we developed a novel hypergraph
partitioning algorithm, called HYPE, and made the source code publicly available5. The
algorithm partitions the hypergraph by using the idea of neighborhood expansion. It
grows k partitions separately—expanding one vertex at a time over the neighborhood
relation of the hypergraph. We show that HYPE leads to fast and effective partitioning
performance compared to state-of-the-art hypergraph partitioning tools and even scales
to billion-scale hypergraphs on a single thread.

In particular, we introduce methods to reduce the algorithmic complexity of neighbor-
hood expansion on hypergraphs. We observe that for real-world hypergraphs, the de-
grees of both vertices and hyperedges resemble a power-law degree distribution. These
hypergraphs have dense local communities connected by a small number of high-degree
vertices. Based on this observation, we develop the idea of reinforcing the algorithm
to expand each partition towards the small and dense local communities and punishing
expansions towards high-degree vertices and hyperedges. These contributions have been
published in [83]. The author of this thesis contributed around 50% of the scientific
content.

A number of student theses contributed parts of system implementations and evaluations to this
thesis [9, 29, 33, 36, 71, 74, 109, 118, 137].

1.3 Structure of the Thesis

The rest of the thesis is structured as follows. Chapter 2 provides background about distributed
graph processing and partitioning. Chapter 3 presents the idea of traffic-aware graph process-
ing, where we consider heterogeneous network and vertex communication in our algorithms
for graph partitioning. Moreover, we present vertex-centric implementations of two real-world
graph algorithms: subgraph isomorphism and cellular automaton. Chapter 4 presents the idea
of window-based streaming graph partitioning in order to trade partitioning latency against im-
proved partitioning quality. Chapter 5 examines the idea of query-centric graph processing and
partitioning in a multi-query graph system that processes multiple queries in parallel. Chapter 6
introduces the novel concept of fast and scalable hypergraph partitioning using neighborhood
expansion. Finally, Chapter 7 concludes the thesis.

5https://github.com/mayerrn/HYPE

https://github.com/mayerrn/HYPE

2
Background

In this chapter, we establish background information about distributed graph processing and
graph partitioning.

2.1 Distributed Graph Processing

Initiated by Google’s Pregel system [80], a multitude of distributed graph processing systems
emerged. These systems share many core design decisions such as the execution model and the
programming model. In the following, we introduce the models used in this thesis.

2.1.1 System Model

We assume a distributed environment consisting of a number of virtual or physical machines,
which are connected via network links. Multiple processes communicate over the network via
inter-process communication technology (e.g. via TCP) and work together on the distributed
graph processing task. The graph system comprises of two types of processes: a single mas-
ter process and k worker processes. The master orchestrates graph processing and performs
house-keeping tasks such as synchronization between the workers (see Section 2.1.3). The
workers perform the distributed graph processing task using inter-process communication to
synchronize and exchange data.

Each worker is responsible for a single graph partition, i.e., a subgraph of the graph to be ana-
lyzed (see Section 2.2). The union of the disjoint graph partitions is the global distributed data
graph (see Section 2.1.2). The workers are decoupled but need to communicate as given by
the specific graph partitioning. With better partitioning quality comes a higher degree of de-
coupling and independence of different worker machines. We examine this dimension in detail

29

30 2. BACKGROUND

Worker

Process

Master Master Master

Graph

PartitionMachine

(a) Scale up (b) Scale out (c) Scale up and out

Distributed

Data

Graph

Vertex /

Edge Data

Figure 2.1: Scaling mechanisms for distributed graph processing (one CPU core per worker).

in the next chapters of this thesis. Decoupling the workers in this way enables parallel pro-
cessing of the respective graph partitions and scaling computation to large graphs and complex
algorithms.

Each process runs on a physical or a virtual machine and there can be multiple processes per
machine. In Figure 2.1, we show the three different options that arise from this model. First,
we can scale up computation to large multi-core machines by executing multiple workers on
the same machine. Second, we can scale out computation by executing one worker process
per machine and using multiple machines. Third, we can scale up and out by combining these
ideas of assigning multiple workers to a single machine and increasing the number of machines.

2.1.2 Data Graph

Each graph processing application defines two types of data: (i) the graph structure and (ii)
the vertex and edge data. (i) The graph structure, denoted as G = (V,E) with the set of ver-
tices V and edges E, captures the relationship between data entities. For example, in a social
network, each user is represented as a graph vertex and each friendship as an edge between
two vertices. The graph structure represents the underlying topology of the data—it encodes
data dependencies (graph edges) between data entities (vertices). (ii) The vertex data and edge
data hold the concrete data values defined by the application and maintained on the respective
vertices and edges. For example, in a social network, each user vertex (object) maintains ver-
tex data that quantifies the influence of this user, and each friendship edge (object) maintains
edge data that quantifies the strength of the friendship relation. Distributed graph processing
systems use the graph structure to optimize efficiency (e.g. via graph partitioning or message
batching) [34, 35, 80].

2.1. DISTRIBUTED GRAPH PROCESSING 31

2.1.3 Synchronization Model

In the synchronous vertex-centric execution model introduced by Pregel, each vertex acts as a
virtual processing unit—each calculating a similar vertex function virtually in parallel1. The
overall computation proceeds in a sequence of iterations. Each iteration can be seen as an
isolated graph snapshot. The global state of the data graph proceeds in lock-step from the state
in iteration i to the state in iteration i+ 1. To this end, vertex v calculates its own vertex data
in iteration i+ 1 based on the vertex data of neighboring vertices in iteration i. This provides
clear semantics to the application programmer: there are no race conditions among the millions
of vertices which compute their vertex data in parallel. The model is said to be synchronous
because no worker proceeds with iteration i+ 1 until all workers have finished iteration i. To
reach this synchronous execution, a synchronization barrier is introduced: a worker that has
finished execution for all vertices in iteration i sends a synchronization request to the master
machine. The master waits for all synchronization requests from all workers before it initiates
the next iteration i+1.

There is also work on asynchronous graph processing, where each vertex recomputes its own
vertex data at its own pace. However, asynchronous graph processing is, in general, not su-
perior to synchronous graph processing with respect to key performance metrics such as total
graph processing latency. The reason is that asynchronous graph processing relies on locking
of vertices to prevent read/write conflicts on the vertices: “Async’s poor performance is due
to lock contention, the lack of message batching, and communication overheads in distributed
locking.” [40]. Hence, we use the synchronous execution model which provides clearer seman-
tics to the application programmer.

2.1.4 Programming Model

There are two types of popular vertex-centric programming models: the vertex compute model
and the gather-apply-scatter model.

The vertex compute model, as proposed by Pregel, is implemented by a wide range of popular
graph systems [20,21,66,80,90]. This programming abstraction is vertex-centric and message-
based. The application programmer “thinks like a vertex” and specifies the vertex function
that is executed by each graph vertex in an iterated manner. The vertex function expects a
set of messages from neighboring vertices as input arguments. Based on these messages and
the previous state of the vertex data, the vertex function recomputes and updates the vertex
data. In the following, we denote the execution of the vertex function on a single vertex as one
vertex function execution. During this execution, a vertex can send messages to neighboring
vertices. Each message activates a neighboring vertex and transports updated information over

1A detailed explanation is given by Malewicz et al. [80].

32 2. BACKGROUND

0.1

0.1

0.1
0.1

𝑢0

𝑢1

𝑢2
𝑢3

0.1

0.1

0.1
0.1

𝑢0

𝑢1

𝑢2
𝑢3

0.405

0.1

0.1
0.1

𝑢0

𝑢1

𝑢2
𝑢3

0.405

0.85 Σ + 0.15
= 0.85 ∗ 0.3 + 0.15 = 0.405Σ = (0.1 + 0.1 + 0.1) = 0.3

gather Σ

apply
Scatter/

activate

(b) The PageRank algorithm in the GAS programming model

0.1

0.1

0.1
0.1

𝑢0

𝑢1

𝑢2
𝑢3

Message from last iteration (i-1)

Message from

this iteration i

0.405
0.235

𝑢0

𝑢1

𝑢2
𝑢3

0.235

0.235

Iteration i Iteration i+1

(a) The PageRank algorithm in the vertex compute model

Figure 2.2: Example PageRank algorithm.

the graph structure. Because of the vertex-centric programming abstraction, the application
programmer is able to deploy complex graph algorithms on a distributed graph without the
burden of implementing message transporting, synchronization, and partitioning.

In Figure 2.2(a), we give an example for the vertex compute model. Each vertex has an asso-
ciated numerical data value that is the current relative PageRank of this vertex (not normalized
here). Vertices exchange messages that contain the numerical vertex data. Based on the sum Σ

of all input messages from the last iteration, vertex u3 updates its own PageRank according to
the formula 0.85Σ+0.15 (see [80]).

The gather-apply-scatter (GAS) model of computation operates on a higher abstraction level.
The application programmer writes vertex-centric code with the convenient assumption that a
vertex can read vertex data of neighboring vertices. The message flow is transparent to the
application programmer—messages are created and propagated by the system. GAS computa-
tion works as follows. In the gather phase, the vertex collects information from all neighboring
vertices. In the apply phase, the vertex computes its own vertex data based on the gathered
data. In the scatter phase, the vertex updates the value of edge data and schedules neighboring
vertices for execution (see [34]).

In Figure 2.2(b), we give an example for the GAS model. Vertices gather data from neighboring
vertices in a gathered sum Σ. Based on the sum Σ of all input messages, vertex u3 updates
its own PageRank in a similar fashion (for clarity, we omit the results for the other vertices
u0,u1,u2). In contrast to the vertex compute model, all vertices perform the gather, apply, and

2.2. GRAPH PARTITIONING 33

𝑢

Vertex-cut

𝑢

Edge-cut

𝑝1

𝑝2

𝑝3

𝑝1

𝑝2

𝑝3

𝑢

𝑢

Replica

Figure 2.3: Vertex-cut and edge-cut partitioning.

scatter phases in lockstep. In other words, there is a synchronization barrier after each phase.
Note that we skipped edge data for this minimal example.

Both programming models are popular design choices for distributed graph processing systems.
In the next section, we investigate the two different partitioning strategies edge-cut and vertex-
cut partitioning. In literature, systems that use edge-cut partitioning are defined in terms of the
vertex compute model [80] and systems that use vertex-cut partitioning are defined in terms of
the GAS model [34]. The reason is that the GAS model employes an edge-centric computation
model specifically tailored to vertex-cut partitioning where each edge is assigned to a single
partition [34]. We follow this common practice and use the vertex compute model in Chapter 5
and the GAS model in Chapters 3 and 4—because the systems use edge-cut partitioning and
vertex-cut partitioning, respectively.

2.2 Graph Partitioning

To mitigate inefficient communication and synchronization overhead, graph processing sys-
tems require suitable partitioning methods improving the locality of vertex communication.
Mainly, there are two types of partitioning strategies: edge-cut and vertex-cut. These strategies
minimize the number of times an edge or vertex spans multiple partitions (cut-size).

2.2.1 Edge-cut Partitioning

Edge-cut partitioning algorithms divide the graph into multiple partitions by assigning each
vertex exclusively to a single partition. In other words, vertices can not be replicated on multiple
partitions. Figure 2.3 shows an edge-cut partitioning where six vertices are divided among

34 2. BACKGROUND

three partitions. Vertex u has one neighbor on each partition. We have seen in Section 2.1.4
that in vertex-centric graph processing systems, neighboring vertices exchange information to
recompute the vertex data values. For instance, when executing the vertex function of vertex u,
the graph system propagates data from both non-local partitions p1 and p3 to partition p2 and
vertex u. Thus, existing graph systems assume that each edge that is cut by partition boundaries
induces network communication during graph processing.

To this end, the main optimization objective for edge-cut graph partitioning algorithms is to
minimize the number of cut-edges in the distributed graph. The hope is that this leads to reduced
network communication during graph processing. To divide the graph processing workload
evenly among k partitions, the number of graph vertices should be balanced. This problem is
therefore denoted as balanced k-way edge-cut partitioning [123].

2.2.2 Vertex-cut Partitioning

Vertex-cut partitioning algorithms divide the graph to multiple partitions by assigning each
edge exclusively to a single partition. Here, vertices can be replicated on multiple partitions.
In Figure 2.3, we can see such a partitioning for the same graph. Vertex u is assigned to all
three partitions p1, p2, p3, i.e., it is replicated on all partitions. A vertex replica can only access
a subset of all neighbors. Thus, the different replicas must exchange information to reach a
consistent view of vertex u and its neighbors. We denote the average number of replicas per
vertex the replication degree of a given partitioning.

The main optimization goal is to minimize the replication degree when dividing the graph
among k partitions. To balance workload, each partition should be responsible for the same
number of edges. This problem is denoted as balanced k-way vertex-cut partitioning [34].

2.2.3 Comparison Vertex-cut and Edge-cut Partitioning

Both partitioning approaches have advantages and disadvantages. Edge-cut partitioning leads
to less overhead as vertices are not replicated and synchronized during graph processing [18].
On the other hand, vertex-cut partitioning produces better cuts for many real-world graphs
with skewed degree distributions where some hub vertices are highly connected and central
in the graph [34]. For example, the star graph with |E| edges has an edge-cut size of Ω(|E|)
but a vertex-cut size of O(1). This scenario is given in Figure 2.4 where dividing the graph
through the hub vertex u is superior to dividing the graph through the edges. Since real-world
graphs often resemble a star-like degree distribution (e.g. President Obama in the Twitter social
network), vertex-cut is often preferred for graph processing applications. Note that optimal
edge-cuts can not be transformed into close-to-optimal vertex-cuts for graphs with high-degree
vertices [30].

2.2. GRAPH PARTITIONING 35

𝑢

Vertex-cut

+1

Edge-cut

+4

Figure 2.4: This star graph with hub vertex u can be cut through either one vertex or four edges.

In this thesis, we investigate both edge-cut partitioning in Chapter 5 and vertex-cut partitioning
in Chapters 3 and 4.

36 2. BACKGROUND

3
Heterogeneous Partitioning for

Distributed Graph Processing

As described in Chapter 2, distributed graph processing systems rely on suitable graph parti-
tioning algorithms to reduce overhead for communication and synchronization at runtime. In
this chapter, our target metric is communication costs, i.e., the observed network traffic dur-
ing graph processing between two workers weighted by the actual costs of using the network
link (for a more formal definition, please refer to Equation 3.2 in Section 3.1.2). This chap-
ter is based on previously published work [86], [87], [89]. Regarding this objective, we tailor
vertex-cut partitioning algorithms to the specific properties of distributed graph processing. We
motivate these properties in the following paragraphs.

Existing partitioning approaches for distributed graph systems work under the assumption that
decreasing the cut-size reduces communication costs due to less inter-worker traffic [34, 35].
But this holds only under two assumptions: vertex traffic homogeneity, i.e., processing each
vertex involves the same amount of communication overhead, and network costs homogeneity,
i.e., the underlying network links between each pair of workers have the same usage costs
(e.g., [34, 115]). However, these assumptions oversimplify the target objective, i.e., minimize
overall communication costs, for two reasons.

First, real-world vertex traffic is rarely homogeneous. This is due to computational hotspots,
where processing is unevenly distributed across graph areas and vertices. Hotspots mainly arise
for three causes.

I Vertices process different amounts of data. Examples are large-scale simulations of heart
cells, liquids or gases in motion, and car traffic in cities [125, 127], where each vertex

37

38 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

is responsible for a small part of the overall simulation. Vertices simulating real-world
hotspots (e.g., the Times Square in NY) have to process more data.

II Graph systems execute vertices a different number of times. This can be observed for
algorithms defining a convergence criteria for vertices. The graph system skips execu-
tion of converged vertices (dynamic scheduling [34]) leading to inactive graph areas and
therefore different frequencies of vertex execution. Concerning this, a popular example
is the PageRank algorithm [34].

III Graph algorithms inherently focus on specific graph areas. This includes user-centric
graph algorithms such as k-hop random walk, finding a k-clique [89], and graph pattern
matching. A prominent example is Facebook Graph Search, where users pose search
queries to the system (“find friends who tried this restaurant”).

In general, our evaluations show that vertex traffic often resembles a Pareto distribution, whereby
a higher percentage of the total traffic is contributed by a much lower percentage of the ver-
tices (see Section 3.1.2). Hence, we argue that assuming homogeneous vertex traffic misfits
real-world, heterogeneous and dynamic traffic conditions in modern graph processing systems.

Second, network-related costs, such as bandwidth, latency, or monetary costs, are subject to
large variations. Today, it is common to run graph analytics in the cloud, because of low
deployment costs and high scalability [19, 34, 68]. Network heterogeneity exists even in a sin-
gle data center where worker machines are connected via a tree-structured switch topology.
Machines connected to the same switch experience high-speed communication, while distant
machines suffer from degraded performance because of multi-hop networks [99]. Neverthe-
less, modern cloud infrastructures are geo-distributed [94]. Cloud providers such as Amazon,
Google, and Microsoft are deploying dozens of data centers world-wide to provide low latency
user-access. These data centers host global services such as Twitter that need to analyze large
amounts of data (e.g., user friendship relations). Geo-distributed data analytics spanning mul-
tiple data centers is often the only option [134]. For instance, data should be stored close to
the geo-distributed users to reduce access latency, but replication may be prohibitive for legal
reasons or efficiency considerations [51, 104]. In these scenarios, network link costs can differ
by orders of magnitudes (see Figure 3.1d, 3.13a, and Table 3.2). These heterogeneous network
costs significantly influence overall communication costs and therefore should be considered
when partitioning the graph.

To overcome these limitations, we developed GrapH, a distributed graph processing system for
in-memory data analytics on graph-structured data1. GrapH is aware of both, dynamic vertex
traffic and underlying network link costs. Considering this information, it adaptively partitions

1https://github.com/GrapH2/GrapH2.0

https://github.com/GrapH2/GrapH2.0

3.1. PRELIMINARIES AND PROBLEM FORMULATION 39

the graph at runtime to minimize overall communication costs by systematically avoiding fre-
quent communication over expensive network links. It provides the following contributions. (i)
An analysis of real-world vertex traffic for three different graph algorithms showing that vertex
traffic is highly skewed. (ii) A fast single-pass partitioning algorithm, named H-load, and a fully
distributed edge migration algorithm for runtime refinement, named H-adapt, solving the dy-
namic vertex traffic- and network-aware partitioning problem. H-adapt regulates the migration
frequency between workers (constant back-off migration) and eliminates the need to exchange
locking messages (lock-free migration). (iii) A method for online vertex traffic prediction,
named Adaptive-α that treats each individual vertex as an independent learner and thereby is
able to predict diverse and dynamic vertex traffic patterns. Compared to standard methods for
time series prediction, Adaptive-α reduces the prediction error by 10-30%. Moreover, we show
that accurate vertex traffic prediction is of major importance for efficiency of repartitioning in
terms of overall communication costs. (iv) Two distributed algorithms plus implementation in
the vertex-centric API solving two important graph problems: subgraph isomorphism to find
arbitrary subgraphs in the graph, and agent-based cellular automaton to simulate physical phe-
nomena such as mobility of citizens. In literature, there are currently no other vertex-centric
graph algorithms for distributed graph systems solving these two graph problems. (v) Exten-
sive evaluations on PageRank, subgraph isomorphism, and cellular automaton – for multiple
graph data sets with up to 1.4 billion edges – showing that GrapH reduces communication
costs by up to 60% and end-to-end graph processing latency (including overhead of dynamic
repartitioning) by more than 10% compared to state-of-the-art partitioners.

This chapter is structured as follows. We formulate the network- and traffic-aware dynamic
vertex-cut partitioning problem in Section 3.1, present the partitioning algorithms in Sec-
tion 3.2, introduce the vertex functions for subgraph isomorphism and cellular automaton in
Section 3.3, evaluate in Section 3.4, discuss related work in Section 3.5, and summarize in
Section 3.6.

3.1 Preliminaries and Problem Formulation

In this section, we provide preliminaries and present the network- and traffic-aware dynamic
partitioning problem.

3.1.1 Preliminaries

We assume the widely-used vertex-centric, iterative graph computation model from Power-
Graph [34]. In each iteration, the system executes the user-defined vertex function for all
active vertices and waits until they terminate (synchronized model, see Section 2.1.3). The ver-
tex function operates on user-defined vertex data and consists of three phases, Gather, Apply

40 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

20 40 60 80 100
Top-traffic vertices (%)

0

20

40

60

80

100

T
o
ta

l
tr

a
ff

ic
 (

%
)

(a)

20 40 60 80 100
Top-traffic vertices (%)

0

20

40

60

80

100

T
o
ta

l
tr

a
ff

ic
 (

%
)

(b)

20 40 60 80 100
Top-traffic vertices (%)

0

20

40

60

80

100

T
o
ta

l
tr

a
ff

ic
 (

%
)

(c)

Intra AZ Intra Reg. Inter Reg.
_

0.1

1

10

100

P
in

g
 l

a
te

n
cy

 (
m

s)

(d)

Figure 3.1: (a)-(c) Distribution functions of vertex traffic for PageRank, subgraph isomorphism,
and cellular automaton. (d) Latency between worker machines intra-Availability Zone (AZ),
inter-AZ and intra-region, and inter-region.

3.1. PRELIMINARIES AND PROBLEM FORMULATION 41

and Scatter (GAS). In the gather phase, each vertex aggregates data from its neighbors into a
gathered sum σ. In the apply phase, a vertex changes its local data using σ. In the scatter phase,
a vertex activates neighboring vertices for the next iteration. For example, in PageRank each
vertex has vertex data rank ∈ R, gathers the sum σ over all neighbors’ rank values, changes
its vertex data rank using σ (i.e., rank = 0.15+0.85∗σ), and activates neighbors, if rank has
changed more than a threshold.

To parallelize GAS execution, a graph is distributed onto multiple workers by cutting it through
edges or vertices (edge-cut or vertex-cut) [34]. Edge-cuts distribute vertices to partitions, i.e.,
an edge can connect vertices on different partitions, and vertex-cuts distribute edges, i.e., a
vertex can span multiple partitions, each having its own vertex replica. We formally denote
the set of partitions, where vertex u is replicated, as replica set Ru. The replication degree is
defined as the total number of vertex replicas. Because of its superior partitioning properties for
real-world graphs with power-law degree distribution [34], we use vertex-cut in this chapter.

Inter-partition communication happens only in the form of vertex traffic between replicas. More
precisely, if vertex v is distributed, replicas must communicate to access neighboring data. In
this paragraph and Figure 3.2, we describe the message flow of the GAS protocol as introduced
in [34]. The GAS protocol is well-researched for distributed graph systems that are based
on vertex-cut partitioning [18, 34, 111]. We follow this computational model in this work.
However, the conceptual contributions of heterogeneous-aware vertex-cut partitioning are not
dependent on the concrete choice of the synchronization protocol. A dedicated master replica
Mv, manages the distributed vertex function execution and keeps vertex data consistent on
the mirror replicas by exchanging three types of GAS messages (see Figure 3.2). First, a
master sends a gather request to each mirror, which returns a gather response containing an
aggregation of local neighboring data (e.g., summed page ranks). We denote the number of
bytes, exchanged in the gather phase between the master of vertex v and a mirror r in iteration
i as gv

r(i). Second, after computing the new vertex data in the apply phase, the master sends a
vertex data update to all mirrors (e.g., the new rank). The size of this message, av(i), depends
on the local vertex data on the master. Third, in order to schedule neighbors of v for future
execution, scatter requests of constant size s are exchanged between master and mirrors.

In general, vertex traffic between the master and the replicas of vertex v can vary due to a
different size of the vertex data and the different amount of gathered data (e.g. gather sum being
a union operation, see Section 3.3). In Equation 3.1, we define vertex traffic tv(i) of vertex v
in iteration i as the summed byte size of gather, apply, and scatter messages. In order to make
vertex traffic independent from the number of replicas to prevent partitioning oscillations (i.e.,
due to the wrong assumption that a vertex with good locality induces low traffic), we averaged
vertex traffic tv(i) of vertex v in iteration i over all replicas in the replica set Rv(i). Thus, the
formula describes the average vertex traffic between the master and the mirrors of vertex v in
iteration i.

42 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

Master replica Mirror replica 𝑟2Mirror replica 𝑟1

𝑣 𝑣 𝑣

Collect gathered sum 𝜎

Calculate apply

function

Overwrite vertex data

Schedule neighbors

Next iteration

(synchronize)

𝑔𝑟2
𝑣 (𝑖)

𝑎𝑣(𝑖)

𝑠

Figure 3.2: Message Flow of a single GAS iteration for vertex v.

tv(i) =
1

|Rv(i)| ∑
r∈Rv(i)

(gv
r(i)+av(i)+ s) (3.1)

3.1.2 Network- and Traffic-aware Dynamic Vertex-cut

Vertex traffic and network costs are heterogeneous. In Figure 3.1(a)-(c), we show vertex traffic
heterogeneity for three algorithms: PageRank, subgraph isomorphism and cellular automaton
(see Section 3.4 for details). The graph shows the x/y distribution: x% of the top-traffic vertices
are responsible for y% of overall traffic. For instance, PageRank is 20/65 distributed because
of different convergence behaviors of vertices as mentioned in the introduction of this chap-
ter. Subgraph isomorphism is more extreme with a 20/84 distribution because some vertices
match more subgraphs than others. Cellular automaton is highly imbalanced (20/100) because
vertices simulating unpopular regions in Beijing have almost zero traffic (see Section 3.4). Be-
sides vertex traffic, network communication is also subject to significant variations in terms of
bandwidth and latency, even in a single data center [19, 70, 142]. For Amazon EC2 workers,
we show orders-of-magnitude variations of latency (see Figure 3.1d). Likewise, many cloud
providers charge variable prices for intra and inter data center communication. For instance,
Amazon charges nothing for communication within the same availability zone (AZ), but for
communication across different AZs and regions, i.e., respectively 0.01$/GB and 0.02$/GB

3.1. PRELIMINARIES AND PROBLEM FORMULATION 43

Master/slave

Graph edge

Network link

Slave vertex

Master vertex

𝑢1 𝑢4

𝑢2

𝑢3

𝑢5
0.9 0.9

0.1

0.1 0.2

0.2

𝑢6

Traditional vertex-cut

replication degree: 2

costs: 0.9 × 𝟏 + 0.9 × 𝟏𝟎 = 9.9

Traffic- & network-aware vertex-cut

replication degree: 4
costs: 2 0.1 × 𝟏 + 2(0.2 × 𝟏𝟎) = 4.2

m1

m2

m3𝑢1

𝑢1

𝑢2

𝑢3

𝑢4

𝑢4

𝑢5

𝑢6

0.9

0.9

10

1
10

10

1
10

𝑢1

𝑢3𝑢2

𝑢4

𝑢3𝑢2

𝑢5

𝑢6

0.1 0.1

𝑢5 𝑢6

0.2

0.2

m1

m2

m3

(a) (b)

Network

link costs

Normalized

vertex traffic

Figure 3.3: (a) Vertex-cut minimizing replication degree. (b) Network- and traffic-aware vertex-
cut minimizing communication costs.

(see Table 3.2). We model this heterogeneity using a static, weighted worker topology, where
each pair of workers is associated with specific network-related costs. In Section 3.4, we state
precisely how the weighted worker topology can be determined in practical scenarios with very
low overhead.

Efficient graph partitioning should take into consideration these diverse costs. For example in
Figure 3.3(a), vertices are annotated with their (normalized) vertex traffic, also indicated by the
vertex size. Workers m1−m3 communicate via network links with different costs, given by the
weights in bold. The vertex-cut distributes vertices u1 and u4, both have traffic 0.9. Communi-
cation costs via a network link are the costs of the link multiplied by the traffic sent over this
link. For example, when measuring communication costs as monetary costs, sending 2GB over
a link that costs 0.02$ per GB leads to communication costs of 0.04$. We define the total com-
munication costs as the summed communication costs over all network links. In the example,
total communication costs are (0.9∗1)+(0.9∗10) = 9.9. Here, traditional vertex-cut leads to
minimal replication degree, but high communication costs, because high-traffic vertices u1 and
u4 induce more network overhead. To this end, we introduce the network- and traffic-aware
dynamic vertex-cut partitioning. The idea is to cut the graph on the low-traffic vertices to
decrease inter-partition communication. In Figure 3.3(b), we minimize communication by cut-
ting the graph on vertices u2,u3 and u5,u6. This increases the replication degree, but decreases
overall communication costs. Note that this partitioning could be improved even further by ex-

44 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

M The set of workers.

k The number of workers.

G = (V,E) The graph with vertex set V and edge set E.

Vm The set of vertices replicated on worker m.

I The set of all iterations.

Tm,m′ The network costs between workers m and m′

A Function mapping edges to workers.

Rv Replica set of vertex v.

Mv Master of replica set of vertex v.

tv(i) Vertex traffic of vertex v in iteration i.

t̂v(i) Vertex traffic estimation of vertex v for iteration i.

Lm(i) Load (summed vertex traffic) of worker m in iteration i.

C Capacity of exchange partner worker.

β(x) Byte size of serialized information x (e.g. vertex).

µ Aggressiveness parameter specifying willingness-to-move.

c+ Investment costs of migrating edges.

c− Payback costs in terms of saved future traffic.

Table 3.1: Notation overview.

ploiting heterogeneous network link costs. Suppose, the subgraph assignments of m1 and m3
were swapped. Then, the (relative) high traffic vertices u5,u6 communicate over the inexpen-
sive link (m1,m2), decreasing overall communication costs to 2(0.2∗1)+2(0.1∗10) = 2.4. In
Table 3.1, we summarize notation used in this chapter.

Problem Formulation: Let G = (V,E) be a directed graph with the vertex set V and edge set
E ∈ V ×V . Let M = {m1, ...,mk} be the set of all participating workers. The network cost
matrix T ∈ Rk×k assigns a cost value to each pair of workers (e.g., monetary costs for sending
one byte of data). Hence, Tm,m′ represents the network costs between workers m and m′. The
set of all iterations needed for the graph processing task be I = {0,1,2, ...}. Vertex traffic for
all iterations i ∈ I and vertices v ∈V is denoted as tv(i). The assignment function A : E, I→M
specifies the mapping of edges to workers in a given iteration. The replica set of vertex v in
iteration i based on assignment function A is denoted as RA

v (i). It represents the set of workers
maintaining a replica of v: RA

v (i) = {m|A((u,v), i) = m∨A((v,u), i) = m}. In the following,
we denote Rv to be v’s replica set under the assignment in the present context. One dedicated
replica Mv ∈ Rv is the master replica of vertex v.

Our goal is to find an optimal dynamic assignment of edges to workers minimizing overall
communication costs:

3.2. PARTITIONING ALGORITHMS 45

Worker placement Incoming traffic Outgoing traffic

Same AZ 0.00-0.01 $/GB 0.00-0.01 $/GB

Different AZ, same region 0.01 $/GB 0.01 $/GB

Different region 0.00 $/GB 0.02 $/GB

Internet 0.00 $/GB 0.00-0.09 $/GB

Table 3.2: Heterogeneous network link costs for AWS (Jan 2018).

Aopt = argmin
A ∑

i
∑
v∈V

∑
m∈RA

v (i)

tv(i) Tm,Mv
(3.2)

The load Lm(i) of worker m in iteration i is defined as the summed vertex traffic over all vertices
replicated on m in iteration i. To balance worker load, we require for each iteration i and worker
m (having vertices Vm) that load deviation is bounded by a small balancing factor λ > 1:

Lm(i) = ∑
v∈Vm

tv(i)< λ
∑v∈V tv(i)
|M|

. (3.3)

Theorem: The dynamic network- and traffic-aware partitioning problem is NP-hard.

Proof sketch: Reduce the NP-hard balanced vertex-cut problem to Equation 3.2. Set input:
I = {1}, tv(i) = 1, Tm1,m2 = 1. By, Aopt = argminA ∑i ∑v∈V ∑m∈RA

v (i) 1∗1 = argminA ∑v∈V |RA
v |,

Equation 3.2 becomes the network- and traffic-unaware vertex-cut problem, which is NP-hard
(e.g., [101]).

�

3.2 Partitioning Algorithms

In this section, we present two algorithms addressing the network- and traffic-aware partitioning
problem: H-load for pre-partitioning the graph and H-adapt for runtime refinement using
dynamic migration of edges.

46 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

Edge

file

… , 𝑒2, 𝑒1
H-load

High-cost

Low-cost

link

Phase 1: Partitioning

with heterogeneous (*)

replica synch

(*) Partitioning with

homogeneous replica

synch
Phase 2: Mapping to

worker machines with

heterogeneous network.

Edge stream

WorkersPartitions

Worker

Cluster

Partition

Cluster

Figure 3.4: Approach Overview H-load.

3.2.1 H-load: Initial Partitioning

Graph processing systems pre-partition the graph, so that each worker can load its partition into
local memory. To this end, we developed H-load, a fast pre-partitioning algorithm that consists
of two phases (see Figure 3.4). First, it divides the graph into k partitions using a vertex-
cut algorithm. Second, it determines a cost-efficient mapping from partitions to workers. We
describe these two phases in the following.

1) The goal of the first phase is to partition the graph into k balanced parts, while ignoring the
concrete mapping of partitions to workers. In order to improve partitioning performance of
billion-scale graphs, we assume a streaming setting: the graph is given as a stream of edges
e1,e2, ...,e|E| with ei ∈ E and we consecutively read and assign one edge at a time to a partition
until all edges are assigned. For instance, PowerGraph [34] greedily reduces the replication
degree by moving edges to the partitions where incident vertices already reside. However, the
PowerGraph partitioning leads to homogeneous replica synchronization between each pair of
partitions as they share a similar amount of replicas (see Figure 3.4 right).

In order to exploit heterogeneity of network link costs, inter-partition traffic must be heteroge-
neous as well: partitions exchanging more traffic should be mapped to workers with low-cost
network links (see Figure 3.4 center). Therefore, our aim in the first phase of H-load is to
produce a clustered partitioning consisting of partition clusters such that two partitions with
many shared replicas are likely to reside in the same partition cluster. The partition clusters are

3.2. PARTITIONING ALGORITHMS 47

designed to have high intra- and low inter-cluster traffic, i.e., more traffic will be exchanged
between partitions in the same partition cluster.

How can we ensure that a mapping from these partition clusters to the workers exists such that
communication costs during graph processing are minimal? H-load addresses this problem by
assuming that the network consists of several worker clusters with low intra-cluster and high
inter-cluster costs (e.g., EC2 instances running in different availability zones). This clustering
is reflected in the cost matrix T . The number of worker clusters c can be determined from
the matrix T using well-established clustering methods [39]. We use the number of worker
clusters c in the first phase of H-load to generate c partition clusters by grouping the partitions
into equal-sized clusters and assigning edges to partitions such that replicas preferentially lie
in the same partition cluster. Hence, the relation between the worker clusters and the partition
clusters is the following: we use the number of worker clusters c to produce c partition clus-
ters. Therefore, the first phase operates independently of the concrete mapping of partitions to
workers.

Each edge (u,v) is assigned to a partition p as follows. If neither vertex u nor vertex v resides
in any partition, assign (u,v) to the least loaded partition. If there are partitions where both
vertices u and v reside, assign (u,v) to the least loaded of those partitions. Otherwise, a new
replica has to be created (say, of vertex v). We choose partition p, such that the new replica of
v preferentially lies in the same partition cluster as already existing replicas of v – simply by
counting the number of replicas of v in each partition cluster. With this method, our algorithm
ensures a clustered traffic behavior: partitions in the same partition cluster are more likely to
share the same vertices than partitions in different clusters. Thus, two partitions in the same
partition cluster are expected to exchange more traffic than two partitions in different partition
clusters.

2) The second phase of the algorithm determines a mapping from the |M| partitions to |M|
workers while minimizing overall communication costs. A minimal-cost mapping of partitions
to workers would assign two partitions with high inter-partition traffic to workers connected
via a low-cost network link (see Figure 3.4). This is an instance of the well-known quadratic
assignment problem: map |M| factories (i.e., partitions) to |M| locations (i.e., workers), so
that the mapping has minimal costs of factories sending their goods to other factories (i.e.,
communication costs). We used the iterated local search algorithm of Stützle et al. [124] to
minimize (communication) costs. Initially, partitions are randomly mapped to workers. Then
the algorithm iteratively improves the total costs using the following method. Find two workers
such that exchanging partition assignments results in lower total communication costs. For
example in Figure 3.3, exchanging partition assignments of workers m1 and m3 results in lower
total communication costs. If an improvement is found, it is applied immediately. In order to
address convergence to local minima, we perturb a local optimal solution by exchanging two
random assignments. Note, that this algorithm is computationally feasible, because the problem

48 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

set is relatively small with size |M|<< |V |. Clearly, the above method assumes that the traffic
exchanged between each pair of partitions is known (i.e., cumulative traffic exchanged between
vertex replicas shared by each pair of partitions). This information can be determined from
previous executions of the GAS algorithm. Otherwise, homogeneous traffic between vertex
replicas is assumed.

3.2.2 H-adapt: Distributed Migration of Edges

The H-load algorithm is suitable for a static network-aware and traffic-aware partitioning. How-
ever, often the vertex traffic changes dynamically at runtime. To this end, we developed the
distributed edge-migration algorithm H-adapt solving the dynamic heterogeneity-aware parti-
tioning problem (note that this algorithm extends our previous algorithm H-move [86] by three
optimizations (i) adaptive-α, (ii) constant back-off migration, and (iii) lock-free migration).
The idea is that each worker locally reduces the communication costs by migrating edges to
distant workers. To this end, we define the term bag-of-edges as the set of edges to be mi-
grated. Workers migrate bag-of-edges in parallel after each GAS iteration.

Approach overview: The overall migration strategy is given in Algorithm 1. After activation
of the migration algorithm (line 1), worker m first selects partner worker m′ (line 2) and then
calculates the bag-of-edges to be send to m′ (line 3). In order to prevent inconsistencies due to
parallel updates on the distributed graph, worker m requests locks for all vertices in the bag-
of-edges (line 4). Afterwards, m updates the bag-of-edges to contain only those edges, whose
endpoint vertices could be locked (line 5) and determines, whether sending the updated bag-
of-edges results in lower total communication costs (line 6). When sending the bag-of-edges,
communication costs change due to modifications of the vertex replica sets. To calculate ∆c
in line 6, worker m considers both: the migration overhead c+ of sending the bag-of-edges,
as well as the decrease of communication costs c− when improving the partitioning. If ∆c is
negative, the bag-of-edges is migrated to m′. Finally, worker m releases all held locks in line 9.

Algorithm 1 Migration algorithm on worker m.
1: waitForActivation()
2: m′← selectPartner()
3: b← bagO f Edges(m′)
4: lock(b)
5: b← updateLocked(b)
6: ∆c← c+− c−
7: if ∆c < 0 then
8: migrateBag(b)

9: releaseLocks(b)

We give an example of this procedure in Figure 3.5. Two workers m and m′ have replicas of
high-traffic vertices u2 and u3. In order to reduce communication costs, m decides to send the

3.2. PARTITIONING ALGORITHMS 49

Master/slave

Graph edge

Mirror

Master vertex

m m’0.4

0.50.1

0.1

0.1

0.1

Send bag-of-edges

m m’
𝑢1 𝑢2

𝑢3𝑢4

𝑢2

𝑢3 𝑢4

𝑢1

𝑢4

𝑢1 𝑢2

𝑢3

Figure 3.5: Example: bag-of-edges migration to reduce inter-partition traffic.

bag-of-edges b = {(u1,u2),(u2,u3),(u3,u4),(u4,u1)} to m′. Worker m′ receives b and adds all
edges in b to the local subgraph. The right side of the Figure 3.5 shows the final state after
migration of b. Here, low-traffic vertices u1 and u4 are cut leading to less inter-partition traffic.
In the following, we describe the proposed H-adapt algorithm (see Algorithm 1) in more details.

Selection of partner and bag-of-edges

Which worker to select as exchange partner? Intuitively, two workers sharing high-traffic repli-
cas are strong candidates for exchanging bag-of-edges, because improving their partitioning
can greatly reduce the overall communication costs. On the other hand, two workers sharing
no or only low-traffic replicas have low potential to improve overall costs. Hence, some work-
ers are more promising partners than other workers for the edge migration. Therefore, each
worker m maintains a candidate list of potential exchange partners (with decreasing priority).
Worker m computes the candidate list by sorting neighboring workers w.r.t. the total amount
of exchanged traffic. In each round of Algorithm 1, we iteratively select the top-most worker
from the list as exchange partner and remove it from the list. Once the list is empty (i.e., all
workers have exchanged bag-of-edges with each other), it is recomputed using the most recent
traffic statistics.

However, this strategy leads to suboptimal or redundant selections of exchange partners in the
following three cases. First, worker m has already selected worker m′ in one of the previous
i′ iterations and can only find minor improvements of the partitioning. Second, worker m has
less load than worker m′ and the load balancing requirement prohibits any migration from m
to m′. Third, workers m and m′ share no common replicas. In these cases, we do not expect
to find significant improvements of the current partitioning. Therefore, we remove worker m′

from the candidate list for a constant number of iterations. During this time period, worker m′

can not be selected as exchange partner (hence, denoted as constant back-off migration). We
set the parameter for back-off migration to half the number of partitions, i.e., k/2, and set it to
infinity as soon the algorithm detects a convergence that is assumed when the bag-of-edges for
an exchange partner is empty.

50 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

Next, we determine the maximal size of the bag-of-edges to be sent to m′—depending on how
balanced the workload is between workers—in order to improve workload balancing between
these two workers (see Equation 3.3). Therefore, we introduce the notion of capacity of a
worker m′, i.e., the maximum amount of additional load, worker m′ can carry. Capacity is
defined as half the difference of loads Lm′ and Lm of the receiving and the sending worker:
C = (Lm′ −Lm)/2. To learn about the current load Lm′ of worker m′, worker m sends a request
to m′. Using the capacity, worker m can control the size of the bag-of-edges, such that load
deviation is still bounded. For example, if sending the bag-of-edges results in a new replica of
vertex v on m′, this increases load of m′ by the vertex traffic of v. If this violates load balancing
between m and m′, worker m will not include v into the bag-of-edges.

Once the exchange partner is selected and we know its capacity, we determine a bag-of-edges
(in short: bag) to be send. Selecting a suitable bag is crucial for optimizing communication
costs and migration overhead. Theoretically, the perfect bag could be any subset out of p edges
on a worker (i.e., 2p subsets). In order to keep the migration phase lean, we developed a fast
heuristic to find a bag improving communication costs (see Algorithm 2). Initially, worker m
determines the set of candidate vertices, those replicated on both workers, because they are
responsible for all the traffic between m and m′. Worker m sorts the candidates by descending
vertex traffic in order to focus on the high-traffic vertices first (line 3). Then, m iterates the
following steps until m′ has no more capacity. It checks for the top-most candidate vertex (line
5), whether sending all adjacent edges results in lower total communication costs of the overall
graph processing (line 6-7, cf Section 3.2.2). If the total communication costs would decrease
when sending the edges, worker m adds them to the bag (line 8-9).

Algorithm 2 Determining the bag-of-edges to exchange.
1: function BAGOFEDGES(m′):
2: bag← []

3: candidates← sort(ad jacent(m′))
4: while hasCapacity(m′,bag) do
5: v← candidates.removeFirst()
6: b←{(u,v)|u 6= v}
7: ∆c← c+− c−
8: if ∆c < 0 then
9: bag← bag+b

return bag

Calculation of costs

Clearly, migrating bag b from one worker to another is only beneficial, if it results in lower
overall costs (i.e., line 6 in Algorithm 1, and line 7 in Algorithm 2). In general, two types
of costs have to be considered in calculating the resulting overall costs: investment costs and
payback costs. Investment costs represents the overhead for migrating the bag and should be

3.2. PARTITIONING ALGORITHMS 51

avoided. Payback costs are the saved costs after migrating bag b in the form of less future
inter-partition traffic. In the following, we formulate both costs.

Investment costs: After sending b to m′, m can remove isolated replicas that have no local edges
anymore (Figure 3.5 vertices u2,u3). If worker m is the master Mv of a vertex v to be removed,
i.e., Mv = m, we have to select a new master after removing v from m. We set the partner
worker m′ to be the new master of v: M ′

v = m′. On the other hand, some vertices may not
exist on m′ leading to creation of new replicas (Figure 3.5 vertices u1,u4). In both cases, the
replica set Ru of a vertex u might have changed (i.e., remove m or add m′ to Ru). Because of
this, m has to send an update to all workers in Ru with the new vertex replica set, denoted as R′u.
Additionally, when creating a new replica on m′, worker m has to send the state of v, i.e., vertex
data and meta information such as the vertex id. This can be very expensive for large vertex
data, and should be taken into account when deciding whether to migrate a bag. Together, the
investment costs are the sum of three terms. The first term calculates the costs of sending the
bag b to m′. The second term calculates the costs of sending new replicas to m′, if needed. The
third term calculates the costs of updating workers in all replica sets that have changed.

c+ = ∑
e=(u,v)∈b

β(e)Tm,m′+∑
u∈Vb

δ(u)β(u)Tm,m′+∑
u∈V ′b,r∈Ru∪R′u

β(Ru)Tm,r, (3.4)

where (i) the function β(x) returns the number of bytes needed to encode x (to be sent over
the network), (ii) the indication function δ(u) returns 1, if worker m′ has no local replica of u,
otherwise 0, (iii) Vb is the set of all vertices in bag b, and (iv) V ′b is the set of all vertices whose
replica sets will change when sending the bag b to m′.

Payback costs: we can also save costs when sending bag b from m to m′. Suppose the repli-
cation degree decreases because of sending (u,v), i.e., |R′u| < |Ru| or |R′v| < |Rv|. Then, we
save for each iteration (starting from the current iteration i0) the costs of exchanging gather,
apply, and scatter messages across replicas, i.e., the vertex traffic tv(i) of vertex v in iteration
i. Theoretically, exact payback costs are given by the following formula that calculates for all
future iterations and each vertex in the bag the difference of the new costs and the old costs of
v’s replica set.

c∗− = ∑
i>i0

∑
v∈Vb

(∑
r∈R′v

tv(i)Tr,M ′
v
− ∑

r∈Rv

tv(i)Tr,Mv
) (3.5)

Here, we assumed that vertex traffic is known for all future iterations. This is not the case in
real systems. Therefore, we describe next, how to estimate the payback costs in the presence
of uncertainty about future vertex traffic.

52 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

Vertex Traffic Prediction

To estimate payback costs, we first need to predict vertex traffic in future iterations. More
formally, given vertex traffic tv(0), tv(1), ..., tv(i) of vertex v, we estimate traffic values tv(i+
1), ..., tv(|I|). The prediction should be fast with low computational overhead and low memory
requirements, because we have to predict vertex traffic in each migration phase for millions of
vertices. We investigate three well-known methods (compare [46]) for time series prediction of
the next traffic value tv(i+1) that fit our requirements.

• The first method is most recent value (denoted as Last) taking the last traffic value as
prediction for the next traffic value: t̂v(i+1) = tv(i).

• The second method is incremental moving average (abbreviated as MA) with the idea of
using the moving average of the last w observations, while not storing the values in the
window: t̂v(i+1) = t̂v(i)(w−1)+tv(i)

w .

• The third method is incremental exponential average (abbreviated as EA) calculating the
prediction based on the previous prediction and the last observed traffic value: t̂v(i+1) =
αtv(i)+ (1−α)t̂v(i). The parameter α ∈ [0,1] specifies the amount of decaying older
traffic values and thus, the importance of recently observed traffic.

Which prediction method performs best? In Figure 3.14, we compare overall system perfor-
mance for these methods with different parameter choices, i.e., window sizes w and decay
parameters α. In summary, the third method, i.e., exponential averaging, leads to the best over-
all system performance for certain choices of the parameter α. The reason is that exponential
averaging is able to express both rapid (i.e., short term) and gradual (i.e., long term) changes in
vertex traffic by varying the parameter α. For instance, setting α to a high value (e.g. α = 0.9)
is better for predicting rapidly changing vertex traffic whereas setting α to a low value (e.g.
α = 0.1) leads to more accurate long term traffic pattern prediction. A major challenge is to
select the correct parameter α according to the concrete traffic pattern of the graph algorithm.
Furthermore, assuming a global and static parameter value α for all vertices is unrealistic for
many applications such as social simulations, where some vertices are responsible for simu-
lating long-term, repeating movement patterns (e.g. in a work environment) and others for
simulating short-term, unique movement patterns (e.g. a flash mob). In such cases, the graph
system should select the parameter α automatically and specifically for each vertex.

Adaptive-α: To this end, we developed our method Adaptive-α where each vertex learns its
individual prediction model by dynamically optimizing α at runtime. This releases the system
administrator from the burden of choosing the optimal parameter value and empowers vertices
to catch their individual diverse and dynamic traffic patterns. In more details, each vertex
continuously monitors the accuracy of its predictions by comparing its previous vertex traffic

3.2. PARTITIONING ALGORITHMS 53

predictions with the actually observed vertex traffic. For a given α, the prediction accuracy
of a vertex v in iteration i can be quantified by using the error function ev,i(α) as shown in
Equation 3.6.

ev,i(α) = (tv(i)− t̂v(i))2 (3.6)

In order to find the value of α that minimizes the error function, we set the first order derivative
of Equation 3.6 to zero, i.e., ∂ev,i

∂α
= 0, and calculate the extremum of ev,i(α) as follows:

∂

∂α
(tv(i)− (αtv(i−1)+(1−α)t̂v(i−1)))2 = 0 (3.7)

⇔ αmin := α =
t̂v(i−1)− tv(i)

t̂v(i−1)− tv(i−1)
(3.8)

If the extremum is a local minimum (i.e., the second order derivative is greater than zero) and
αmin ∈ [0,1], we set α = αmin. Note that each vertex can quickly calculate αmin by simply
applying the closed formula in Equation 3.8 (see Section 3.4, Figure 3.12c).

With the above mentioned methods, we can determine the vertex traffic estimation for the next
iteration. However, Equation 3.5 expects a vertex traffic value for all future iterations. In gen-
eral, accuracy of the predicted vertex traffic t̂v(i) can decrease with increasing i, because vertex
traffic patterns may change over time. Therefore, we introduce a factor µ representing the min-
imum number of iterations we expect to save communication costs as a result of migrating bag
b. This parameter specifies the aggressiveness with which migration should be performed. We
set it to the total number of iterations specified by the GAS algorithm minus the current itera-
tion, i.e., to the (expected) number of iterations left in the algorithm. Together, our estimated
payback costs are the following (denoting the new master of vertex v as M ′

v and the old master
as Mv – see Equation 3.5).

c− = µ ∑
v∈Vb

(∑
r∈R′v

t̂v(i+1)Tr,M ′
v
− ∑

r∈Rv

t̂v(i+1)Tr,Mv
) (3.9)

Lock-free Migration

When two workers independently migrate edges and change replica sets of vertices, incon-
sistencies of the data graph can arise. In Figure 3.6, we give an example. Workers m1-m4
maintain a replica of vertex u. Initially, all workers have the same view of the replica set
{m1,m2,m3,m4}. Now, suppose worker m4 migrates edge (u,v1) to worker m3. At the same

54 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

m1

m3

𝑢
𝑢

𝑢 𝑢𝑣2

𝑣1

m2

2) Send edge (𝑢, 𝑣2)

Replica sets

Initial 𝑚1,𝑚2,𝑚3,𝒎𝟒
Lost 2) 𝑚1,𝑚2,𝒎𝟑
Lost 1) 𝑚2,𝑚3,𝒎𝟒
Seq: 1) -> 2) 𝑚2,𝒎𝟑

m4

1) Send edge (𝑢, 𝑣1)

master

Figure 3.6: Lost update problem for parallel edge migration.

time, worker m1 migrates edge (u,v2) to m2. Both workers m1 and m4 remove the local replica
of vertex u, if no incident edge exists on the respective worker. In order to synchronize the
replica sets, worker m4 (m1) has to update all other workers having a replica of u with the new
replica set. Worker m4 sends the new replica set {m1,m2,m3} to all workers, while worker m1
sends {m2,m3,m4}. However, different workers can receive these updates in different orders
leading to inconsistent views on the replica sets (lost update problems). Instead, sequential
updates would result in a consistent state (e.g. worker m4 changes the replica set before worker
m1).

To guarantee sequential updates during edge migration, the standard procedure is to send lock-
ing requests to the masters of the vertices to be migrated [86]. More precisely, a worker m locks
endpoint vertices in the bag-of-edges to be sent to the partner worker m′. For vertex u it sends a
locking request to the master Mu. If vertex u is already locked, the master worker returns f alse,
otherwise it locks u and returns true. If a worker holds a lock, no other worker can change the
replica set of a vertex and the distributed graph is always in a consistent state.

However, acquiring all locks via locking messages leads to significant latency penalty (at least
one round trip time per migration phase) and message overhead (one locking message per
vertex in the bag-of-edges). To save this additional overhead, we designed a so called implicit
locking scheme that enables workers to acquire locks for vertices without the need for explicitly
exchanging lock messages. In Algorithm 3, we describe our implicit locking scheme. The
given function returns true if worker m owns the lock for vertex v. In order to enable each
worker m to migrate each combination of vertices eventually, worker m possesses locks for all
vertices every k-th iteration (line 2)—the value k being the number of participating workers.
This ensures fairness because each worker has an equal chance of getting all locks. However,
a worker does not need the lock for vertex v if it does not possess a vertex replica of vertex v.
Therefore, the lock of this vertex v is given to another worker that contains a replica of vertex
v and therefore might actually need it for migration (see formula in line 4). This formulaic
approach does not require any communication overhead at runtime: the workers execute the
same formula having the same values for the current iteration and the replica set Rv. Thus, they

3.3. GRAPH ALGORITHMS 55

also calculate the same value for the worker currently having the lock of vertex v. To sum up,
this simple technique allocates vertex locks without inducing any locking message.

Algorithm 3 Implicit locking scheme. Does worker m have the lock for vertex v?
1: function HASLOCK(m,v)
2: m̂← iteration() mod k
3: if m̂ 6∈ Rv then
4: m̂← Rv.sort()[iteration() mod |Rv|]

5: return m == m̂

3.3 Graph Algorithms

In order to evaluate our partitioning methods and heterogeneity of vertex traffic, we have im-
plemented three important graph algorithms: PageRank (see [34]), subgraph isomorphism, and
social simulations via agent-based cellular automaton, denoted as PR, SI, and CA, respectively.
For SI and CA there is, to the best of our knowledge, no vertex-centric algorithm, so we have
designed novel algorithms and implemented them in the GAS API.

3.3.1 Subgraph Isomorphism

The NP-complete subgraph isomorphism problem addresses the question, whether a graph con-
tains a subgraph that is isomorphic to a specified subgraph [130]. Given an undirected graph
G = (V,E) and a graph pattern P = (VP,EP), the problem of subgraph isomorphism is to find
subgraphs Gsub = (Vsub,Esub), with Vsub ⊆ V,Esub ⊆ E, that are isomorphic to the graph pat-
tern P (see [130]). More precisely, there is a bijective mapping (in the following denoted as
matching) f : Vsub → VP, such that (u,v) ∈ Esub ⇔ (f (u), f (v)) ∈ EP. Each graph vertex can
have an optional label (e.g., a category to which the graph vertex belongs). In this case, the la-
beled SI additionally requires both vertices in Vsub and VP to have matching labels. Specifically,
the following condition has to hold for vertex v ∈ Vsub: l(v) = l(f (v)) for the label function
l : V ∪VP→ R (see [79]).

The main idea of our GAS algorithm is to solve SI using a vertex-centric message passing
scheme. Conceptually, a message represents a partially matched graph pattern, i.e., we asso-
ciate graph vertices with pattern vertices (assuming they have matching labels). We denote a
message as partially matched if we have not yet associated all pattern vertices with graph ver-
tices. In contrast, a fully matched message associates one unique graph vertex with each pattern
vertex in the message. If a message is fully matched, we have found a matching subgraph.
Eventually, we are guaranteed to retrieve matching subgraphs (if they exist) by repeatedly at-
tempting to match a pattern vertex in the message and sending the message to all neighbors,

56 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

…

…

𝑣1

𝑣2

𝑣3
𝑣4

[𝑣2]

𝑣2

[𝑣3]

𝑣2𝑣3

[𝑣4]

𝑣2𝑣3𝑣4

[𝑣4, 𝑣3]
𝑣2𝑣3𝑣4

[𝑣4, 𝑣3, 𝑣2]
𝑣2𝑣3𝑣4

[𝑣1]

𝑣2𝑣3𝑣4 𝑣1

(I) 𝑣2 matches

pattern vertex

(II) 𝑣3 matches

pattern vertex

(III) 𝑣4 matches pattern vertex

Visited List

Pattern Message

(IV) 𝑣3 has already

matched pattern vertex

(V) 𝑣2 has already

matched pattern vertex

(VI) 𝑣1 matches

last pattern vertex
Reset

visited list

(a)

(b) Graph
Subset of vertices

that match the

pattern

Message

path

Discarded

message

Figure 3.7: (a) Subgraph isomorphism example – perspective of vertex v2. We show the path
of a single message. (b) The algorithm considers only messages that travel within the matching
subgraph.

3.3. GRAPH ALGORITHMS 57

because this creates a message for each possible path in the graph and one of these paths leads
to a fully matched message.

However, the number of paths and therefore the number of messages grows exponentially –
considering that a message is gathered by all neighbors in each iteration. To limit the number
of concurrent messages traversing the graph, we focus on these messages that traverse only
graph vertices that can match exactly one pattern vertex and discard all other messages. In
Figure 3.7(a), we exemplify the path of a single message (I) to (VI) that subsequently tra-
verses graph vertices attempting to match a pattern vertex in the message. Vertices that have
already matched a pattern vertex (IV)-(V) simply forward the message to their neighbors. The
example shows that the message traverses some vertices twice, if they have already matched
a pattern vertex. In Figure 3.7(b), we sketch a graph containing a subgraph that matches the
pattern. Also, we give a specific message traversing the graph to find the matching subgraph.
A message that has traversed all vertices in the subgraph would successfully return the found
subgraph. Messages that leave the subgraph of vertices matching a pattern vertex are dis-
carded immediately (in contrast to the naive approach given above). This reduces the number
of concurrent messages traversing inefficient paths. Furthermore, we break infinite message
forwarding cycles if there is no progress in terms of newly matched pattern vertices. To this
end, we maintain a list of vertices, denoted as visited, that have already processed this message
(see line 14).

In Algorithm 4, we specify the vertex data and the gather, apply, and scatter phases of the
vertex function. The vertex data consists of the graph pattern P = (VP,EP) and the set of
messages ω to be processed by graph vertex u. We define a message as a tuple (X ,visited)
where X ⊂ V ×Vp specifies the set of current matches between graph vertices and pattern
vertices. In the gather phase (line 4), vertex u collects the messages stored at neighboring
vertex v and performs a union operation over all gathered messages from neighboring vertices
(line 6). In the apply phase, vertex u processes all gathered messages by matching pattern
vertices if possible (lines 8-23). If a graph vertex u has already matched a pattern vertex,
it forwards the message to neighbors by adding them to the message set Du.ω (see line 15).
Note that the function match(...) (line 18) returns true, if for all edges in the pattern there are
corresponding edges in the graph (i.e., ∀(u1,u′1),(u2,u′2) ∈ X : (u′1,u

′
2) ∈ Ep =⇒ (u1,u2) ∈ E)

and the labels of associated graph and pattern vertices match. Graph vertices that can not
match a pattern vertex (or that detect a message loop) drop the message. In the scatter phase
(line 24-26), vertex u schedules neighboring vertex v, if u has partially matched messages to be
processed by vertex v.

58 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

Algorithm 4 Subgraph isomorphism algorithm.
1: Vertex data Du:
2: P = (VP,EP)

3: ω // The set of partially matched pattern messages

4: function GATHER(u,v)
5: return Dv.ω

6: function SUM(S1,S2)
7: return S1∪S2

8: function APPLY(Du,S)
9: if First execution of apply then

10: Du.ω← {({(u,vP)}, [u])|u matches vP ∈ VP} // Create message for each matching of graph vertex u
and a pattern vertex

11: else
12: Du.ω = /0

13: for all (X ,visited) ∈ S do
14: if ∃(u,vP) ∈ X ∧u 6∈ visited then
15: Du.ω← Du.ω∪{(X ,visited +[u])}
16: else if not ∃(u,vP) ∈ X then
17: for all c ∈ neighbors(visited[−1]) do
18: if match(X ∪{(u,c)}) then
19: X ← X ∪{(u,c)}
20: visited← [u]
21: Du.ω← Du.ω∪{(X ,visited)}
22: if |X |== |VP| then
23: X is a correct matching

24: function SCATTER(Du,Dv)
25: if Du.ω 6= /0 then
26: Activate({u,v})

3.3. GRAPH ALGORITHMS 59

Agent 1

Known

location

Predicted

trajectory

Latitude

Longitude

Simulation cell

vertex 𝑢
𝑢

…

…

𝑣1

𝑣2

𝑣3

…

Agent 2

Figure 3.8: Agent-based social simulations via cellular automaton.

3.3.2 Cellular Automaton

The powerful and well-established model of cellular automaton is able to express various prob-
lems in several research areas [57] such as simulations of complex systems. A cellular automa-
ton models the problem space as a grid of cells, each with a finite number of states. A cell
iteratively calculates its own state based on the states of neighboring cells. Cellular automata
fit well into the vertex-centric programming model of recent graph processing systems because
of the neighborhood relation of the cells and the local nature of iterative state computation
based on neighboring cells.

We implemented an agent-based variant for simulating real-world movements of people in Bei-
jing2. [125] In Figure 3.8, we give an example of agent-based simulations. Given are two
moving agents in an area described as a two-dimensional euclidean space using latitude and
longitude coordinates. For each agent, a series of known locations at certain points in time (i.e.,
movement trajectory L) is given, e.g., extracted from GPS signals of user smartphones [107].
The area is divided into a grid of cells, whereby each cell is assigned to a graph vertex. A
graph vertex is connected to all vertices of neighboring cells and is responsible for all agents
within its assigned cell. In the example, vertex u is connected to vertices v1,v2,v3 and sim-
ulates movement of agent 2. More precisely, the vertex data consists of a set of agents A,

2http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/

http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/

60 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

each agent maintains its current location loc and the set of known locations L, both defined by
(latitude,longitude,time) coordinates (see Algorithm 5).

We use a simple linear interpolation between the known locations of the agent to estimate its
location for each intermediate time step. In each iteration, we move forward ∆t time steps along
the estimated movement direction of the agent. Each vertex u only processes agents whose
current locations loc = (x,y, t) fall into vertex u’s responsibility area, i.e., xmin ≤ x < xmax and
ymin ≤ y < ymax. As soon as the agent leaves the responsibility area, the agent is sent to the
neighboring vertex v1.

In the gather phase, vertex u collects agents from a neighboring vertex v that are in u’s respon-
sibility area (line 5). The sum function performs a simple union operation over all gathered
agents. In the apply phase, vertex u adds all gathered agents to its local agents A (line 9) and
removes all agents that have left the responsibility area of vertex u (line 10). Then the location
of all agents is updated by incrementing time by ∆t (lines 11-14) using linear interpolation to
estimate the agent’s current location loc. In the scatter phase, vertex u activates itself if he
possesses local agents. Finally, vertex u activates neighboring vertices if u has local agents in
A that have left v’s responsibility area (line 18).

Algorithm 5 Cellular automaton algorithm of vertex u.
1: Vertex data Du:
2: A // The set of local agents
3: Cell // Responsibility area

4: function GATHER(u,v)
5: return {((x,y, t),L) ∈ Dv.A|(x,y) ∈Cell}

6: function SUM(S1,S2)
7: return S1∪S2

8: function APPLY(u,S)
9: Du.A← Du.A∪S

10: Du.A← Du.A\{((x,y, t),L) ∈ Du.A|(x,y) 6∈Cell} // Remove the agents that have left the cell
11: for all (loc,L) ∈ Du.A do
12: last← previous location in L
13: next← next location in L
14: loc← interpolateLocation(last,next,∆t)

15: function SCATTER(u,v)
16: if Du.A 6= /0 then
17: Activate(u)

18: if |{((x,y, t),L) ∈ Du.A|(x,y) 6∈Cell}|> 0 then
19: Activate(v)

3.4. EVALUATIONS 61

Name |V | |E|

Twitter 81,308 1,768,149

GoogleWeb 875,713 5,105,039

Web 41,291,594 1,150,725,436

TwitterLarge 41,652,230 1,468,365,182

Table 3.3: Real-world graphs for evaluations.

3.4 Evaluations

In the following, we present evaluations for GrapH on two computing clusters for three different
algorithms—PageRank, subgraph isomorphism, and cellular automaton—on several real-world
graphs given in Table 3.3 with up to 1.4 billion edges3. We compare H-load and H-adapt against
both existing static vertex-cut approaches, i.e., hashing of edges (Hash) and PowerGraph (PG)
[34, 35], as well as traffic- and network-agnostic algorithmic variants.

Evaluation Setup: We have implemented GrapH in the Java programming language (>
10,000 lines of code). GrapH consists of a master worker and multiple client workers perform-
ing graph analytics. The master receives a sequence of graph processing queries q1,q2,q3, ...

consisting of user specified GAS algorithms. The graph system executes these queries in a syn-
chronized manner, i.e., one after another. All workers communicate with each other directly
via TCP/IP.

We used four computing infrastructures with homogeneous and heterogeneous network costs.
(i) The homogeneous computing cluster (ComputeC) consists of 12 machines, each with 8
cores (3.0GHz) and 32GB RAM, interconnected with 1 Gbps Ethernet. (ii) Furthermore, we
performed evaluations on an in-house shared memory machine (ComputeM) with 32 cores
(2.3GHz) and 280GB RAM. Unless stated otherwise, we modeled network costs in ComputeC
and ComputeM as follows, ∀m,m′ ∈ M : Tm,m = 0∧m 6= m′ → Tm,m′ = 1. (iii) The heteroge-
neous computing cluster (CloudC) is deployed in the Amazon cloud using 8 geographically
distributed EC2 instances (1 virtual CPU with 3.3 GHz and 1 GB RAM) that are distributed
across two regions, US East (Virginia) and EU (Frankfurt), and four different availability zones.
As network costs between these instances, we used the monetary costs charged by Amazon
(see Table 3.2). If not mentioned otherwise, the experiments are performed on CloudC. (iv)
The computing infrastructure (CloudM) consists of two powerful EC2 multi-core machines in
the same availability zone (m4.16xlarge) with 64 virtual CPUs and 256GB RAM. Scaling up
computation on a small number of powerful machines becomes more and more common in

3http://konect.uni-koblenz.de/networks/twitter,http://snap.stanford.edu/data

http://konect.uni-koblenz.de/networks/twitter, http://snap.stanford.edu/data

62 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

Traffic-agnosticTraffic-agnostic

(a) PR on Twitter.

Network-agnostic

(b) PR on GoogleWeb.

Figure 3.9: (a) Traffic- and (b) network-awareness reduce communication costs.

0

25

50

75

100

C
o
st

s
(%

) PG

PG+H-adapt

Overhead

100 300 500 700
Iterations

0

2×10−3

(a) PR on GoogleWeb.

GoogleWeb TwitterL
0

20

40

60

80

100

C
o
st

s
(%

)
Hash

PG

H-load

(b) Pre-partitionings.

Figure 3.10: (a) H-adapt reduces communication costs with low overhead. (b) Pre-partitioning
with H-load reduces communication costs.

recent years [155]. GrapH supports scaling up by simply creating multiple workers running on
the same machine (see Chapter 2). This leads to heterogenous network costs: workers placed
on the same multi-core machine have relatively low network costs while remote workers have
relatively high network costs.

However, as distributed graph processing mainly focuses on scaling out, our default setting is
ComputeC or CloudC with one worker per machine. The network costs matrix T is calculated
based on packet round-trip times and presented in Figure 3.13a. Note that for large-scale de-
ployments, even with hundreds of thousands of servers, there are scalable methods with low
overhead (i.e., < 1% CPU overhead, < 45 MB RAM footprint, and ≈ 50KB/s probing traffic)
to determine the estimated round-trip time between any two servers in a dynamic environ-
ment [37].

Communication Costs: The main idea in this chapter is to consider network- and traffic-
heterogeneity while constantly repartitioning the graph during computation. In the following,

3.4. EVALUATIONS 63

0 10 20 30 40 50 60 70
Iterations

0

2

4

6

8

10

12

14

N
e
tw

o
rk

 T
ra

ff
ic

 (
M

B
)

PG

PG+H-adapt

(a) CA on grid (105 vertices)

0 20 40 60 80 100 120
Iterations

0

200

400

600

800

1000

1200

N
e
tw

o
rk

 T
ra

ff
ic

 (
M

B
)

PG

PG+H-adapt

(b) SI on Twitter.

Figure 3.11: (a)-(b) H-adapt reduces network traffic.

0 50 100 150 200 250
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti

o

Replication

Migration

(a) PR on Web.

Partitioning strategy
0

2

4

6

8

10

M
a
ch

in
e
 l

o
a
d

 (
M

B
) PG

GrapH

(b) PR on GoogleWeb.

0 10 20 30 40 50 60
Iterations

1000

2000

3000

L
a
te

n
cy

 (
s)

Hash

Hash+H-adapt

(c) PR on TwitterLarge.

0 10 20 30 40 50 60
Iterations

0

20

40

60

80

100

C
D

F
 l

a
te

n
cy

 (
%

)

Hash

Hash+H-adapt

(d) PR on TwitterLarge.

Figure 3.12: (a) H-adapt reduces replication degree. (b) GrapH reduces total workload. (c)-(d)
H-adapt reduces latency.

64 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

we evaluate the effect of traffic- and network-awareness on total communication costs as de-
fined in Equation 3.2: total traffic sent via each network link, weighted by the costs of the
network link. In our first experiment (see Fig 3.9a), we compared three different partition-
ing methods: (i) hashing of edges to partitions without dynamic migration, (ii) our dynamic
migration strategy assuming homogeneous vertex traffic on the hash partitioned graph (Traffic-
agnostic), and (iii) our dynamic migration strategy on the hash partitioned graph considering
heterogeneous vertex traffic (H-adapt). We accumulated communication costs over 50 itera-
tions of PR on Twitter. The results indicate that considering heterogeneous vertex traffic greatly
improves total communication costs by up to 50% compared to Traffic-agnostic. The reason is
that H-adapt implicitly prioritizes high-traffic vertices, that are the major sources of total traffic
(see Section 3.1, Figure 3.1).

How does network-awareness improve total communication costs? In Figure 3.9b, we compare
three different partitioning methods: (i) PowerGraph partitioning without dynamic migration
(PG), (ii) our strategy H-adapt on the H-load partitioned graph, while both strategies assume
homogeneous network costs (Network-agnostic), and (iii) our dynamic migration strategy H-
adapt on the H-load partitioned graph considering heterogeneous network costs (GrapH). We
performed 250 iterations of PageRank on GoogleWeb (and restarted computation after termina-
tion of one PageRank instance). It can be seen, that Network-agnostic already reduces commu-
nication costs by 20% compared to PG. However, taking a heterogeneous network into account
reduces total costs by additional 20%. Our experiments therefore indicate, that the awareness
of traffic and network heterogeneity improves partitioning quality significantly.

What is the overhead of migrating edges in terms of additional communication costs? In Fig-
ure 3.10a, we show total communication costs and migration overhead of 700 iterations of
PageRank on GoogleWeb. While communication costs decreased by 33% compared to PG,
the costs for migration itself (investment costs, see Equation 3.4) are very low compared to
the saved costs. The total costs of migration approaches only 2× 10−3 percent of the overall
communication costs due to the following three reasons: (i) optimizing the placement of a ver-
tex replica once saves replica communication in each iteration, (ii) optimizing the placement
of a master replica can reduce replica communication over multiple high-costs network links,
and (iii) traffic awareness allows for more focused optimizations, i.e., H-adapt automatically
targets optimal placement of the high-traffic vertices dominating overall network usage (see
Figure 3.1a-c).

Finally, we evaluated communication costs improvements of H-load compared with Power-
Graph and Hashing for two different graphs: GoogleWeb, and TwitterLarge (Fig 3.10b). We
assume homogeneous vertex traffic and heterogeneous network costs. H-load greatly reduces
total graph processing costs by 70-90% compared to Hash and by 25-38% compared to Power-
Graph partitioning even if no vertex traffic statistics are known (e.g. from previous executions).

3.4. EVALUATIONS 65

0 1 2 3 4 5 6 7
Partition id

0
1
2
3
4
5
6
7

P
a
rt

it
io

n
 i

d

0

100

200

T
C

P
 R

T
T

 (
n

s)
(a) Round-trip time in CloudM.

Network-agnostic

(b) PR on Web.

Figure 3.13: Heterogeneity in single data center, scale-up scenario.

Considering Network Heterogeneity when Scaling Up: Many real-world computing clus-
ters such as ComputeC and CloudM consist of a number of multi-core workers connected via
Ethernet. These types of infrastructures require both operations, scaling up and scaling out.
Similar to other graph systems (e.g. [138]), we support both scaling operations by assigning
multiple workers to the same machine (each running on a different core). This introduces an-
other source of network heterogeneity: loop-back versus plain network communication.

In Figure 3.13a, we plot the round-trip time of 8 workers that are evenly divided among two
machines in CloudM. Hence, we used four workers per machine for the following experiment.
Clearly, the round-trip time differs by an order of magnitude: workers on the same machine can
communicate with very low delay of only 0.06 milliseconds – compared to workers on different
machines with up to 0.2 milliseconds. We set the network costs matrix Tm,m′ for workers m and
m′ according to these round-trip time values.

In Figure 3.13b, we exploit these heterogeneities in CloudM in order to show that single data
center applications can benefit from network awareness as well. We performed 250 iterations of
PageRank on the web graph [11] and took the round-trip times between the workers as network
costs T as described previously. We measured the total accumulated costs (i.e., the product of
traffic sent over a link and network link costs) for H-adapt when switching network awareness
on and off. The result shows that being network aware reduces graph processing costs by 29%
while introducing neglectable costs overhead.

Network Traffic: Network costs may be unknown or relatively homogeneous. In this case,
H-adapt automatically reduces the total amount of worker communication, i.e., network traffic
(compare Section 3.2.2). In Figure 3.11a and b, we show the extent of this improvement for
SI and CA (similar results for PR are omitted). We show the current network traffic (averaged
over a sliding window of 10 iterations) for these algorithms on ComputeC. The SI algorithm
searched for a series of ten randomly chosen patterns of sizes 3-6, such as triangles and cir-

66 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

cles.Our migration strategy reduces total network traffic by up to 50% compared to PowerGraph
partitioning.

Replication Degree: A standard metric to measure the partitioning quality of vertex-cut al-
gorithms is the replication degree, i.e., the number of vertex replicas in the system. In Fig-
ure 3.12a, we performed 250 iterations of PageRank on the web graph [11] using the CloudM
infrastructure. We measured the replication degree in each iteration divided by the replication
degree of a hash partitioned graph, as well as the current migration overhead divided by the
total migration overhead (CDF). During the first 70 iterations replication degree is reduced by
60%, followed by saturation. Hence, H-adapt reduces replication degree as a side effect when
optimizing for total communication costs.

Latency: The partitioning problem is computationally hard and solving it during execution
can increase overall processing latency, despite the benefits of reduced communication. To
evaluate how our dynamic repartitioning method H-adapt influences latency of graph process-
ing, we measured the latency per iteration of a single execution of PageRank on our shared
memory machine. We used TwitterLarge with more than 1.4 billion edges. In Figure 3.12c,
we plot the latency per iteration for the Hash pre-partitioned graph (Hash) and for the Hash
repartitioned graph using H-adapt (8 partitions). The figure highlights the trade-off between
migration latency overhead and gain: there are four instances where H-adapt temporarily in-
vests more time (approximately at iterations 3,25,41,48). However, investing time to compute
and implement an improved partitioning results in large reductions of latency up to 60%. In
Figure 3.12d, we show the cumulated distribution function for latency to compare end-to-end
latency of both methods. Surprisingly, the end-to-end latency for a single execution of PageR-
ank improves by 10% using our dynamic repartitioning method H-adapt. Thus, compared to
the predecessor method H-move [86], H-adapt reduces end-to-end latency by approximately
20% due to the novel methods of constant back-off and lock-free migration. Although included
into the total runtime, the time spent on partitioning is 12%, averaged over all iterations. Note
that we have executed only one instance of the PageRank algorithm, subsequent executions and
long-running graph algorithms would benefit even more from the improved partitioning.

We also tested the impact of network-awareness on graph processing latency for the PageRank
algorithm in CloudM. However, we observed a non-significant reduction of graph processing
latency by less than 1 percent for H-adapt compared to its network-agnostic variant. We at-
tribute this to the fact that our cost function minimizes the weighted summed vertex traffic over
all network links (see Equation 3.9) but latency mainly depends on the bottleneck link with
maximal latency because of the straggler problem [40]. In other words, at least one high-cost
link between two workers residing on different machines experienced the same amount of traf-
fic (although the summed high-cost network link traffic was reduced). However, tuning the cost
function to minimize latency instead of communication costs is beyond the scope of this thesis.

3.4. EVALUATIONS 67

Long history Short history
0

20

40

60

80

100

120

140

N
e
tw

o
rk

 t
ra

ff
ic

 (
%

) Overhead

Hash

Last

MA 5

MA 10

EA 0.3

EA 0.8

EA 1

EA 0.1

(a) PR on Twitter.

Long history Short history
0

20

40

60

80

100

120

140

N
e
tw

o
rk

 t
ra

ff
ic

 (
%

)

(b) SI on Twitter.

Figure 3.14: (a)-(b) Prediction methods influence migration efficiency.

Prediction Methods
0

20

40

60

80

100

120

140

R
e
la

ti
ve

 e
rr

o
r

(%
) Last

EA 0.1

EA 0.3

EA 0.5

EA 0.7

EA auto

(a) SI on Twitter.

Prediction Methods
0

20
40
60
80

100
120
140
160
180

R
e
la

ti
ve

 e
rr

o
r

(%
)

(b) CA on grid (2,500 vertices).

Figure 3.15: (a)-(b) Adaptive-α outperforms other prediction methods.

Load Balancing: GrapH balances the summed vertex traffic over all vertices on a partition
(see Equation 3.3). In Figure 3.12b, we show the average worker workload after one PR ex-
ecution (78 iterations) for PG and GrapH as well as the deviation of the workers from this
average workload. GrapH leads to a slightly higher workload imbalance because we balance
for (more volatile) vertex traffic, while PG balances the number of edges. However, because of
the reduced overall communication overhead, GrapH’s maximally loaded worker still has less
workload than the least loaded worker in PG. Thus, GrapH reduces total workload by more
than 60%.

Prediction Methods: Choosing the right prediction method for future vertex traffic is im-
portant for overall performance of our system. For instance, overestimating vertex traffic of
vertex u leads to biased decisions towards migrating edges incident to vertex u. To learn about
prediction accuracy, we compared three methods (see Section 3.2): last value (Last), moving
average (MA) with window sizes 5 and 10, and exponential averaging (EA) with decay pa-
rameter α = 0.1,0.3,0.8,1.0 in Figure 3.14a-b. We evaluated the reduction of total network

68 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

traffic for PR and SI, compared to Hash. The position of the bars from left to right reflects
the size of the considered history for prediction in descending order. For example, since Last
considers only the last value, we plotted it on the right. Clearly, all prediction methods meet the
goal of reducing overall network traffic. However, none of these methods leads to consistently
better results for all algorithms, because of the different stability of vertex traffic patterns. For
example in PR, considering a longer history shows better results, because vertex traffic pat-
terns remain stable over time. Nevertheless, considering a large history in SI actually harms
performance, because the subsequent short-lived queries lead to diverse vertex traffic patterns.

We have seen that there is no single prediction method that is optimal for all algorithms. Thus,
determining the best parameter α is a crucial task for effective vertex traffic prediction. In the
following, we show that our method for automatically selecting α individually for each vertex
consistently outperforms all other static (and global) parameter choices. In Figure 3.15a-b, we
compared the relative prediction error w.r.t. decay parameter α. We define the relative predic-
tion error as the ratio of the absolute prediction errors of the tested method and the benchmark
method Last. The absolute error of a prediction method is determined by predicting vertex traf-
fic for the next w iterations and accumulating the difference between predicted and observed
vertex traffic value, averaged over 5 randomly selected vertices. We performed evaluations
for SI on Twitter and CA on a grid with 2500 vertices (and window sizes w of 10,5, and 3
respectively). On the right, we plotted the relative error for our method Adaptive-α. Our ex-
periments lead to two interesting conclusions. First, the extremely simple method Last results
in relatively robust vertex traffic predictions with high accuracy and low computational over-
head. Second, Adaptive-α consistently outperformed all other prediction methods in terms of
prediction accuracy while introducing little computational overhead (see Equation 3.7).

3.4.1 Summary of Evaluation Results

In summary, the experimental results validate the main thesis of this chapter: considering het-
erogeneous vertex traffic and network costs in graph partitioning reduces communication costs
using different realistic computational infrastructures – when executing practical graph algo-
rithms such as PageRank, subgraph isomorphism, and cellular automaton on large real-world
graphs.

In particular, the results validate that the distribution of vertex traffic resembles a pareto dis-
tribution where a small percentage of vertices are responsible for a large percentage of vertex
traffic. By considering the skewed vertex traffic for dynamic graph partitioning with our strat-
egy H-adapt, we could reduce communication costs by up to 50% compared to traffic-agnostic
partitioners on the Twitter graph (PageRank). On top of that, we experimentally validated that
considering heterogeneous networks reduces communication costs by up to 20% compared to
network-agnostic partitioners on the GoogleWeb graph. The remaining experiments show ro-

3.5. RELATED WORK 69

bustness of those results for different computational environments, graphs with up to 1.4 billion
edges, and graph algorithms — and validate efficiency of our dynamic vertex traffic prediction
mechanisms.

3.5 Related Work

Several existing research efforts in the area of distributed graph processing are relevant to our
work. PowerGraph [34] suggests the vertex-centric GAS API. We benchmarked our system
against their greedy streaming heuristic Coordinated for static vertex-cut partitioning. Petroni
et al. (HDRF [101]) consider the vertex degree in order to find a minimum vertex-cut in the
streaming setting arguing that optimal placement of low-degree vertices should be preferred.
ADWISE [85] uses a window over the edge stream as a basis for more informed partitioning
decisions. PowerLyra [18] extends PowerGraph with hybrid-cuts: cutting vertices with high
degree and edges of low-degree vertices decreasing expensive replica communication overhead.
These strategies minimize the replication degree, but ignore diverse and dynamic vertex traffic.

On the other hand, the graph systems Mizan [66] and GPS [115] propose adaptive edge-cut
partitioning using vertex migration. Mizan considers the traffic sent via each edge to balance
workload at runtime. Vaquero et al. [131] apply edge-cut to changing graphs using a decentral-
ized algorithm for iterative vertex migration to avoid costly re-execution of static partitioning
algorithms. Shang et al. [120] nicely identified and categorized three types of vertex activa-
tion patterns for graph processing workload: always-active-, traversal-, and multi-phase-style.
They exploit these workload patterns to dynamically adjust the partitioning during computa-
tion. Yang et al. [144] (Sedge) improve localization of processing small-sized queries by in-
troducing a two-level complimentary partitioning scheme using vertex replication. While these
edge-cut systems adapt to changing graphs or traffic behaviors, they do not consider network
topology and migration costs. Furthermore, these approaches focus on edge-cut and optimal
edge-cuts can not be transformed into close-to-optimal vertex-cuts for graphs with high-degree
vertices [30].

Surfer [19] tailors graph processing to the cloud by considering bandwidth unevenness to map
graph partitions with a high number of inter-partition links to workers connected via high-
bandwidth networks. However, they assume homogeneous traffic on each edge. GraphIVE [68]
strives for a minimal unbalanced k-way vertex-cut for workers with heterogeneous computa-
tion and communication capabilities, in order to put more work to more powerful workers
— searching for the optimal number of edges for each worker. This approach is orthogonal
to heterogeneity-aware partitioning algorithms. Xu et al. [142] consider network and vertex
weights to find a static minimal costs edge-cut. They do not consider adaptive vertex-cut, and
vertex weights reflect only the number of executions, but not the real vertex traffic. Zheng et

70 3. HETEROGENEOUS PARTITIONING FOR DISTRIBUTED GRAPH PROCESSING

al. [153] propose ARGO, an architecture-aware edge-cut graph repartitioning method focusing
on RDMA-enabled networks that also considers the amount of communication going over each
edge and heterogeneous network costs. Similarly, GrapH is also applicable to the scenarios
described by ARGO while focusing on vertex-cut partitioning and the GAS execution model.

General data processing in the geo-distributed setting is addressed by Pu et al. [104] and Jay-
alath et al. [51]. They argue that aggregating geographical distributed data into a single data
center can significantly hurt overall data processing performance for MapReduce-like compu-
tations. LaCurts et al. [70] point out that considering network heterogeneity for an optimal task
placement, improves overall end-to-end data analytics performance, even in a single data cen-
ter. Therefore, they place communicating tasks in such a way that most communication flows
over fast network links. However, task placement is orthogonal to graph partitioning and could
be used on top of our system.

Finally, significant research efforts addressed the problem of parallelizing subgraph isomor-
phism (e.g. [79, 147]) and cellular automata (e.g. [41, 125]). However, we have not found any
algorithm in the GAS programming interface despite the suitability of distributed graph pro-
cessing systems for these kind of problems.

3.6 Chapter Summary

Modern graph processing systems use vertex-cut partitioning due to its superiority of partition-
ing real-world graphs. Existing partitioning methods minimize the replication degree, which
is expected to be the dominant factor for communication costs. However, the underlying as-
sumptions of uniform vertex traffic and network costs do not hold for many real-world appli-
cations. To this end, we propose GrapH, a graph processing system taking dynamic vertex
traffic and diverse network costs into account, to adaptively minimize communication costs.
Our evaluations show, that GrapH outperforms state-of-the-art by up to 60% with respect to
communication costs, while improving end-to-end latency of graph computation by more than
10%.

4
Adaptive Window-based Streaming

Partitioning

In Chapter 3, we propose two partitioning algorithms: a static algorithm to partition the graph
as it is loaded into the graph system, and a dynamic algorithm that repartitions the graph at
runtime. In the previous chapter, we focus on the latter algorithm, i.e., dynamic repartitioning.
The focus of this chapter is the static, initial partitioning of the graph. The initial partitioning
problem is NP-hard [30]. Therefore, the standard choice for partitioning billion-scale graphs is
to use very fast heuristics at the costs of partitioning quality [123]. Consider the following ob-
servation: graph processing latency strongly correlates with partitioning quality (cf. replication
degree in Chapter 2) which can be improved by investing more latency into partitioning. In this
chapter, we investigate the trade-off between partitioning latency and graph processing latency.
Hereby, the main question is whether minimizing partitioning latency also leads to minimal
total latency (consisting of graph partitioning and graph processing). Neither extreme is very
attractive: investing a lot of latency in partitioning to reduce graph processing latency; or in-
vesting minimal latency in partitioning which increases graph processing latency. The question
is whether there is a sweet spot between partitioning latency and graph processing latency be-
cause graph practitioners are interested in minimizing the sum of both, i.e., the perceived total
latency of graph partitioning and processing. This chapter is based on our published work [85].

In literature, there are two basic approaches to practically address the vertex-cut partitioning
problem. (i) Single-edge streaming algorithms perform partitioning decisions on one edge at
a time, minimizing the partitioning latency. (ii) All-edge algorithms load the complete graph
into memory and employ global placement heuristics to optimize the partitioning quality. The
existing algorithms follow either of the methods: Figure 4.1 illustrates the landscape of state-of-
the-art vertex-cut partitioning algorithms. The x axis describes the partitioning latency, i.e., the
total amount of time invested into the graph partitioning. The y axis describes the partitioning

71

72 4. ADAPTIVE WINDOW-BASED STREAMING PARTITIONING

Partitioning

Latency

Partitioning

Quality

Hash

DBH

HDRF

Greedy

ADWISE
Ja-Be-Ja-VC

Streaming:

linear runtime

Grid

H-move

Super-linear

runtime

Single-edge All-edge

NE

Figure 4.1: Research gap – adaptive window-based streaming vertex-cut partitioning. Parti-
tioning strategies: Hash [34], Grid [50], DBH [140], Greedy [34], HDRF [101], NE [150],
H-move [87], and Ja-Be-Ja-VC [106]

quality which impacts the efficiency of graph processing, i.e., high partitioning quality leads to
reduced overhead and faster graph processing. In general, increasing the partitioning latency
allows for better partitioning quality. Single-edge streaming algorithms have minimal partition-
ing latency due to their linear algorithmic complexity, while the partitioning latency of all-edge
algorithms is high but leads to better partitioning quality. Modern graph processing systems
use streaming partitioning when loading massive graphs due to their superior scalability and
minimal runtime complexity [18, 34].

In this chapter, we investigate whether it is always optimal to invest minimal partitioning la-
tency as done by the established streaming partitioning algorithms. Clearly, there is a trade-off
between partitioning latency and partitioning quality—and thus, graph processing latency. Our
hypothesis is that for complex and long-running graph algorithms that run on large graphs, in-
vesting more than minimal time into graph partitioning leads to reduced total latency of graph
partitioning and graph processing: To minimize the total latency, this trade-off must become
controllable, i.e., the partitioning algorithm should be able to control the time invested into opti-
mizing the partitioning quality. However, none of the current streaming partitioning algorithms
allows for that.

To close this gap, we propose to consider a window of edges from the graph stream for making
the partitioning decisions—instead of either a single edge or all edges. The basic idea is that

4.1. PROBLEM STATEMENT AND ANALYSIS 73

considering more edges at a time enables improvements on the partitioning quality, but imposes
a larger partitioning latency. While this is an intuitive idea, it poses a number of interesting
research questions that need to be addressed: (1) How many edges should be taken into account
when making a partitioning decision, i.e., how large should the window be? (2) Which of the
edges should be assigned to which partition, i.e., how to design the scoring function that assigns
the highest score to the best edge placement? (3) How to avoid unnecessary computations, i.e.,
how to limit score calculations to the high-potential edges in the window?

To address these questions, we developed ADWISE1, a novel window-based streaming parti-
tioning approach. Our main contributions are as follows. (i) We employ methods to automat-
ically adapt the window size at runtime in order to control the trade-off between partitioning
latency and quality according to a partitioning latency preference. (ii) We propose a novel scor-
ing function tailored to window-based partitioning. It considers multiple objectives – including
diversity and skewness of the graph edges – to quantify partitioning decisions pertaining to the
edges in the window. (iii) We employ a lazy traversal score calculation method that limits score
(re-)calculations to a subset of most promising window edges in order to reduce partitioning la-
tency on a given window. (iv) We introduce the spotlight partitioning optimization for parallel
graph partitioning on multiple ADWISE instances. Spotlight partitioning reduces the spread
of the partitioning instances such that each instance works on a disjoint set of partitions. This
tremendously improves partitioning quality and can be applied on top of any existing streaming
graph partitioning algorithm. (v) Our evaluations show that for large real-world graph process-
ing problems, it is beneficial to invest more latency into partitioning in order to minimize the
total latency. Using ADWISE, the total latency could be reduced by up to 23−47% compared
to traditional single-edge streaming partitioning algorithms.

The rest of the chapter is structured as follows. In Section 4.1, we state the problem formulation
and analyze challenges of window-based streaming partitioning. In Section 4.2, we describe
our algorithm ADWISE in detail. We evaluate our methods in Section 4.3, present related work
in Section 4.4, and summarize in Section 4.5.

4.1 Problem Statement and Analysis

In this section, we introduce the graph partitioning problem, define the window-based streaming
partitioning model proposed by ADWISE, and discuss the research questions in window-based
streaming partitioning that need to be solved.

1https://github.com/GraphPartitioning/WISE

https://github.com/GraphPartitioning/WISE

74 4. ADAPTIVE WINDOW-BASED STREAMING PARTITIONING

4.1.1 The Vertex-cut Graph Partitioning Problem

Many graph processing systems rely on vertex-cut partitioning [34, 35, 86]. In the follow-
ing, we quickly recap the vertex-cut partitioning problem described in Chapter 2 to introduce
the specific notation used in this chapter. Let graph G = (V,E) consist of a set of vertices
V = {v1, ...,vn} and edges E ⊆ V ×V . The goal is to divide the graph into k partitions with
identifiers P = {1, ...,k}. Vertex-cut graph partitioning can be achieved by assigning edges to
partitions, which leads to cut vertices spanning multiple partitions. Suppose, a graph is cut
through vertex u into two partitions p1 and p2. Vertex u is replicated on both partitions, be-
cause both contain edges incident to vertex u. We denote the set of partitions where vertex u is
replicated as replica set Ru. During graph processing, replicas of u communicate to provide re-
mote vertex data access to vertices residing on different partitions. By minimizing the number
of replicas (denoted as replication degree), the amount of communication during graph compu-
tation is minimized as well [34]. Therefore, the goal of vertex-cut partitioning is to minimize
the replication degree (see Equation 4.1), such that the partitions are balanced in the number
of edges (see Equation 4.2) to ensure workload balancing during graph processing (see [101]).
The maximal deviation between the number of edges assigned to any pair of partitions is con-
trolled via the parameter τ ∈ [0,1]. In Table 4.1, we give an overview about the notation used
in this chapter, in the order of occurrence.

minimize
1
|V | ∑v∈V

|Rv|, (4.1)

s.t.∀i, j ∈ P, |Pi|> |Pj| :
|Pj|
|Pi|

> τ. (4.2)

Note that this partitioning problem is a version of the problem in Chapter 3, but without con-
sidering dynamic and heterogeneous vertex traffic and network costs. Before executing the
graph algorithm, it is difficult to obtain the heterogeneous vertex traffic for each vertex. In-
stead, we follow the standard approach and optimize for replication degree [34,101]. However,
the problem is still NP-hard [30].

4.1.2 Streaming Partitioning

In the following, we analyze the streaming vertex-cut partitioning method in more detail, point-
ing out the commonalities and shortcomings of existing algorithms.

In vertex-cut streaming partitioning, partitioning algorithms perform a single pass over the
stream of graph edges and assign all edges to partitions as they arrive in the stream. More

4.1. PROBLEM STATEMENT AND ANALYSIS 75

G = (V,E) Graph with set of vertices V and edges E.

P⊂ N The set of partition ids.

k ∈ N The number of partitions, i.e., |P|= k.

Ru ⊆ P Replica set of vertex u.

Pi ⊆ E The set of edges assigned to partition i ∈ P.

τ ∈ [0,1] Maximal imbalance between any two partitions.

g(e, p) ∈ R Score for edge e and partition p.

w ∈ N Number of edges in the window.

W ⊆ E The set of edges in the window with |W |= w.

L ∈ N User-defined latency preference (milliseconds).

S = 〈E〉 The edge stream, an ordered sequence of edges

C ⊆W Set of high-score edges (candidate set).

Q⊆W Set of low-score edges (secondary set).

Θ ∈ R Score threshold to determine a candidate edge.

B(p) ∈ R Balancing score of partition p ∈ P.

λ ∈ R Balancing parameter and adaptive balancing function.

R(e, p) ∈ R Replication score for e ∈W and p ∈ P.

deg(v) ∈ N Degree of vertex v.

N(u)⊆V Set of neighbors of vertex u ∈V .

Ni(u)⊆V Set of neighbors of vertex u ∈V on partition i ∈ P.

CS(e, p) ∈ R Clustering score for e ∈W and p ∈ P.

Table 4.1: Notation overview.

76 4. ADAPTIVE WINDOW-BASED STREAMING PARTITIONING

precisely, given a sequence of edges 〈e1, ...,e|E| : ei ∈ E〉, edge ei is assigned to partition p j ∈ P
considering only previous assignment information from edges 〈e1, ...,ei−1〉. As each edge is
accessed exactly once, the runtime complexity is linear to the number of edges.

We illustrate the streaming partitioning model at the top of Figure 4.2. The graph data is
stored in a large file, a graph database, or a distributed file system. The streaming partitioning
algorithm loads the data as a stream of graph edges and subsequently assigns them to partitions.
Finally, these partitions are used for distributed graph processing. The streaming partitioning
model consists of three building blocks. All state-of-the-art streaming algorithms fit into this
model.

Definition: The edge universe (cf. Figure 4.2 (i)) is a container data type that stores a set
of edges with the following purpose: The streaming partitioner selects an edge from the edge
universe and assigns this edge to the best partition according to the scoring function (see next
paragraph). Existing algorithms allow only a single edge in the edge universe. In this case, the
partitioning decision answers the question “to which partition to assign the edge?” rather than
“which edge to assign to which partition?”.

Definition: The scoring function (cf. Figure 4.2 (ii)) measures how well an edge fits to
a certain partition. In this way, the scoring function quantifies the partitioning decisions—
existing streaming partitioning algorithms differ only in the selection of the scoring function.

Definition: The vertex cache (cf. Figure 4.2 (iii)) maintains replica sets for all vertices that
were assigned in any previous edge assignment. This information is used by the scoring func-
tion to determine the best edge assignment.

Shortcomings of single-edge streaming. Due to the narrowness of the edge universe, existing
partitioning algorithms enforce an assignment decision for each edge before populating the
edge universe with the next edge. As a consequence, edge assignment decisions are often
uninformed, i.e., based on insufficient knowledge about the replica sets of incident vertices.
This can lead to low partitioning quality. Figure 4.2(a) provides an example. The scoring
function g(e1, p j) returns the number of times a vertex incident to edge e1 is already replicated
on partition p j (see [34]). Unfortunately, the vertex cache does not contain any information
about the replica set of a vertex incident to edge e1. Therefore, the score is zero for all partitions
and the algorithm assigns edge e1 to any partition (here: p2) – an uninformed assignment
decision. Next, the algorithm loads edge e2 into the edge universe and assigns it to partition p2

as selected by the scoring function. The assignment of both edges e1 and e2 leads to three new
replicas (black, blue, and green vertex) on partition p2.

Definition: An uninformed edge assignment of edge e = (u,v) is an edge assignment where
both vertices u and v are not replicated on any of the partitions pi ∈ P during the execution of
the partitioning algorithm.

4.1. PROBLEM STATEMENT AND ANALYSIS 77

Graph data

G
rap

h
 S

y
stem

(i) Edge Universe

Part. 𝑝1

Part. 𝑝2

Edge stream
(ii) Scoring

Streaming Partitioning

(i)

𝑔 𝑒1, 𝑝1 = 0
𝑔 𝑒1, 𝑝2 = 0

(ii)

(iii) = {𝑝1}

= {𝑝1}
= {𝑝2}

𝑒1 Part. 𝑝1

Part. 𝑝2

(a) Single-edge: +3 replicas

𝑒2 𝑒1

𝑒2

(i)

𝒈 𝒆𝟐, 𝒑𝟏 = 𝟏
𝑔 𝑒2, 𝑝2 = 0

(ii)

(iii) = {𝑝1}
= {𝑝1}
= {𝑝2}

𝑒1

(b) Window: +2 replicas

𝑒1𝑒2
𝑒2

Part. 𝑝1

Part. 𝑝2

𝑔 𝑒1, 𝑝1 = 0

𝑔 𝑒1, 𝑝2 = 0

(iii) Vertex Cache

Figure 4.2: Streaming partitioning model.

4.1.3 Window-based Streaming Partitioning

To mitigate the problem of uninformed edge assignments, the idea of this work is to extend the
edge universe to more than a single edge. When more edges are available in the edge universe,
the partitioning algorithm can choose the next edge assignment from multiple edges. Note that
if the edge universe consists only of a single edge, the algorithm is forced to assign this edge to
any of the partition—even if this leads to an uninformed edge assignment. In the following, we
extend the streaming partitioning model by the proposed windowing mechanism and point out
the research questions that need to be solved.

Basic Approach

To improve partitioning quality, ADWISE extends the edge universe to contain multiple edges
and iteratively assigns the edge with the highest score in the edge universe – thus preferring
informed and delaying uninformed edge assignments. While the partitioning algorithm assigns
more edges, it enriches the vertex cache with more information about the replica sets. In this
way, the idea of ADWISE is to delay uninformed edge assignments until they become informed.
For example, in Figure 4.2(b), the edge universe contains edges e1 and e2. The scoring function
prefers assignment of edge e2 to partition p1 because an incident vertex is already replicated
on p1 (green vertex). By assigning edge e2 first (i.e., before e1), the algorithm learns relevant

78 4. ADAPTIVE WINDOW-BASED STREAMING PARTITIONING

information for edge e1 (“black vertex replicated on p1”). It assigns edge e1 to partition p1 and
has saved one replica compared to the single-edge streaming algorithm.

Research Questions

Adding the concept of an edge window to the streaming edge partitioning model will only im-
prove the total latency when the window-based partitioning algorithm is carefully designed.
This is a challenging task that has not been addressed in literature yet. In particular, the follow-
ing questions have to be addressed.

How to set and adapt the optimal window size? Although partitioning quality can be im-
proved by increasing the window size w ∈ N,w ≥ 1, this also incurs more score computations
leading to higher partitioning latency. There is a complex relation between partitioning latency,
partitioning quality and graph processing latency. To be able to optimize the total latency, it
is necessary that the partitioning latency can be controlled, i.e., a preference on partitioning
latency can be set. How this can be achieved has not been investigated in previous works, as
the single-edge streaming partitioning algorithms do not allow for such a degree of freedom.

How to reduce computational complexity of partitioning? Calculating a score for each
edge-partition pair in the window from scratch would lead to O(w) times the computational
complexity of single-edge streaming algorithms. However, from-scratch calculations might
not always be necessary because of significant computational overlap between two consecutive
windows. An efficient window traversal algorithm should only compute the significant score
deltas to the previous window.

How to tailor the scoring function to window-based streaming? The scoring function in
window-based streaming partitioning should effectively exploit the window‘s main advantage:
the ability to choose among multiple edges. This increases flexibility – but only for carefully
designed scoring functions that account for this additional dimension. Existing scoring func-
tions from single-edge streaming partitioning can only decide about the best partition for a
given edge.

In developing ADWISE, we have thoroughly investigated these research questions and have
developed practical solutions, as described in the following section.

4.2 ADWISE

ADWISE, the ADaptive WIndow-based Streaming Edge partitioning algorithm, addresses the
shortcomings of single-edge streaming algorithms by extending the edge universe with multiple
edges, thus enabling more flexibility in the edge assignment decisions. Figure 4.3 provides an

4.2. ADWISE 79

Edge WindowEdge Stream
Refill

(1) Adaptive Window

Best Edge

(3) Adaptive Degree-

Aware Scoring

𝑒 𝑒

Window

Traversal

Assign to

best

partition

Compute

(2) Lazy Window

Candidate edges

Vertex Cache

Read /

Update

(i) Edge Universe

(iii) Vertex Cache

(ii) Scoring

(C2)?

(C1)?

𝑤:= 𝑤

𝑤 ≔ 2𝑤

𝑤 ≔ 𝑤 2

yes

yes
no

no

wait

(4) Spotlight

Partitioning

Figure 4.3: Approach overview ADWISE.

overview of the ADWISE algorithm. The edge universe consists of a window of w edges.
ADWISE iteratively selects the best edge from the edge window, assigns it to the best partition,
and refills the window from the edge stream to contain w edges again. In the following, we
outline the general approach and highlight the main concepts of ADWISE.

(1) Adaptive Windowing: ADWISE allows to control the partitioning latency by automatically
adapting the window size w at runtime such that the algorithm keeps a partitioning latency
preference L ∈N (specified in milliseconds) with high probability. In the presence of sufficient
partitioning time, the window size is increased to maximize partitioning quality; if the latency
preference L is likely to be violated, the window size is decreased. Section 4.2.1 provides a
detailed description.

(2) Lazy Window Traversal: ADWISE exploits the property that high-score edges in one
window are likely to remain high-score edges in the subsequent window. Hence, complete re-
computation of the whole window after each edge assignment would lead to redundancies. We
developed the optimization of lazy window traversal that exploits this property by calculating
scores only for a subset of high-score edges in the window. The scores for the remaining edges
are updated only if significant changes in the vertex cache require re-computation of individual
scores (see Section 4.2.2).

(3) Adaptive Degree-Aware Scoring Function: To exploit the freedom to choose among mul-

80 4. ADAPTIVE WINDOW-BASED STREAMING PARTITIONING

tiple edges in a window when making the partitioning decisions, we introduce our scoring
function g(e, p) in Section 4.2.3. It consists of three parts:

• Adaptive load balancing score: The partitioning decision of single-edge streaming
approaches is significantly influenced by the objective of balancing the number of edges
among partitions (see Equation 4.2) [101]. However, we argue that balancing partitions
is not equally important throughout the algorithm’s execution. Instead, we introduce
an optimization of adapting at runtime how much the balancing objective influences the
partitioning decisions. This optimization is based on the relative progress in the stream
and the current imbalance of the partitions at any point in time.

• Degree-aware score: The degree-aware score quantifies how good edge e ∈W in edge
window W ⊂E fits to partition p by taking into account information about current replica
sets from the vertex cache.

• Clustering score: The clustering score prioritizes assignment of edges towards the local
communities of the incident vertices – exploiting the cliquishness of real-world graphs.

(4) Spotlight Partitioning: If multiple instances of a streaming partitioning algorithm par-
tition the graph in parallel (by processing disjoint graph edge files), it is of great importance
to carefully consider how many partitions are filled by the different workers (i.e., the spread).
To address this problem, we propose our optimization “Spotlight” that is reducing the spread
of each partitioner such that partitioners can maintain locality by working on their own set of
partitions. Details are provided in Section 4.2.4.

4.2.1 Adaptive Window Algorithm

In the following, we explain our method for trading partitioning latency against quality. The
basic idea is to increase the window size as long as this leads to better partitioning quality while
the latency preference L still can be met. Otherwise, we decrease (or keep) the window size.
To decide whether the latency preference can be met, ADWISE measures the average latency
latw of assigning a single edge (for current window size w). The algorithm starts by setting
the window size to w = 1. After assigning w edges and updating the average edge assignment
latency latw, the algorithm either increases, keeps or decreases the window size (see the flow
diagram in Figure 4.3). More precisely, the window size is set to w← 2w, if the following two
conditions (C1) and (C2) are met. (C1) The last increasing of the window size led to better edge
assignment decisions (quantified by averaging the score g(e, p) over w edge assignments). (C2)
The latency preference L can be met – assuming stable average latency and a known number of
edges in the stream2. In more detail, (C2) is true, if the average latency latw is smaller than the

2The graph size is usually known or can be determined efficiently using line count on the graph file

4.2. ADWISE 81

maximal latency per edge assignment, i.e., latw < L′
|E ′| , where |E ′| is the number of edges left

in the stream and L′ is the time until the latency preference would be exceeded. This ensures
that there is only a small risk of not meeting the latency preference. If the average latency is
too large to meet the latency preference L, i.e., (¬C2), the algorithm decreases the window size
to w← dw/2e. Note that if the latency preference L is too tight (e.g. 0 seconds), the algorithm
decreases w until w = 1 leading to single-edge streaming partitioning.

Algorithm 6 Window-based streaming vertex-cut algorithm.
1: W ←{} // Set of window edges
2: S // Edge stream
3: c← 0// Assignment counter
4: while S 6= /0 do
5: if |W |< w then W ←W ∪{S.next()}
6: (ê, p̂)← GETBESTASSIGNMENT()
7: assign ê to partition p̂

8: function GETBESTASSIGNMENT()
9: (ê, p̂)← argmax(e,p)∈W×Pg(e, p)

10: W ←W \{ê}
11: if c mod w = 0 then
12: if (C1) ∧ (C2) then
13: w← 2w
14: while |W |< w do W ←W ∪{S.next()}
15: else if ¬(C2) then
16: w← dw/2e

17: c← c+1
18: return (ê, p̂)

We give an algorithmic description in Algorithm 6. There are three global variables: the edge
window W (initially empty), the edge stream S, and an assignment counter c tracking the num-
ber of assigned edges since the last window change. In lines 4-7, the algorithm performs the
main loop: reading an edge from the stream and adding it to the window, retrieving the best
edge-partition pair (ê, p̂) from the window, and assigning edge ê to partition p̂. The algorithm
retrieves the edge-partition pair (ê, p̂) with highest score g(ê, p̂) by iterating over all edges in
the window e ∈W and all partitions in p ∈ P (line 9). This edge is assigned to partition p̂ and
removed from the window (line 10). After w edge assignments, the algorithm performs the
described adaptive window procedure (lines 11-17) using the two conditions (C1) and (C2).

4.2.2 Lazy Window Traversal

Clearly, the algorithm presented in the last section requires w×|P| score computations for each
edge assignment resulting in large overhead for large window sizes w. In the following, we
develop the idea of reducing runtime complexity by traversing only the set of high-potential
edges in the window (denoted as candidate set C). Conversely, the secondary set Q contains

82 4. ADAPTIVE WINDOW-BASED STREAMING PARTITIONING

the rest of the edges in the window. As the high-score edge is probably among the candidates,
we focus on computing scores mainly for the candidates to decide which edge to assign next.
If we select the candidate edges right, we will perform exactly the same assignment decisions
while having a much lower runtime complexity (for |C|<< |Q|).

But how to decide which edges to include into the candidate set? First, if we load a new edge
into the window, we calculate the maximal score ĝ for assigning edge e to any of the partitions
p ∈ P. If this score is higher than a certain threshold Θ (see below), we add e to the candidate
set C, otherwise we add edge e to the secondary set Q. Second, if the candidate set is empty,
we calculate scores for all edges in the secondary set and add all edges whose maximal score
is larger than Θ. Third, if assigning an edge leads to the creation of a new replica, the replica
set of a vertex changes. In this case, edges in the secondary set that are incident to the vertex
with changed replica set are reassessed whether they can be added to the candidate set. We
dynamically adjust the threshold Θ to the average score gavg of window edges: Θ = gavg+ε for
a small ε ∈ [0,1] with the idea of including only edges in the candidate set that have better than
average score.

4.2.3 Scoring Window Edges

The scoring function quantifies how good edge e fits to partition p. However, existing single-
edge scoring functions have two drawbacks. (1) They assume fixed parameter values that are
chosen by domain experts. (2) They only address the problem of finding the best partition given
an edge, but not the problem of finding the best edge in the window. Our scoring function ex-
tends the state-of-the-art by three optimizations to address these concerns: adaptive balancing
score, degree-aware window score, and the clustering score.

Adaptive Balancing: The optimization constraint in Equation 4.2 requires balanced partitions.
Therefore, single-edge scoring functions reinforce edge assignments towards partitions with
less workload (i.e., number of edges) considering a balancing score B(p) that measures the
difference between partition p’s and the maximal workload (see Equation 4.3).

B(p) =
maxsize−|p|

maxsize−minsize+ ε
. (4.3)

State-of-the-art single-edge partitioning approaches use a parameter λ to regulate how much
the balancing score influences the scoring function [101]. This parameter is defined by users
or domain experts [34, 101, 113]. However, selecting this parameter is a challenging problem,
because different graphs require different choices.

To address this problem, we introduce an adaptive balancing parameter – releasing the user
from the burden of choosing a suitable parameter in advance. The adaptive balancing parameter

4.2. ADWISE 83

(b) Cut vertex with high degree (a) Cut vertices with lower degrees

Figure 4.4: Degree-aware vertex-cut partitioning.

is based on two ideas: (i) the balancing constraint can be relaxed in the beginning, i.e., λ can be
set to a small value, as long as there are still enough edges to compensate imbalanced partitions;
(ii) if partitions are sufficiently balanced, a high parameter value for λ distracts the scoring
function from the main objective: minimize replication degree. Hence, our adaptive balancing
parameter automatically adjusts to the current imbalance and progress of the partitioning algo-
rithm. More precisely, we define the balancing parameter as a function λ(ι,α) of the current
imbalance ι = maxsize−minsize

maxsize and the fraction of already assigned edges α = min(1, |E
′|

m), where
E ′ is the set of already assigned edges and m is the number of edges in the graph. Intuitively,
the value of λ(ι,α) should be low, i.e., tolerates high imbalance, if most edges are still unas-
signed. The highest acceptable imbalance, denoted as tolerance, should linearly decrease over
time α as the end of the stream approaches, hence we define tolerance(α) = max(0,1−α).
If the current imbalance ι exceeds the tolerated imbalance (i.e., ι > tolerance(α)), balancing
becomes more important and λ(ι,α) should increase. Otherwise, balancing is currently not as
important and λ(ι,α) should decrease. In Equation 4.4, we specify our formula to set λ(ι,α)

adaptively after each edge assignment. To prevent extreme values, we keep λ(ι,α) in the fixed
interval [0.4,5].

λnew(ι,α) = λold(ι,α)+(ι− tolerance(α)). (4.4)

Degree-aware Window Scoring: The major objective is to minimize the replication degree
(see Equation 4.1). Single-edge scoring functions use a replication score R(e = (u,v), p) to
quantify whether vertices u and v are already replicated on partition p [34, 101, 113].

It is well-established that real-world graphs with skewed degree distributions can be divided
well by preferably replicating high-degree vertices [3]. In Figure 4.4, we exemplify a stereo-
typical social network graph with high clustering coefficient for low-degree vertices and few
high-degree vertices connecting the clusters. In Figure 4.4a, we cut the graph through vertices

84 4. ADAPTIVE WINDOW-BASED STREAMING PARTITIONING

with median degree (red) leading to three replicated vertices. In Figure 4.4b, we cut the graph
through the high-degree vertex (green) leading to only one replicated vertex.

Several approaches modify the replication score to consider the relative vertex degree of ver-
tices u and v – in order to replicate high-degree before low-degree vertices [101, 140]. For
instance, HDRF [101] maintains a degree table deg with the current vertex degrees to calcu-
late the relative degree of vertices u and v, i.e., Ψ′u = deg(u)

deg(u)+deg(v) = 1−Ψ′v. However, the
relative degree of vertices incident to edge e ∈W lacks information about the absolute degree
needed to differentiate window edges e′ 6= e ∈W . To resolve this, we introduce a truly degree-
aware replication score by normalizing with respect to the vertex with maximal degree, i.e.,
Ψu = deg(u)

2maxDegree . With this modification, Ψ returns low values for low-degree vertices in the
window. To define the replication score, we use the indicator function 1{p ∈ Ru} that returns
1 (or 0) if vertex u is (or is not) replicated on partition p (i.e., p ∈ Ru).

R((u,v), p) = 1{p ∈ Ru}(2−Ψu)+1{p ∈ Rv}(2−Ψv). (4.5)

Clustering Score: Many real-world graphs have a high local clustering coefficient (see small-
world networks) [136]. Graph clustering algorithms that are able to identify the dense graph
regions (i.e., clusters) can significantly increase locality and ultimately result in better parti-
tioning quality [73].

How can we include this prior knowledge about strong local clusters into the scoring function?
In Figure 4.5, we exemplify a simple scenario, where we have to decide whether edge (u,v)
should be assigned to partition p1 or p2. Vertex u is already replicated on both partitions so
the replication score does not help here and the partitions are balanced in the number of edges.
However, vertex u is already embedded into a strong local cluster on partition p1, i.e., has
three local neighbors N1(u) = {u1,u2,u3}, while it has only one local neighbor on partition p2,
i.e., N2(u) = {u4}. Intuitively, edge (u,v) should be assigned to partition p1 because edges
(v,x),x ∈ N1(u) are likely to follow in the stream (two friends of yours are more likely to be
friends as well).

In Equation 4.6, we define the clustering score CS(e, p) for edge e= (u,v) and partition p as the
number of times a neighboring vertex of u or v is already replicated on partition p, normalized
to the interval [0,1]. In the example, three neighbors of (u,v), i.e., vertices u1,u2,u3, are already
replicated on partition p1 compared to only one vertex u4 on partition p2 – leading to a higher
clustering score for partition p1. Note that for scalability reasons we calculate the neighboring
function N(u) for vertex u only based on the vertices in the window, i.e., the larger the window,
the more accurate is the clustering score.

4.2. ADWISE 85

𝑢

Partition 𝒑𝟏 Partition 𝒑𝟐

𝑢 𝑢
𝑣

𝑁1 𝑢 = {𝑢1, 𝑢2, 𝑢3}

𝑢1

𝑢2
𝑢3

𝑢4

𝑁2 𝑢 = {𝑢4}

Figure 4.5: Clustering Score Example.

CS(e, p) =
∑u′∈N(u)∪N(v)1{p ∈ Ru′}

|N(u)∪N(v)|
(4.6)

Finally, we define the total scoring function of ADWISE in Equation 4.7.

g(e, p) = λ(ι,α)B(p)+R(e, p)+CS(e, p) (4.7)

4.2.4 Spotlight Partitioning

To speedup partitioning, graph processing systems usually employ a parallel loading model,
where each worker machine uses a separate, independent streaming graph partitioner [34, 133]
– each processing a disjoint portion of the global graph (i.e., chunk) and filling its own vertex
cache. In other words, there is no vertex cache synchronization mechanism in this model and
the partitioners operate independently. Due to the limited information in each vertex cache, this
leads to suboptimal partitioning decisions [34].

However, we identified a second factor that negatively influences the replication degree when
using parallel loading. We denote this factor as the spread of the partitioner which we define as
the number of partitions each independent partitioner has to fill (see Figure 4.6). State-of-the-
art partitioning algorithms assume a maximal spread of k, i.e., each partitioner assigns edges to
each of the k partitions [34, 101].

We argue that because of this large spread, the partitioner is forced to perform partitioning
decisions more often based on balancing considerations because the partitioner must equally
divide the edges of its graph chunk among all partitions. Even if the incident vertices of a
given edge are already replicated on partition p0, the partitioner may be forced to assign the
edge to partition p1 to keep all partitions balanced. The more partitions there are, the higher
the likelihood of such a partitioning decision. Roughly speaking, a large spread unnecessarily

86 4. ADAPTIVE WINDOW-BASED STREAMING PARTITIONING

℘0

℘1

℘0

℘1

(a) Partitioners with large spread

𝑝7 𝑝7

Partitions

Partitioners

Edge

Stream

(b) Partitioners with low spread

Figure 4.6: Spotlight partitioning reduces spread of partitioners to reduce the impact of balanc-
ing considerations on the partitioning decisions.

breaks up existing locality of edges in the edge stream. But many publicly available graph edge
files store the edges in a breadth-first search manner3. In this work, we have not modified or
pre-processed these original graphs in any way because this would cause additional processing
overhead. In these cases, there is already a significant locality of edges in the graph file. This
ultimately leads to increased replication degree as we show in Chapter 4.3.

Therefore, we propose the spotlight optimization: each of the z partitioner P〉, i ∈ {0, ...,z−1}
divides its graph data among k

z partitions such that the sets of partitions of each two partitioners
are disjoint. This is in contrast to the common practice, i.e., each of the z partitioners has spread
k. This simple optimization is extremely effective: it reduces replication degree by up to 80
percent (see Section 4.3) for all tested strategies while reducing computational overhead as well
due to fewer score computations. Note that the resulting partitioning is still balanced (assuming
equal-sized input chunks). Although this optimization seems straightforward, it has not been
applied by previous partitioning algorithms.

4.3 Evaluation

In this section, we evaluate different aspects of the ADWISE algorithm. First, we explore the
trade-off between graph partitioning latency and processing latency. We show that ADWISE
reduces the total graph latency (i.e., the sum of partitioning and processing latency) when com-
puting standard graph processing algorithms on large real-world graphs. Then, we take a deeper

3https://snap.stanford.edu/data/index.html

https://snap.stanford.edu/data/index.html

4.3. EVALUATION 87

Name |V | |E| ĉ Type

Orkut 3,072,441 117,184,899 0.0413 Social

Brain 734,600 165,900,000 0.509766 Biological

Web 41,291,594 1,150,725,436 0.816026 Web

Table 4.2: Real-world graphs for evaluations.

look into parallel graph loading by analyzing the effects of the spotlight optimization on parti-
tioning quality.

Experimental Setup: In our evaluations, we used three large real-world graphs Orkut [69],
Brain [110], and Web [11] with up to 1.15 billion edges (see Table 4.2). These graphs differ
fundamentally with respect to the clustering coefficient ĉ: the social network Orkut has a rather
weak clustering of ĉ = 0.04, the biological network Brain has moderate clustering of ĉ = 0.51,
and Web has very strong clustering of ĉ = 0.82 (based on a graph sample [110]).

As evaluation platform, we used an in-house computing cluster with 8 nodes × 8 Intel(R)
Xeon(R) CPU cores (3.0GHz, 6144 KB cache size) and 32GB RAM per node, connected via
1-Gigabit Ethernet. As benchmarks to compete against ADWISE, we evaluate Degree-based
Hashing (DBH) [140] and High-Degree Replicated First (HDRF) [101] – two of the best-
performing strategies w.r.t. to partitioning latency and quality [101,133,140]. For HDRF, unless
stated otherwise, we set the balancing factor λ = 1.1 as recommended by the authors [101]. We
integrated ADWISE as well as DBH and HDRF into the GrapH graph processing engine [87] to
execute the graph algorithms on the partitioned graphs. Unless stated otherwise, on each of the
8 machines of the compute cluster, each instance of a partitioner (ADWISE, DBH, or HDRF)
is loading a disjunct chunk of 1/8 of the complete graph with a partitioning spread of 4; this
makes a total of 32 partitions of the graph.

4.3.1 Efficacy of ADWISE to Minimize Total Graph Latency

The main idea of ADWISE is to invest more time into graph partitioning in order to improve
the partitioning quality, such that the sum of partitioning and processing latency, denoted as
the total graph latency, is reduced. In the following, we show experimentally that making
the trade-off between partitioning latency and quality controllable—via the partitioning latency
preference L—yields a reduction of total graph latency by up to 23% compared to HDRF and
by up to 47% compared to DBH when computing standard graph algorithms on large real-world
graphs.

88 4. ADAPTIVE WINDOW-BASED STREAMING PARTITIONING

Partitioning Algorithms
0

1

2

3

4

5

6

7

8

P
a
rt

it
io

n
in

g
+

G
ra

p
h

 L
a
te

n
cy

 (
10

3
se

c)

L=
27

s

L=
41

s

L=
15

4s

L=
28

1s

L=
46

2s

L=
96

9s

Partitioning

DBH+Spotlight

HDRF+Spotlight

ADWISE+Spotlight

(a) PageRank on Brain

Partitioning Algorithms
0

10

20

30

40

50

60

70

80

P
a
rt

it
io

n
in

g
+

G
ra

p
h

 L
a
te

n
cy

 (
10

3
se

c)

L=
33

5s

L=
39

7s

L=
85

9s

L=
14

40
s

L=
28

32
s

L=
48

14
s

Partitioning

DBH+Spotlight

HDRF+Spotlight

ADWISE+Spotlight

(b) PageRank on Web

Partitioning Algorithms
0

2

4

6

8

10

P
a
rt

it
io

n
in

g
+

G
ra

p
h

 L
a
te

n
cy

 (
10

3
se

c)

L=
38

s

L=
45

s

L=
83

s

L=
17

4s

L=
32

9s L=
13

39
s

Partitioning

DBH+Spotlight

HDRF+Spotlight

ADWISE+Spotlight

(c) PageRank on Orkut

Partitioning Algorithms
0

1

2

3

4

5

6

7
P

a
rt

it
io

n
in

g
+

G
ra

p
h

 L
a
te

n
cy

 (
10

3
se

c)

L=
27

s

L=
41

s

L=
15

4s

L=
28

1s

L=
46

2s L=
96

9s

Partitioning

DBH+Spotlight

HDRF+Spotlight

ADWISE+Spotlight

(d) Subgraph Isomorphism on Brain

Partitioning Algorithms
0

10

20

30

40

50

60

70

80

P
a
rt

it
io

n
in

g
+

G
ra

p
h

 L
a
te

n
cy

 (
10

3
se

c)

L=
33

5s

L=
39

7s

L=
85

9s

L=
14

40
s

L=
28

32
s

L=
48

14
s

Partitioning

DBH+Spotlight

HDRF+Spotlight

ADWISE+Spotlight

(e) Graph Coloring on Web

Partitioning Algorithms
0

1

2

3

4

5

6

7

8

9

P
a
rt

it
io

n
in

g
+

G
ra

p
h

 L
a
te

n
cy

 (
10

3
se

c)

L=
38

s

L=
45

s

L=
83

s
L=

17
4s

L=
32

9s L=
13

39
s

Partitioning

DBH+Spotlight

HDRF+Spotlight

ADWISE+Spotlight

(f) Clique on Orkut

Figure 4.7: Trade-off graph partitioning latency against processing latency.

4.3. EVALUATION 89

Partitioning Algorithms
1

2

3

4

5

6

R
e
p

li
ca

ti
o
n

 D
e
g

re
e

L=
27

s

L=
41

s

L=
15

4s

L=
28

1s

L=
46

2s

L=
96

9s

DBH+Spotlight

HDRF+Spotlight

ADWISE+Spotlight

(a) Replication Degree Brain

Partitioning Algorithms
1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

R
e
p

li
ca

ti
o
n

 D
e
g

re
e

L=
33

5s

L=
39

7s

L=
85

9s

L=
14

40
s

L=
28

32
s

L=
48

14
s

DBH+Spotlight

HDRF+Spotlight

ADWISE+Spotlight

(b) Replication Degree Web

Partitioning Algorithms
1

2

3

4

5

6

7

8

R
e
p

li
ca

ti
o
n

 D
e
g

re
e

L=
38

s

L=
45

s

L=
83

s

L=
17

4s

L=
32

9s

L=
13

39
s

DBH+Spotlight

HDRF+Spotlight

ADWISE+Spotlight

(c) Replication Degree Orkut

Figure 4.8: Replication degree for different partitioning strategies and settings. For all pre-
sented results, the partitions are balanced, i.e., maxsize−minsize

maxsize < 0.05 (see Section 4.2.3).

90 4. ADAPTIVE WINDOW-BASED STREAMING PARTITIONING

Brain Graph

For our first set of experiments, we use the Brain graph that has a moderate clustering co-
efficient, i.e., there are relatively strong communities in the graph. As the first experiment,
we executed the PageRank algorithm [34] on the Brain graph after partitioning it using DBH,
HDRF and ADWISE with different (increasing) latency preferences. To evaluate the impact
of partitioning quality on graph processing latency, we measured graph processing latency for
blocks of 100 iterations of PageRank execution and stacked these blocks on top of the graph
partitioning latency to visualize the composition of total graph latency (see Figure 4.7a). This
way, the trade-off between partitioning latency and processing latency in ADWISE can be
clearly seen. The most prominent observation is that ADWISE reduces total graph latency by
up to 18% compared to HDRF and by up to 39% compared to DBH. Clearly, higher graph
processing run-time makes it increasingly beneficial to invest more time into partitioning.

The PageRank algorithm is lightweight in terms of communication and computation: vertices
exchange numerical values and perform simple arithmetic calculations in each iteration. To test
communication- and computation-heavy graph processing algorithms, we execute an algorithm
that solves the NP-complete subgraph isomorphism (SI) problem [86]. We searched the Brain
graph consecutively for three subgraphs: circles of different lengths (i.e., path lengths of 19,
15, and 21). In Figure 4.7d, the resulting processing latencies are again visualized as stacked
processing latencies on top of the partitioning latency. The sweet spot of minimal total graph
latency is clearly visible for ADWISE with L = 281s. ADWISE reduces total graph latency by
23% compared to HDRF and by 37% compared to DBH partitioning algorithms. Even higher
settings of L in ADWISE reduce the graph processing latency of the SI algorithm further, but it
does not pay off in terms of total latency in the tested workloads.

The reason for reduced graph processing latency when investing more partitioning latency in
ADWISE is the improved partitioning quality of the graph. To show this, in Figure 4.8a, we
plotted the replication degree for the partitioning of the Brain graph and annotated each exper-
iment with the respective partitioning latency. By increasing the partitioning latency, ADWISE
reduces the replication degree subsequently by up to 29% compared to HDRF and by up to
46% compared to DBH. The reduced replication degree leads to reduced communication over-
head (i.e., replica synchronization messages) and reduced computational overhead (i.e., replica
processing) and therefore directly reduces graph processing latency.

The benefits of reduced graph processing latency outweighed the cost of investing more par-
titioning latency in the tested real-world workloads on the Brain graph, which experimentally
supports our main hypothesis in this chapter. To show that this finding generalizes to other
types of graphs and other graph processing algorithms, we provide further evaluations in the
following.

4.3. EVALUATION 91

Web Graph

The second set of experiments was performed on the Web graph that exhibits a high clustering
coefficient. We measure the impact of different latency preferences in ADWISE on the total
graph latency in Figure 4.7b for the PageRank algorithm. ADWISE reduces total graph latency
by 16% compared to HDRF and by 38% compared to DBH. Moreover, it is already beneficial
to use ADWISE with latency preference L = 859s even for the first 100 iterations. When the
graph processing runtime increases (i.e., more iterations are performed), it becomes more and
more beneficial to invest more latency into partitioning.

To test efficacy of ADWISE on other graph processing algorithms, we also executed the graph
coloring algorithm presented in [34] (see Figure 4.7e); the graph processing latency was mea-
sured after each block of 50 iterations of the graph coloring algorithm. The results show that
ADWISE reduces total graph latency at partitioning latency preference L = 859s by 9% com-
pared to HDRF and by 47% compared to DBH after 300 iterations of the graph coloring al-
gorithm. Even when executing only a single block of 50 iterations, ADWISE with latency
preference L = 859s already reduces total graph latency slightly compared to HDRF and sig-
nificantly compared to DBH.

The partitioning quality for the different algorithms and settings is depicted in Figure 4.8b.
Investing more partitioning latency in ADWISE reduces replication degree compared to HDRF
by 12% (compared to DBH by 41%) for latency preference L = 397s and by 25% (compared to
DBH by 51%) for latency preference L = 4814s. As expected, allowing for larger partitioning
latency in ADWISE leads to larger window sizes which lead to more informed partitioning
decisions.

The evaluations on the billion-scale Web graph support our initial hypothesis that the trade-
off between partitioning and graph processing latency is not addressed optimally by existing
single-edge streaming algorithms. ADWISE proved its efficacy to reduce total graph latency
when applied on the Web graph for both the PageRank and the graph coloring workload.

Orkut Graph

We performed a third set of experiments on the Orkut social network graph. Orkut has a low
clustering coefficient, so that the clustering score in ADWISE is not effective and, hence, was
switched off on this graph. For the PageRank algorithm, improving partitioning quality with
ADWISE leads to decreased total graph latency by up to 11% compared to HDRF and up
to 29% compared to DBH (see Figure 4.7c). Clearly, investing more partitioning latency in
ADWISE pays off in comparison to the single-edge streaming partitioning algorithms.

92 4. ADAPTIVE WINDOW-BASED STREAMING PARTITIONING

To test generality of our findings, we also performed experiments for the graph processing
problem of finding cliques of fixed size in the graph (see Figure 4.7f). We searched for cliques
of sizes three, four, and five with a random walker based clique algorithm: vertices exchange
messages of partially found cliques and probabilistically (P = 0.5) forward these messages if
they are connected to all vertices in the partial clique message (probabilistic flooding). We
performed the computation ten times for each clique size, starting the random-walk algorithm
at ten different randomly chosen vertices. As the results show, the minimal total graph latency
is achieved with ADWISE at partitioning latency L = 83s, which is 13% lower compared to
HDRF. The larger partitioning latency settings L = 174s or L = 329s still reduce end-to-end
latency slightly compared to HDRF. For even larger partitioning latencies, total graph latency
increases due to the more and more prominent effect of the partitioning latency.

In comparison to the other graphs, Brain and Web, the replication degree is on a relatively
high level for all partitioning algorithms (see Figure 4.8c). The reason is that the Orkut graph
has a very low clustering coefficient, i.e., there is little locality in the edge stream that can
be exploited by streaming partitioning algorithms. Still, ADWISE reduces replication degree
by up to 4% compared to HDRF and by up to 7% compared to DBH. As observed on the
execution of PageRank and clique algorithms, this small reduction of replication degree can still
already lead to significant reductions of graph processing latency. We attribute this effect to the
observation that some replicas contribute to overall communication overhead much more than
others [86]. Improving locality of a few of those replicas can result in super-linear reductions
of graph processing latency.

Result discussion: Our experiments on three real-world graphs from different domains and us-
ing four different graph processing algorithms validate that single-edge streaming partitioning
algorithms are not able to solve the trade-off between partitioning latency and graph process-
ing latency optimally. ADWISE fills this gap by allowing to invest more time into partitioning
in order to improve the replication degree. This investment pays off in practical use cases –
such that the total graph latency can be reduced significantly in our experiments. On the other
hand, larger partitioning latencies, e.g. 10 times the single-edge latency, can lead to higher total
latency due to the increasing impact of the partitioning latency.

As a practical guideline for users of ADWISE, we propose to invest about three times the
latency of single-edge streaming algorithms for graph algorithms with equal or more commu-
nication volume as PageRank. If the single-edge streaming latency is not known or can not be
estimated, it would even pay off to run a single-edge streaming algorithm once to measure the
latency and then invest twice this latency into ADWISE.

4.3. EVALUATION 93

32 16 8 4
Spotlight Spread

0

5

10

15

20

25

R
e
p

li
ca

ti
o
n

 D
e
g

re
e

22
.2

11
.6

9.
5

13
.5

8.
7

6.
9 8.

1

6.
1

4.
8 5.

2

4.
2

3.
8

DBH

HDRF

ADWISE

Figure 4.9: Efficacy of spotlight optimization on Brain.

4.3.2 Spotlight

Finally, we experimentally validated efficacy of the spotlight optimization (see Figure 4.9). We
measured replication degree using the same computing infrastructure for all three partitioning
strategies, i.e., DBH, HDRF, and ADWISE. We varied the spread of the spotlight optimization,
i.e., the number of disjoint out-partitions of the z = 8 partitioners (see Section 4.2.4). Note
that we kept the number of partitions k = 32 constant for all experiments, regardless of the
used spread size. Instead, we only vary the number of partitions of each partitioner. In this
way, we solve the same k-way vertex-cut partitioning problem but with much better results:
smaller spread values lead to greatly reduced replication degree by up to 76%. The spotlight
optimization is extremely effective for all initial partitioning strategies: it reduces replication
degree significantly. Existing systems [101, 140] use a maximal spread size (e.g. spread of 32
for k = 32 partitions) which makes parallel graph loading less effective.

4.3.3 Summary of Evaluation Results

In summary, the evaluation results show that ADWISE reduces total end-to-end latency by
up to 23− 47% compared to the partitioners HDRF and DBH. On top of that, the spotlight
optimization for parallel loading reduces the replication degree of all evaluated partitioning
strategies by 3−4×. Finally, we validate that these findings are reproducible for three different
graphs emerging in three different areas biological networks (Brain), social network (Orkut),
and web graphs (Web).

94 4. ADAPTIVE WINDOW-BASED STREAMING PARTITIONING

4.4 Related Work

The idea of solving large-scale graph problems in a streaming fashion is well-documented in
literature [55, 116]. Stanton and Kliot [123] firstly proposed several edge-cut partitioning
heuristics working in one pass over the graph vertices. FENNEL [129] places the vertex on a
partition with many neighbors and few non-neighbors. Nishimura and Ugander [95] proposed a
restreaming model that improves the partitioning in each pass using information from the previ-
ous pass. METIS [59] is an iterative offline algorithm that performs multi-level partitioning on
a coarse-grained meta-graph followed by iterative adaptations on more and more fine-grained
graph representations. METIS was used to produce high-quality edge-cuts for graphs with a
few million edges [122] but does not scale to massive graphs [129]. Wang et al. [135] pro-
posed a distributed partitioning algorithm based on multi-level label propagation. Zheng et
al. [152] consider heterogeneous infrastructures, and Shang et al. [120] heterogeneous work-
loads. Martella et al. [81] proposed Spinner, a distributed edge-cut partitioning algorithm on
top of the Pregel API [80] that utilizes vertex migration to adapt the partitioning dynamically.
However, all of these algorithms perform edge-cut partitioning which can not be converted to
a good vertex-cut partitioning [30]. For example, the number of edges to be cut in a star-like
graph with |E| edges is in Ω(|E|) – while the number of vertices to be cut is in O(1). ADWISE
employs vertex-cut partitioning.

Several streaming vertex-cut partitioning algorithms have been proposed. Many graph pro-
cessing systems use hashing [34, 35] which is fast and leads to good workload balancing, but
also to high replication degree, graph processing latency and communication overhead. Graph-
Builder [50] is a grid-based hashing solution restricting replication of each vertex to a subset of
the partitions. Degree-based hashing (DBH) [140] assigns edges to partitions by hashing only
the low-degree vertex of an edge leading to better clustering properties. GraphA [75] proposes
the use of an incremental number of vertex hash functions to ensure that low-degree vertices
are assigned to the same partition and no large imbalances arise. The idea of 1D (and 2D) par-
titioning [35] is to perform edge assignments based on the adjacency matrix, i.e., assigning all
edges based on the row (and column) of their source (and destination) vertex. In contrast to the
previous algorithms, Greedy [34] assigns edges to partitions by considering locality explicitly,
i.e., where incident vertices are already replicated. The degree-aware algorithm HDRF [101]
(i.e., high-degree vertices are replicated first) is one of the best streaming vertex-cut algorithms
outperforming even offline algorithms. PowerLyra [18] extends Greedy to hybrid-cuts by cut-
ting high-degree vertices and edges incident to low-degree vertices. HoVerCut [113] enables
multi-threaded processing of the graph stream by granting batch-wise, parallel access to the
shared state of the partitioning algorithm. H-load [86] and G-cut [154] consider heterogeneous
environments to minimize overall graph processing costs. These vertex-cut algorithms perform
a single pass over the edge stream. We have shown that this extreme choice in the search space
between low partitioning and low graph processing latency is not optimal for many real-world

4.5. CHAPTER SUMMARY 95

graph processing tasks. However, as a benchmark we selected the best partitioning algorithm
for many graphs, i.e., HDRF, based on an experimental comparison of a wide range of single-
edge streaming partitioning algorithms [133]. Note that we did not consider algorithm-specific
partitioning strategies using domain knowledge to optimally partition the data for a specific
graph algorithm [84]. These methods are not generally applicable to a wide range of graphs
and graph applications.

H-move [86], introduced in Chapter 3, is an iterative communication-aware algorithm that
repartitions the graph during graph processing. Rahmanian et al. [106] performed distributed
partitioning using an iterative swap heuristic. Huang and Abadi [48] perform dynamic edge-
cut partitioning with the possibility of replication, i.e., a hybrid dynamic partitioning algorithm
combining edge-cut and vertex-cut. As reassignment of vertices is allowed, the proposed al-
gorithms have super-linear runtime and, hence, do not fit into the streaming edge-cut parti-
tioning model. Zhang et al. [150] developed an interesting all-edge neighborhood expansion
(NE) heuristic with polynomial runtime that grows each partition separately using a proximity
function. The authors proposed to apply NE iteratively on a random graph sample to reduce
memory consumption, but there is no examination of how varying the graph sample size im-
pacts partitioning latency and quality. Studying this trade-off is the main goal in this chapter.
To summarize, all of these algorithms are computationally more intensive with super-linear
runtime and therefore not suitable for an initial loading of the graph.

4.5 Chapter Summary

Distributed graph systems rely on fast and effective partitioning algorithms. In recent years,
single-edge streaming partitioning dominated the landscape of partitioning algorithms due to
the linear runtime complexity. This chapter describes the window-based streaming partitioning
algorithm ADWISE that allows for investing more partitioning latency to improve partitioning
quality and thus, reduce graph processing latency. The evaluation results show that ADWISE
reduces total end-to-end latency by up to 23−47% compared to single-edge streaming in dif-
ferent realistic scenarios. Moreover, the novel spotlight optimization — a simple tweak that can
be applied to any partitioning algorithm with parallel loading — reduces the replication degree
of all evaluated partitioning strategies by 3−4× without introducing computational overhead.

96 4. ADAPTIVE WINDOW-BASED STREAMING PARTITIONING

5
Query-aware Multi-query Graph

Processing

In Chapters 3 and 4, we focus on (static and dynamic) vertex-cut partitioning algorithms tai-
lored to distributed graph processing. For these chapters, we assume a batch-like computation
model: we load the data graph into distributed memory and execute a global graph algorithm
on the distributed data graph. In this chapter, we examine a different model of computation
that becomes more and more important: executing multiple graph queries with a limited scope
on the distributed data graph that is shared among the queries. In particular, we focus on the
placement, partitioning, and synchronization aspect of this computation model. This chapter is
based on previously published work [84].

Distributed graph processing systems such as Pregel [80], PowerGraph [34], and PowerLyra
[18] have emerged as the de facto standard for batch (offline) graph processing tasks due to

Pregel PowerLyra GrapH Weaver Q-Graph

[80] [18] [87] [27]

Kineograph GraphX Mizan Seraph

[20] [141] [66] [143]

Locality 7 3 3 7 3

Multi-query 7 7 7 3 3

Adaptivity 7 7 3 7 3

Table 5.1: Research gap: multi-query graph processing with adaptive partitioning maximizing
query locality.

97

98 5. QUERY-AWARE MULTI-QUERY GRAPH PROCESSING

their superior performance of data analytics on graph-structured data. However, novel graph
applications have given rise to a shift of paradigms towards interactive (online) graph queries on
a shared graph structure [27, 143]. These applications share three properties to which existing
graph partitioning algorithms are not tailored. In the following, we quickly describe these
three properties in this paragraph and show why and how these properties emerge in real-world
applications in the next paragraphs. First, the scope of the queries is limited, variable, and
overlapping (i.e., the query workload is clustered with computational hotspots in the graph).
Second, multiple iterative and long-running graph queries run in parallel on a shared graph.
Third, there are variations of query workload and hotspots. We denote these applications as
concurrent graph query analytics (CGA). In this chapter, we address the question: how to tailor
graph partitioning and management to CGA applications in order to reduce query latency? To
answer this, let us first examine three typical CGA applications.

Application 1: Today, many users request mapping services such as {Google, Apple, Yahoo,
OpenStreet}-Maps to perform route planning computations that can be modeled as shortest path
queries with start and end vertices on a huge road network [151]. These queries are inherently
limited in scope (what is the shortest path from home to my doctor?) – more than 50% of
search queries on mobile devices have local intent [13]. This leads to computational hotspots
in certain graph areas (e.g. urban centers) that are subject to short-term changes (e.g. festivals),
long-term changes (e.g. growing cities), and regular fluctuations of query workload with the
time of the day or the day of the week. Hence, these services must serve multiple graph queries
in parallel, with minimal query latency to yield high customer satisfaction.

Application 2: Digitized social networks allow users to measure how their online activity im-
pacts people in their environment [31]. In general, each user accesses only her personal social
network (i.e., social circle) – either to maintain privacy (e.g. Facebook restricts visibility of
posts to defined social circles), to protect a person’s integrity and trust, or simply to personal-
ize user queries [67]. The social circles overlap because of the high clustering coefficient of
social networks [136]. This leads to multiple, overlapping graph queries on shared graph data
and with limited scope for social network analysis such as influence propagation [7, 63], infor-
mation dissemination [17], community detection [103], and friendship recommendations [38]
on a restricted subgraph. This type of social network analysis causes computational hotspots
around hubs [87] that change over time (e.g. changing popularity of a star).

Application 3: Large-scale knowledge graphs store structured knowledge to enable smart
devices to retrieve information [62]. For instance, smart cars use SPARQL [100] queries on
knowledge graphs to match control rules [28]. These types of graph queries access only a small
portion of the graph, but there are multiple parallel queries (e.g. from multiple smart cars)
leading to computational hotspots around content with variable and dynamic popularity in the
knowledge graph.

5.1. RESEARCH GAP AND CONTRIBUTIONS 99

5.1 Research Gap and Contributions

We identified three challenges for CGA applications. (i) Locality: To parallelize query execu-
tion, graph systems partition the graph across k workers leading to queries that are distributed
across workers and ultimately to slow query execution due to network communication and syn-
chronization overhead between workers. Because local communication is faster than remote
communication, we expect decreased average query latency when partitioning the graph in a
way that increases the chance that a single query is executed on a single worker. In other words,
a major challenge is to find a scalable partitioning algorithm that considers query workload to
increase query locality, i.e., the percentage of queries that are executed on a single worker,
and ultimately improving scalability and latency of the graph system. (ii) Multi-query: how to
manage the execution of multiple queries in parallel on a shared graph? Single-query systems
use a global barrier synchronization to execute the graph query in an iterative manner. This
ensures that after each iteration all vertices have finished execution before proceeding with the
next iteration [80]. However, we must carefully design synchronization mechanisms of multi-
query systems to decouple execution of different queries such that the query locality on the
partitioned graph can be fully exploited. (iii) Adaptivity: how to adapt the graph partitioning
to dynamic query hotspots and query workloads? A key challenge is to repartition the graph at
runtime to address changing query hotspots.

In Table 5.1, we categorize related work with respect to these challenges. We identified a
research gap with respect to a multi-query graph system with adaptive partitioning. Existing
graph systems such as Pregel [80], Kineograph [20], PowerLyra [18], and GraphX [141] do
not support execution of multiple queries in parallel and are not adaptive to changing graph
workload. Although GrapH [87] and Mizan [66] are adaptive, they are not query-aware and do
not support multiple queries in parallel. Existing online multi-query systems such as Seraph
[143] and Weaver [27] do not partition the graph in a locality-preserving manner.

This chapter introduces the open-source system Q-Graph1 for CGA applications that fills this
research gap. Q-Graph uses a centralized controller to maintain global knowledge about the
queries running on each worker to perform query-aware partitioning. Q-Graph considers the
dynamic query workload rather than solely the graph structure as done by state-of-the-art parti-
tioning algorithms. We show that query-awareness of partitioning and synchronization speeds
up CGA applications – as a result of improved query locality and workload balancing compared
to query-agnostic static edge-cut partitioning algorithms. In particular, this chapter provides the
following contributions: (i) A novel concept of query-aware partitioning to improve query lo-
cality: the Q-cut algorithm partitions the graph based on a history of queries reaching high
query locality of up to 80%. Query-aware partitioning is more scalable because it operates
on a small number of queries rather than a large number of vertices (see Section 5.3.2). (ii)

1https://gitlab.com/qgraph/GRADES2018

https://gitlab.com/qgraph/GRADES2018

100 5. QUERY-AWARE MULTI-QUERY GRAPH PROCESSING

A hybrid-barrier synchronization model with local and global barriers. Local barriers reduce
query latency for localized queries due to minimal synchronization overhead, while global bar-
riers enable graph management for repartitioning and adaptivity (see Section 5.3.3). (iii) An
adaptation method that optimizes the graph partitioning at runtime to dynamic query hotspots
using the centralized global knowledge regarding query locality (see Section 5.3.4). (iv) A
thorough evaluation of our system Q-Graph showing reduced query latency by up to 57% com-
pared to state-of-the-art partitioning and by up to 47% compared to the state-of-the-art barrier
synchronization method (see Section 5.4).

5.2 Problem Description

In this section, we introduce the background, notations, and the partitioning problem.

Background and Notations: The graph structure is given by G = (V,E) with the set of
vertices V and the set of directed edges E ∈V×V . Each vertex v maintains vertex data Dv (edge
data is stored within the vertex data). We follow the predominant vertex-centric programming
model introduced in Chapter 2 where each vertex iteratively recomputes its own vertex data
based on messages from neighboring vertices. Vertex v exchanges data with a neighboring
vertex v′ by sending a message mv→v′ . The application programmer specifies the vertex function
f (Dv,m∗→v) for vertex v and the set of incoming messages m∗→v. We define a query q as a tuple
(f ,Vsub) of a vertex function f and an initial subset of active vertices Vsub ⊆V . An example is
the problem of finding the shortest path between the start vertex v0 and the sink vertex vend : The
initial subset of vertices contains only the start vertex, i.e., Vsub = {v0}, and the query function
for a given vertex v iteratively recalculates the shortest distance from the start vertex v0 to vertex
v by updating the distance based on the distance of neighboring vertices (see Single-Source-
Shortest-path (SSSP) algorithm [143]).

Multi-query graph systems support two types of requests: read-only graph analytics queries
and write-enabled graph updates [24, 27, 143]. Graph analytics queries (i.e., queries) read
the whole vertex data but write only on separate query-specific vertex data to prevent a write
conflict between any pair of queries. We focus on the efficient parallel execution of multiple
graph analytics queries.

To enable a consistent view on the vertex data, offline graph processing systems execute graph
vertices using the synchronous and iterative bulk synchronous processing (BSP) model [80,87,
115] consisting of three phases: i) computation, ii) communication, and iii) barrier synchro-
nization. In the computation phase, active vertices execute the vertex function in parallel. In
the communication phase, active vertices asynchronously send messages to neighboring ver-
tices that may reside on different workers. In the synchronization phase, the system waits for
all vertices to finish phases i) and ii) (barrier synchronization). A vertex v is considered as

5.2. PROBLEM DESCRIPTION 101

G = (V,E) Graph with set of vertices V and edges E.

Dv Vertex data of vertex v ∈V .

mv→v′ Message from vertex v to vertex v′.

m∗→v Set of incoming messages for vertex v ∈V .

f (Dv,M) Vertex function of v, given vertex data Dv and set of messages M.

q Query consisting of vertex function and set of active vertices.

Q Set of queries qi ∈Q.

W Set of worker machines wi ∈W .

k Number of worker machines, i.e., k = |W |.
p Number of queries, i.e., p = |Q|.
A Dynamic assignment function that maps vertices to workers.

GS(q) Global query scope of query q, i.e., set of active vertices within µ seconds.

µ Time interval (sec) to capture active vertices.

LS(q,w) Local query scope of query q on worker w.

Lw Workload of worker w.

Iw Intersection function of local query scopes on worker w.

Φ Threshold of average query locality to decide about repartitioning.

δ Maximally allowed imbalance.

Table 5.2: Notation overview.

active in iteration i if any other vertex has sent a message to vertex v in iteration i− 1. These
three phases, denoted as one iteration, are repeated until there is no active vertex.

Dynamic Partitioning Problem: A major reason for the superior performance of graph pro-
cessing systems is that the graph structure provides information about data dependencies: graph
vertices exchange messages only with neighboring vertices. Hence, sophisticated graph parti-
tioning algorithms exploit the graph structure to minimize the number of messages that are sent
across partition boundaries. Higher data locality improves scalability, latency, and communi-
cation overhead [87].

Given is the graph G, a set of queries Q= {q1, ...,qp}, and a pool of workers W = {w1, ...,wk}.
Roughly speaking, the goal is to find an assignment of vertices to workers at each point in time
such that the average query latency is minimal. Note that each worker w ∈W executes a subset
of queries Q′ ⊆Q in parallel, depending on the vertices assigned to each worker.

The average query latency is influenced by the partitioning of the active query vertices – high
locality of query vertices leads to reduced network communication and reduced query latency.
The dynamic partitioning is given by an assignment function A that assigns vertices to workers

102 5. QUERY-AWARE MULTI-QUERY GRAPH PROCESSING

at different points in time, i.e, A : V × T →W for the set of vertices V , a time interval T =

[Tmin,Tmax] ⊂ R, and the set of workers W . Let a function X : Q× T → P (V) track the set
of active vertices for a query and a point in time. The function X incorporates the impact
of partitioning decisions on the query latency – better locality leads to earlier availability of
messages which leads to earlier activation times of vertices. Then, the average query latency is
given by the (averaged) difference between the last and the first time instance in which a query
has at least one active vertex, i.e., 1

|Q| ∑q∈Q max{t ∈ T |X (q, t) 6= /0}−min{t ∈ T |X (q, t) 6= /0}.

To quantify partitioning quality for CGA applications, we define the global query scope GS(q)⊆
V as the set of vertices that are activated during execution of query q. Likewise, we define the
local query scope LS(q,w) ⊆ GS(q) as a subset of vertices in the global scope of query q that
are assigned to worker w. If LS(q,w) = /0, query q has not activated any vertex on worker
w. Furthermore, if LS(q,w) = GS(q), query q is completely local on worker w. Using these
definitions, we define the query-cut metric quantifying the quality of a given partitioning, i.e.,
the locality of query execution. More formally, query-cut is the number of non-empty local
query scopes ∑q∈Q |{w ∈W |LS(q,w) 6= /0}|.

We propose to solve the problem of balanced k-way query-aware partitioning that minimizes
the query-cut as defined previously while ensuring balanced partitions with respect to the num-
ber of active vertices (see Section 5.3.2). A smaller query-cut increases query locality and
decreases query latency due to the reduced communication and synchronization overhead. In-
tuitively, executing a graph query on a single worker is fast (see Section 5.4.2) – a worker it-
erates over local vertices and executes the vertex function without waiting for remote workers,
without overhead for serializing and deserializing messages, without passing the multi-layered
TCP/IP stack through the operating system, and without the delay of transferring data over the
network.

Research Gap: Existing partitioning methods, such as balanced k-way partitioning for k
workers [123], are agnostic to the query workload at runtime. Graph partitioning is either
based on edge-cut [123, 131] or vertex-cut [34, 87], i.e., minimizes the number of adjacent
vertices or edges that are assigned to different workers. However, for CGA applications, data
dependencies are not only defined by the graph structure but to a large extend by the localization
of the graph queries. In Figure 5.1, we give an example on the neighborhood graph of New
York districts with two localized queries q1 and q2 running on the same graph. A minimal
2-way query-aware partitioning would partition the graph such that no query is divided into
multiple parts. Hence, any cut that separates queries q1 and q2 is minimal and leads to zero
traffic between the partitions at a certain time instance. However, the query-agnostic edge-
cut partitioning algorithm would prefer cut 1 with edge-cut size six over cut 2 with edge-

3Source of the NY map (upper right corner): Vmanjr (https://commons.wikimedia.org/wiki/File:Map_
of_New_York_Economic_Regions.svg), “Map of New York Economic Regions”, https://creativecommons.
org/licenses/by-sa/3.0/legalcode

https://commons.wikimedia.org/wiki/File:Map_of_New_York_Economic_Regions.svg
https://commons.wikimedia.org/wiki/File:Map_of_New_York_Economic_Regions.svg
https://creativecommons.org/licenses/by-sa/3.0/legalcode
https://creativecommons.org/licenses/by-sa/3.0/legalcode

5.3. Q-GRAPH SYSTEM 103

New York Districts

1. Western NY

2. Finger Lakes

3. Southern Tier

4. Central NY

5. North Country

6. Mohawk Valley

7. Capital District

8. Hudson Valley

9. NYC

10. Long Island

𝑞2

𝑞1

cut 3

|Edge-cut|= 2

|Query-cut|= 1

cut 1

|Edge-cut|= 6

|Query-cut|= 0

cut 2

|Edge-cut|= 8

|Query-cut|= 0

Local

query

scope

Figure 5.1: Query-agnostic partitioning optimizes edge-cut and query-aware partitioning opti-
mizes query-cut.3

cut size eight – and invest scarce computational resources to calculate this cut. Therefore,
query-agnostic partitioning algorithms traverse larger search spaces without producing better
partitioning quality for CGA applications. Even worse, a query-agnostic edge-cut algorithm
prefers suboptimal cut 3 with edge-cut size two over cut 1 or 2 leading to a more expensive
distributed query execution.

5.3 Q-Graph System

In this section, we provide an overview of our distributed graph system Q-Graph for paral-
lel graph query processing and describe three optimizations: query-aware partitioning, hybrid
barrier synchronization, and query-aware adaptivity.

5.3.1 System Overview

Q-Graph consists of a two-layered architecture: the worker and the controller layer (see Fig-
ure 5.2). The workers perform graph processing by executing graph queries in a distributed
fashion, i.e., they execute the vertex functions on the active vertices and handle message ex-
changes between neighboring vertices residing on different workers. The centralized controller

104 5. QUERY-AWARE MULTI-QUERY GRAPH PROCESSING

Worker API

𝑞1𝑞2

𝑞3

𝑞1

𝑞3

𝑤3𝑤1 𝑤2

𝑤3
𝑤4

𝑤1 𝑤2

Workers

• Graph processing

• Low-level vertex-centric

• Local knowledge

Controller

• Graph management

• High-level query-centric

• Global knowledge

𝒒𝟑: Shortest Path from

Palo Alto to San Jose?

Controller API

𝑤4

Local query scope

Global

query

scopes

San Jose

Palo Alto

Figure 5.2: System Architecture.

manages execution of the graph queries on the distributed graph using a scalable represen-
tation of global knowledge about the graph workload – to dynamically adapt the partition-
ing at runtime and to ensure efficient (barrier) synchronization of the graph queries. We de-
veloped a general-purpose API for both the worker and the controller layer (see Table 5.3).
The controller provides a front-end for users to access graph processing resources with the
request scheduleQuery(q) (e.g. the user schedules query q3 in Figure 5.2). The controller han-
dles execution of this query by forwarding the scheduling request to the workers (i.e., calling
executeQuery(q)). The next three sections describe the query-aware algorithm Q-cut (see Sec-
tion 5.3.2), the hybrid barrier synchronization (see Section 5.3.3), and the adaptivity method
(see Section 5.3.4).

5.3.2 Q-cut: Centralized Query-aware Partitioning

Q-Graph pushes partitioning decisions to the controller to benefit from the global knowledge
about the query scopes and workload. The problem is that maintaining low-level global knowl-
edge about the complete graph (vertices and edges) is not scalable. To this end, one of our
central ideas is to use a more scalable representation of global knowledge by focusing on high-
level query scopes rather than low-level vertex information. As the number of queries is much
smaller than the number of vertices, the controller can utilize powerful partitioning algorithms
on small data to improve query locality and workload balancing.

5.3. Q-GRAPH SYSTEM 105

Command Description

Controller API

stats(q, |LS(q,w)|, Iw,w) Worker w updates controller with statistics

about q’s local query scope and intersection Iw.

barrierSynch(q,w) Worker w indicates termination of current

iteration of query q.

scheduleQuery(q) User schedules query q.

Worker API

move(LS(q,w),w,w′) Controller requests worker w to move

q’s local scope to w′.

barrierReady(q) Controller releases worker waiting for q barrier.

executeQuery(q) Controller requests worker to start query q.

Table 5.3: Q-Graph API.

Partitioning Strategy

Our strategy for query-aware partitioning involves three steps (see Figure 5.3). First, workers
update the controller with query statistics after every iteration: for each active query, each
worker sends the size of its local scope and the size of the overlap with other local query
scopes. Hereby workers transform their low-level knowledge (i.e., which vertices each query
executes) into high-level knowledge (i.e., how many vertices each query executes). In the
example, there are two workers w1 and w2 and three queries q1,q2,q3 on the New York districts
graph from Section 5.2. Queries q1 and q3 span both workers leading to communication in each
iteration of the query. Queries q2 and q3 overlap on worker w2. Second, the controller performs
query-aware partitioning (Q-cut) on the high-level representation with reduced problem size
to find high-quality query-cuts. Third, the controller transforms the resulting query-cut back
to the low-level representation into a proper graph partitioning by sending move requests to
workers. In the example, local query scope LS(q1,w2) moves to worker w1 and local query
scope LS(q3,w1) moves to worker w2. The new partitioning contains no queries spanning
multiple workers and, therefore, has perfect query locality.

Q-cut Algorithm

The goal of query-aware partitioning is to maximize query locality. To this end, we define a
cost function c : S→ R in the space of potential solutions S of valid Q-cuts. We set the cost
function cs for solution s to the following query-cut metric: we sum over all queries qi ∈Q the
number of vertices that are not assigned to the worker with the largest query scope for query qi,

106 5. QUERY-AWARE MULTI-QUERY GRAPH PROCESSING

𝑞1

𝑞2

𝑞3

𝑞1

𝑞2
𝑞3

𝑤1 𝑤2

High-level

representation

Low-level

representation

𝑤1

𝑤2

Step 1:

Statistics

Step 2: Q-cut

𝑞1

𝑞2

𝑞3

𝑤1 𝑤2

|𝐿𝑆 𝑞1, 𝑤2 | → 2

|𝐿𝑆 𝑞2, 𝑤2 | → 14

|𝐿𝑆 𝑞2, 𝑤2 ∩ 𝐿𝑆 𝑞3, 𝑤2 | → 2

|𝐿𝑆 𝑞3, 𝑤2 | → 2

|𝐿𝑆 𝑞3, 𝑤1 | → 3

|𝐿𝑆 𝑞1, 𝑤1 | → 13

Step 3:

Move

Figure 5.3: The Q-cut algorithm operates on a high-level query representation to improve low-
level graph partitioning.

i.e., ∑qi∈Q ∑w∈W,w6=maxw′∈W |LS(qi,w′)| |LS(qi,w)|. For example if two workers execute two queries
completely independently, the costs would be zero.

The algorithm should (a) determine low-cost solutions effectively when the controller has
enough time (i.e., the problem size is small enough to be solvable within the time limit), (b)
provide the best found solution when interrupted, and (c) find low-cost solutions for diverse
query workloads (i.e., does not overfit to specific problems).

Algorithm 7 Iterated local search algorithm for Q-cut partitioning.
1: state ŝ← INITIALSOLUTION()

2: while not TERMINATED() do
3: s← PERTURBATION(ŝ)
4: s← LOCALSEARCH(s)
5: if cs < cŝ then
6: ŝ← s

A well-established algorithmic framework for optimization problems meeting these require-
ments is iterated local search (ILS), a meta-heuristic that generates a sequence of solutions –
each building on top of the previous solution [76]. For ILS, we must define the cost function
cs for each solution s and provide four subroutines: (i) the initial solution, (ii) a local search
heuristic to find a local minimum given an initial solution, (iii) a perturbation method to over-
come local minima, and (iv) a termination criterion (see Algorithm 7). After generating an

5.3. Q-GRAPH SYSTEM 107

initial solution, we iteratively perturb the current solution to avoid getting stuck in local min-
ima and perform the local search method until the next local minimum is found. We store the
solution with minimal costs in the variable ŝ. Selecting suitable subroutines is crucial for ef-
fectiveness and efficiency [76]. In the following, we describe the four subroutines of the Q-cut
algorithm in detail, i.e., local search, perturbation, initial solution, and termination.

Local Search Subroutine We present our local search heuristic in Algorithm 8. The main
idea is to simulate local query scope movements between workers as long as this leads to
cost reductions. If no such move can be found, we return the last solution (denoted as state)
which is a local minimum. More precisely, in lines 3-9, the algorithm iteratively determines
the successor state s′ with minimal costs cs′ and takes this state as a starting point for the
next iteration until there is no successor state with smaller costs. In lines 13-17, the algorithm
determines all possible successor states that would arise by moving any local query scope from
worker w to worker w′ – for all respective combinations of workers and local query scopes.
More precisely, as the number of these combinations can be very high, we clustered the queries
as a preprocessing step into 4k clusters using a variant of the well-known Karger’s algorithm
with linear runtime complexity [56] and moved whole clusters between workers.

Algorithm 8 Local search heuristic to find local minimum.
1: function LOCALSEARCH(State s)
2: terminated← False
3: while not terminated do
4: l←SUCCESSORS(s)
5: s′← argmins′′∈lcs′′

6: if cs′ < cs then
7: s← s′

8: else
9: terminated← True

10: return s
11: function SUCCESSORS(s)
12: l← /0

13: for w,w′ ∈W,q ∈Q do
14: x← |LS(q,w)|
15: if w 6= w′∧ x > 0∧ |(Lw−x)−(Lw′+x)|

max(Lw−x,Lw′+x) < δ then
16: s′← State after move(LS(q,w),w,w′)
17: l← l∪{s′}

18: return l

Balancing the workload is of major importance to efficiently utilize the system resources. We
define workload as a combination of two metrics: the number of vertices assigned to worker w,
i.e., |V (w)|, and the size of the local query scopes on worker w, i.e., ∑q∈Q |LS(q,w)|. We define

workload Lw as the combination of these scores, i.e., Lw =
|V (w)|+∑q∈Q |LS(q,w)|

2 and require that
the workload of all pairs of workers is balanced, i.e., ∀w,w′ ∈W : |Lw−Lw′ |

max(Lw,Lw′)
< δ. We restrict the

108 5. QUERY-AWARE MULTI-QUERY GRAPH PROCESSING

𝑞1

𝑞3

𝑞2

𝑞1

𝑞1

𝑞2

𝑞1

𝑞3

𝑞4

𝑞1

𝑞1

𝑞2

𝑞1

𝑞3

𝑞4(i) Select

query 𝑞3

(iii) Load balance by moving

𝐿𝑆(𝑞1, 𝑤1) to 𝑤2

(ii) Move 𝐿𝑆(𝑞3,∗) to

worker 𝑤1

𝑞2

𝑞2

𝑤2 𝑤2

𝑞3

𝑤1𝑤1

Figure 5.4: Perturbation example.

solution space to solutions with balanced workload by excluding successor states that would
result in larger workload differences due to the movement of local query scopes in Algorithm 8
line 15. We control this via the balancing threshold δ (see Section 5.4.2 for the concrete value).

Perturbation Subroutine An important subroutine of ILS is the method of perturbing a lo-
cally optimal solution state s. The perturbation transforms the converged state s into a new state
s′ that serves as a starting point for the next local search. A good perturbation is neither too
small (i.e., the algorithm gets stuck in local minima), nor too large (i.e., the algorithm becomes
uninformed). An effective perturbation strategy is to consider a meta representation of the so-
lution (e.g. merging sets of vertices to larger clusters) and to perform a random perturbation in
this representation (e.g. swapping larger clusters randomly between partitions) [76]. We used
the following strategy with the idea of bringing together all local query scopes of a query to a
single worker (see Figure 5.4).

I Randomly select query q being spread across at least two workers.

II Move local query scopes LS(q,w′),w′ ∈W of query q to the worker w with the largest
local query scope of query q.

III Balance workload by randomly moving local query scopes from the maximally to the
least loaded worker until workload balancing is established.

This perturbation injects a certain amount of randomness (by merging local query scopes of a
single query and rebalancing) but does not lead to a completely chaotic state (such as random
restart).

5.3. Q-GRAPH SYSTEM 109

Initial Solution and Termination Subroutine As initial solution, we take the current parti-
tioning of the queries as received by the workers. For the termination criterion, we identified
two requirements: (i) minimize the costs as much as possible to enable Q-Graph to fully ex-
ploit query locality, and (ii) prevent that the Q-cut algorithm becomes the bottleneck of the
whole system. To this end, we define the termination criterion outside of the ILS framework
by interrupting the computation as soon as a result is needed, i.e., when the adaptivity module
decides to initiate repartitioning (see Section 5.3.4). The iterative nature of the Q-cut algorithm
enables this early termination – even if the optimal solution is not yet reached. A major perfor-
mance benefit comes from the decoupling of partitioning and computation logic: the controller
can execute the Q-cut algorithm asynchronously at graph processing runtime using the latest
stats-messages from the workers. Hence, if the controller initiates repartitioning, it can already
propose a better Q-cut to the workers causing minimal latency overhead for Q-cut partitioning.

5.3.3 Hybrid Barrier Synchronization for Multi-Query Graph Processing

To perform synchronous query execution of query q, each worker w informs the controller via
the API call barrierSynch(q,w) about the termination of a single iteration of query execution on
all active query vertices. After sending this message, the worker waits for the barrierReady(q)
message from the controller before starting with the next iteration. Thus, barriers enable itera-
tive execution of graph algorithms and provide clear semantics for the application: in iteration
i, vertex v has received all messages sent to v in the last iteration i− 1. When the controller
has received all barrierSynch-messages, it sends the barrierReady(q) message to all waiting
workers. The barrier ensures that all vertices execute their vertex functions in lock-step going
from one iteration to the next (cf. Chapter 2.1.3).

The state-of-the-art synchronization model [143] introduces an independent global barrier for
each query. The barrier is global because all workers are involved in synchronization and in-
dependent because each query has its own barrier. However, assuming an independent global
barrier causes two problems: (1) redundant global barriers cause communication overhead, (2)
local queries, which could be executed on a single worker, face unnecessary global synchro-
nization.

For example, suppose there are two workers w1 and w2 and two queries q1 and q2. All vertices
of query q1 reside on worker w1 and all vertices of query q2 reside on worker w2. In theory,
we could execute query q1 on worker w1 and query q2 on worker w2 which would lead to fast
local execution of both queries. However, assuming a global barrier would cause both worker
to synchronize in each single iteration of both query executions.

Why using an independent barrier? As mentioned in the last paragraph, Xue et al. [143] de-
coupled execution of multiple queries using an independent barrier for each query (denoted as
query barrier). The reason is that the alternative, i.e., a barrier that is shared by all queries,

110 5. QUERY-AWARE MULTI-QUERY GRAPH PROCESSING

B) Local

query

barrier

𝑤1

𝑤2

𝑤3

Workers

Queries

𝑞1

𝑞2

Q-cut

Move

vertices

𝑤2 𝑤1

A) Limited query barrier

C) Global barrierIteration

Compute()
Message

STOP-barrier START-barrier

Figure 5.5: The hybrid barrier synchronization integrates: A) limited and B) local query barri-
ers, and C) global barriers.

would result in a straggler problem because all queries have to wait for the slowest query after
each iteration. However, to avoid unnecessary global synchronization for localized queries,
we introduce local query barriers and limited query barriers, which synchronize only between
workers that are currently executing the query.

Thus, we developed a three-phase synchronization mechanism, denoted as hybrid barrier syn-
chronization. 1) We decouple query barriers to mitigate the straggler problem and enable inde-
pendent query execution. 2) We introduce the limited query barrier to prevent synchronization
between workers that do not execute the same query. The maximally limited barrier is the lo-
cal query barrier, which allows communication-free execution as long as queries remain local,
i.e., no distant vertices get activated via message passing. 3) In regular intervals, we initiate a
global barrier that is shared across all workers. The global barrier consists of a STOP-barrier
that halts the whole system and enables global optimization of the partitioning and a START-
barrier that resumes normal query execution on the optimized system after all optimizations
are implemented.

In Figure 5.5, we exemplify this by executing two queries q1 and q2 on a graph that is partitioned
across three workers w1,w2,w3. We indicate the computation time of a single vertex as a
horizontal bar in the respective query color. Initially, both queries are local. But after the
first iteration, query q1 activates a neighboring vertex on worker w2, which requires a limited
barrier between workers w1 and w2 leading to the exchange of barrier messages between the
workers and the controller. After three iterations of query q2, the controller (not shown) decides
to initiate a global barrier to perform repartitioning. As a result, query q1 switches to local
execution mode on worker w1.

The hybrid barrier protocol for a single query q1 is described in Figure 5.6. The protocol per-

5.3. Q-GRAPH SYSTEM 111

Master

Workers

Global query barrier

barrierSynch 𝑞1

barrierReady 𝑞1

𝑤1 𝑤2 𝑤3

Iteration i

Iteration i+1

𝑞1 𝑞1

Master

Limited query barrier

𝑤1 𝑤2 𝑤3

𝑞1𝑞1 𝑞1

Master

Local query barrier

𝑤1 𝑤2 𝑤3

𝑞1

computation 𝑞1
Time

Figure 5.6: Hybrid Barrier Protocol for a single query q1. The multi-query approach uses this
protocol for each query independently.

forms a global query barrier if all workers are involved in the query. One dedicated worker is the
master of the query (i.e., the worker with id i modulo k for query qi). In each iteration, workers
execute the vertex function and send a barrierSynch message to the master on completion of
the vertex function. The master waits for all barrierSynch messages. If all barrierSynch
messages are received, it sends the barrierReady message to each worker. Worker w3 may
leave the protocol dynamically by notifying the master that it has no active vertex for query
q1 anymore. When only one worker is left, there is no need to exchange synchronization mes-
sages. However, if the local query scope grows again to involve another worker, the query
master is notified and the limited query barrier protocol is performed again.

5.3.4 Adapting to Dynamic Query Workload

CGA graph systems are subject to changing query workload patterns and query hotspots are
not known in advance. To enable adaptivity of Q-Graph, each worker w keeps the controller
updated about the sizes of the local query scopes and their intersections by regularly sending
stats messages. The controller combines the size of the local query scopes of each query into the
global query scope size and initiates repartitioning decisions by calling move(LS(q,w),w,w′)
to move the local scope of query q from worker w to w′ (i.e., fuse both local scopes of query
q on worker w′). In doing so, the controller uses the global barrier. Next, we describe how
query-aware partitioning adapts over time.

112 5. QUERY-AWARE MULTI-QUERY GRAPH PROCESSING

Dynamic Updates: The global view about the query distribution is highly dynamic, and
workers have to keep the query information on the controller up-to-date. To this end, worker
w sends a stats(q, |LS(q,w)|, Iw,w) message after each iteration to indicate that query q has
|LS(q,w)| active vertices on worker w and intersects with other queries according to the function
Iw : 2Q→N. The intersection function returns the number of shared vertices between any com-
bination of local query scopes. For example, if three queries q1, q2, and q3 involve ten vertices
each and share three common vertices, the intersection function returns Iw({q1,q2,q3}) = 3.
To increase communication efficiency, we piggyback statistics messages with barrier synchro-
nization messages in our implementation.

The controller aggregates this information by calculating the global intersection functions of
global query scopes based on the local intersections of local query scopes. It maintains all
query statistics for a fixed duration, denoted as the (tumbling) monitoring window, given by
the window parameter µ. The window parameter determines the degree of adaptivity of the
system, i.e., how timely the partitioning reacts to dynamic query patterns. For instance, a larger
window parameter allows older query statistics in the global view of the controller and leads to
more long-term query-aware partitioning decisions. Furthermore, the controller initiates global
barriers on demand, i.e., if the statistics indicate that the current partitioning is suboptimal. To
this end, we use the query locality, i.e., the percentage of iterations which a query executes
completely locally on a single worker, as a metric for the current quality of the partitioning. If
the average query locality of all active queries is less than a threshold Φ, the controller initiates
a new partitioning. In Section 5.4, we discuss the exact parameter choices. Note that the
controller calculates the Q-cut algorithm (see Section 5.3.2) in parallel to the graph processing
on the worker. Therefore, the partitioning latency does not affect the latency of the global
barrier (see Section 5.4).

5.4 Evaluations

In this section, we show that adaptive Q-cut partitioning reduces query latency by up to 57%
compared to the benchmarks. Moreover, we evaluate scalability and the hybrid barrier opti-
mization.

5.4.1 Experimental Setup

To validate the presented concepts, we implemented Q-Graph (25k lines of Java code) and
made both source code and data publicly available.

Graph Data and Query Generation: For realistic graph data, we converted the Open-
StreetMap road networks (i) Germany (GY) to a graph with 11,805,883 vertices (i.e., junctions)

5.4. EVALUATIONS 113

and 30,804,741 edges (i.e., road segments), and (ii) the region Baden-Wuerttemberg (BW) to a
graph with 1,802,728 vertices and 4,770,566 edges. Note that these are medium sized graphs
— as our main goal is to reduce query latency in the presence of multiple localized and iterative
queries. We set the edge weights to the length of the respective road segments, divided by the
speed limit to estimate the travel time over this road segment.

We evaluated two queries: Single-source shortest path (SSSP) and Point-of-interest (POI).
SSSP calculates the shortest path between a given start and end vertex. POI retrieves the
closest vertex with a specified tag (e.g. gas station) to a given start vertex. We assign a tag
to each vertex with probability 1

12500 which is approximately the ratio of gas stations to road
segments. To get realistic query workload, we determined the 64 biggest cities in GY and 16
biggest cities in BW and generated for each query a random start vertex around these hotspots
– keeping the number of queries per city proportional to their populations. For SSSP, we also
generated an end vertex with variable euclidean distance to the start vertex to account for intra-
and inter-urban mapping queries.

Initial Partitioning: We used two algorithms with different strengths to initially partition the
graph: Hash leads to ideal workload balancing, and Domain leads to ideal locality of up to
98% local execution per query (we validate both claims in Section 5.4.2). Domain serves as a
best-case static partitioning algorithm: a domain expert, who already knows the hotspots of the
query distribution in advance, manually partitions the graph such that each hotspot is assigned
to a single partition. We also tested a state-of-the-art partitioning algorithm linear deterministic
greedy (LDG) [123]. But LDG resulted in partitions with zero workload due to the skewness of
the query distribution such that we excluded it from the experiments4. Then, we applied Q-cut
on top of this initial partitioning as queries are processed, and measured how query latency and
performance changes over time.

Computing Infrastructures: To evaluate both scale-up and scale-out performance, we used
the following computing infrastructures: (i) M1, a multi-core machine with 8 CPU cores (In-
tel(R) Core i7-2630QM, 2.90GHz, 6MB cache) and 8GB RAM, (ii) M2, a multi-core machine
(AWS m4.2xlarge) with 8 CPU cores (Intel(R) Xeon E5-2676 v3, 2.4GHz, 30MB L3 cache)
and 32GB RAM, and (iii) C1, a cluster with 8 nodes × 8 cores (Intel(R) Xeon(R), 3.0GHz,
6MB cache) and 32GB RAM per node, connected via 1-Gigabit Ethernet. For the scale-up
infrastructures, we followed a well-established design choice to exploit k cores by executing k
partitions in parallel on a single machine [138] and relied on loopback TCP for communication
between partitions. To evaluate efficacy of query-cut partitioning, the scale-up infrastructure is
a more challenging scenario than the scale-out infrastructure because the benefits of improved
partitioning (i.e., reduced network traffic) are less pronounced on a single multi-core machine.

4The initial experiments with this imbalanced, LDG-partitioned graph suggest an increased average query la-
tency by factor two to six compared to the other methods.

114 5. QUERY-AWARE MULTI-QUERY GRAPH PROCESSING

Therefore, we first test QGraph in a scale-up (see Section 5.4.2) and then in a scale-out envi-
ronment (see Section 5.4.3).

System Settings: QGraph has several system parameters that impact overall system perfor-
mance. We list the most important ones in the following and published the full configuration
to our open-source web repository5 for full reproducibility: (i) we set the time to calculate a
query-cut on the controller to 2 seconds. (ii) If the controller detects that the average query lo-
cality is less than threshold Φ = 0.7, it starts the Q-cut algorithm (see Section 5.3.4). Although
we did not observe that query latency is sensitive to the exact parameter choice, we recommend
a value between the locality of Hash and Domain (see Figure 5.9b), i.e., Φ ∈ [0.3,0.99]. For
more global queries, a modest locality level of Φ < 0.5 might be preferable. However, this
chapter addresses localized queries for which the parameter choice of Φ = 0.7 is a robust de-
cision for all performed evaluations. (iii) We set the monitoring window µ defining how long
old queries will be kept (see Section 5.3.4) to 240 seconds in order to accumulate a few dozen
queries for the Q-cut algorithm and restrict the maximal number of queries in the Q-cut algo-
rithm to 128. (iv) To reduce TCP overhead, the sender thread batches vertex messages with a
maximum of 32 vertex messages per batch and 32 kilobytes batch size. Increasing the batch
size beyond these limits has not reduced average query latency further due to the increasing
waiting time on both the sender and receiver side.

5.4.2 Adaptive Q-cut Partitioning:

To show both static and dynamic behavior of the Q-cut algorithm, we executed 2048 hotspot
SSSP queries on the BW graph in batches of 16 parallel queries (k = 8 workers on M2) –
followed by a disturbance to test how Q-Graph adapts to changing query workloads (see Fig-
ure 5.7a). For the disturbance, we abruptly changed the query workload from intra-urban
queries to random inter-urban queries between neighboring cities for further 496 queries. We
measured average query latency and normalized by the query latency of Q-Graph using the
static Hash partitioned graph (Q-cut switched off). In the first phase of the experiment, Q-Graph
with Q-cut switched on reduces average query latency continuously by up to 49% compared to
static Hash and by up to 40% compared to static Domain. The large fluctuation of Domain is a
result of the increased imbalance of query workload compared to Hash and Q-cut.

In the second phase, the query workload changes: inter-urban queries become more complex
with larger query scope. The bad locality of static Hash harms scalability due to high commu-
nication overhead – the relative improvement of all other approaches compared to static Hash
becomes more prominent. Nevertheless, the Q-cut algorithm reduces average query latency on
top of both static partitioning strategies Hash and Domain.

5https://gitlab.com/qgraph/GRADES2018

https://gitlab.com/qgraph/GRADES2018

5.4. EVALUATIONS 115

0 500 1000 1500 2000 2500
No. Queries

0

20

40

60

80

100

A
vg

.
Q

u
e
ry

 L
a
te

n
cy

 (
%

)

Disturbance

Hash

Hash+Q-cut

Domain

Domain+Q-cut

(a) SSSP on BW.

0 500 1000 1500 2000 2500
No. Queries

0
20
40
60
80

100
120
140
160
180

A
vg

.
Q

u
e
ry

 L
a
te

n
cy

 (
%

)

Disturbance
Hash

Hash+Q-cut

Domain

Domain+Q-cut

(b) SSSP on GY.

Figure 5.7: (a)-(b) Adaptive query-aware partitioning reduces query latency over time.

We performed a similar experiment on M2 using the GY graph in Figure 5.7b. In this setting,
Q-cut reduces query latency by up to 45% compared to static Hash and 30% compared to static
Domain partitioning. Note that for the larger GY graph, workload balancing is a more important
objective than query locality as can be seen by the relatively improved performance of Hash.
The reason is that the straggler problem becomes more prominent due to the higher complexity
of the road network and higher number of queries processed by the worker responsible for the
largest German city Berlin. However, Q-cut reduces average query latency again on top of both
partitioning strategies Hash and Domain.

The summed latency over all 2048 queries is aggregated in Figure 5.8a for the SSSP query
on the BW graph (reduced total latency by 43% compared to Hash and 22% to Domain), in
Figure 5.8b for the SSSP query on the GY graph (reduced total latency by 13% compared to
Hash and 25% to Domain). For the last experiment, we executed 2048 POI queries on the BW
graph on M2 to validate efficacy of Q-cut for different types of graph queries (see Figure 5.8c).
The summed latency was reduced by 50% compared to static Hash and by 28% compared to
static Domain.

Balancing the workload across machines mitigates the straggler problem and enables good
resource utilization. We compare workload balancing of the four partitioning strategies in
Figure 5.9a by executing 2048 SSSP queries on the BW graph (as previously described).We
measured workload as the number of active vertices on a worker in a time window of 60 seconds
and workload imbalance as a worker’s deviation from the average workload (averaged over a
sliding window of 10 seconds). Clearly, Domain leads to relative high workload imbalance
because of the diverse query hotspots while Hash results in balanced workload. Q-cut converges
to an imbalance of 20% because we set the maximally allowed imbalance to 25 percent, i.e.,
δ = 0.25.

But how good is partitioning quality for the different partitioning algorithms? In Figure 5.9b,

116 5. QUERY-AWARE MULTI-QUERY GRAPH PROCESSING

Hash Domain
Partitioning

0

400

800

1200

1600

T
o
ta

l
L

a
te

n
cy

 (
s)

Static

Q-cut

(a) Q-cut on BW for SSSP.

Hash Domain
Partitioning

0

1000

2000

3000

4000

5000

T
o
ta

l
L

a
te

n
cy

 (
s)

Static

Q-cut

(b) Q-cut on GY for SSSP.

Hash Domain
Partitioning

0

200

400

600

800

1000

T
o
ta

l
L

a
te

n
cy

 (
s)

Static

Q-cut

(c) Q-cut on BW for POI.

Hash Domain
Partitioning

0

20

40

60

80

100

120

T
o
ta

l
L

a
te

n
cy

 (
s)

BSP Synch

Hybrid Barrier

(d) Hybrid Barrier on BW for SSSP.

Figure 5.8: (a)-(b) Q-cut reduces query latency for different partitioning strategies for SSSP and
(c) for POI compared to static partitioning Hash and Domain. (d) The query latency decreases
with better partitioning and hybrid barrier synchronization.

0 50 100 150 200 250 300 350 400
Time (s)

0

20

40

60

80

100

A
vg

.
W

o
rk

lo
a
d

 I
m

b
a
la

n
ce

 (
%

)

Hash

Hash+Q-cut

Domain

Domain+Q-cut

(a) SSSP on BW.

0 50 100 150 200 250 300 350 400
Time (s)

0

20

40

60

80

100

A
vg

.
Q

u
e
ry

 L
o
ca

li
ty

 (
%

)

Hash

Hash+Q-cut

Domain

(b) SSSP on BW.

Figure 5.9: (a) Workload Balancing. (b) Percentage of local query executions.

5.4. EVALUATIONS 117

0 50 100 150 200
No. ILS steps

0

5

10

15

20

25

C
o
st

 f
u

n
ct

io
n

 c
s
(1

04
)

ILS costs

Perturbation

Figure 5.10: Perturbation overcomes local minima (SSSP on BW).

we measured the query locality, defined as the percentage of iterations that are executed com-
pletely locally. We calculated the running average and standard deviation over all queries with
window size 20 seconds. The result shows that Domain leads to almost optimal locality of
more than 95% while Hash reaches only 38% locality. However, even when Q-cut starts on top
of the suboptimal Hash prepartitioning, locality increases over time and converges against a lo-
cality level of 80%. But, in contrast to Domain, Q-cut always ensures workload balance under
dynamic query workload – higher query locality would result in higher workload imbalance
which we do not allow.

Next, we validate the efficacy of the iterated local search algorithm in the controller. To this
end, we plot the costs cs of the currently found best solution state s during a single run of the al-
gorithm. We monitored the first execution of the ILS on the controller with the Hash-partitioned
BW graph. The results show that costs cs are reduced by more than 75%. At the same time,
the whole execution of the algorithm takes only two seconds – executed asynchronously to the
graph query computation on the workers and hence introducing no latency penalty. Note that
each ILS execution retrieves a high-quality partitioning for a graph with millions of vertices in
minimal time which is a consequence of our high-level query-centric representation. We also
highlighted the points of perturbation (after ILS got stuck in local minima). The combination
of local searches until convergence and perturbations provides an effective method to overcome
local minima – which experimentally verifies the design decisions for the perturbation routine.

5.4.3 Scalability and Hybrid Barrier

We evaluate how adding more workers impacts the total query latency of Q-Graph in Fig-
ure 5.11 for SSSP and POI on the BW graph by executing 1024 respective queries (16 parallel
queries) on C1. For Hash prepartitioning on SSSP, the total query latency decreases from 927
to 474 seconds when increasing the number of workers from two to eight, and increases to 863
seconds when increasing the number of workers further. The reason is that Hash leads to high

118 5. QUERY-AWARE MULTI-QUERY GRAPH PROCESSING

2 4 6 8 10 12 14 16
No. Workers

0

400

800

1200

1600
T

o
ta

l
Q

u
e
ry

 L
a
te

n
cy

 (
s) Hash

Hash+Q-cut

Domain

Domain+Q-cut

(a) BW graph SSSP query.

2 4 6 8 10 12 14 16
No. Workers

0

400

800

1200

1600

T
o
ta

l
Q

u
e
ry

 L
a
te

n
cy

 (
s) Hash

Hash+Q-cut

Domain

Domain+Q-cut

(b) BW graph POI query.

Figure 5.11: Q-Graph scalability.

communication overhead in the distributed setting of C1 and thus harms scalability for a large
number of workers. This effect is alleviated by using Q-cut which reduces total query latency
to 283 seconds for eight workers. For Domain prepartitioning on SSSP, the overall communi-
cation overhead is minimized which improves scalability – increasing the number of workers
reduces latency from 1790 with two workers to 562 seconds with 16 workers. Q-cut leads to
even better scalability reducing latency from 1150 with two workers to 301 seconds with 16
workers. The reason for Domain’s worse runtime for a lower number of workers (e.g. k = 2
workers) is the suboptimal workload balancing leading to massive straggler problems. Similar
results were obtained for POI.

The hybrid barrier optimization enables full exploitation of locality. To show this, we measured
total query latency of our Q-Graph system for 64 shortest path queries on the BW graph (k = 8
workers) on M1 (see Figure 5.8d). We compared total query latency between traditional BSP-
like barrier synchronization, i.e., all queries perform global synchronization after all iterations,
and our hybrid barrier synchronization. Clearly, better partitioning (Domain) leads to 1.7−
2.4× reduced total query latency. But importantly, the hybrid barrier optimization reduces total
query latency by 1.2−1.7× for both methods: Domain and Hash.

5.4.4 Summary of Evaluation Results

In summary, we validated that our query-cut partitioning algorithm dynamically improves the
graph partitioning such that over time, the percentage of locally executed queries increases by
40% while keeping the workload of the partitions balanced. In combination with the hybrid
barrier optimization, the resulting high locality and low workload imbalance speeds up—by
factor 2.2×—the latency of both queries single-source shortest path (SSSP) and point of interest
search (POI) on both evaluated graphs (GY and BW) with up to 4.7 million vertices.

5.5. RELATED WORK 119

5.5 Related Work

Several graph processing systems have influenced and inspired our work. Pregel [80] was the
first iterative graph system using the general-purpose, vertex-centric programming model on a
message passing implementation. Follow-up systems are PowerGraph [34], PowerLyra [18],
GraphX [141], GrapH [87], Mizan [66], and GPS [115]. All of these systems support only a
single, batch processing query rather than multiple, interactive graph queries. Hauck et al. [43]
provided experimental evidence that single-query graph systems do not scale well in a multi-
query environment.

Sedge [144] uses a complementary partitioning scheme based on replication of graph data to
cope with localized queries and dynamic query hotspots. Parallelism is achieved by maintaining
multiple independent Pregel instances. However, it is not possible to execute multiple queries
in parallel on a single Pregel instance. Therefore, these concepts are orthogonal to our methods
of Q-cut partitioning, hybrid barrier synchronization, and adaptivity.

Several query-agnostic partitioning algorithms optimizing the number of cut vertices or edges
have been proposed [23, 54, 81, 85, 101, 113, 123, 129, 140]. As shown in Section 5.4, even
best-case edge-cut partitioning algorithms lead to suboptimal locality, workload balancing, and
query latency. This is a result of being agnostic to the actual query workload on the graph.

Two graph systems support concurrent localized graph analytics queries. Weaver [27] focuses
on concurrency control, i.e., how to enable transactional graph updates during query execution.
Their interesting concept of refinable timestamps enables efficient ACID transactions on dy-
namic graphs. Seraph [143] decouples the data that is accessed by the individual queries and
the computational logic such as the shared graph structure. Both systems utilize a multi-version
graph data structure that allows graph queries to run on a consistent snapshot. However, Weaver
and Seraph do not support adaptive partitioning which is the focus of our work. Moreover, the
existing body of research about graph database systems (see [6]) does not specifically optimize
query localization and synchronization in vertex-centric graph processing systems.

NScale [105] is a subgraph-centric graph processing system where queries run in a fixed neigh-
borhood around a specified vertex. They consider replication to ensure that each subgraph is
“completely contained within [...] one partition”. In contrast, Q-Graph allows queries to dy-
namically grow and shrink on a shared graph structure. Hence, Q-Graph supports a superset of
more complex graph applications.

5.6 Chapter Summary

Emerging CGA applications with localized graph queries running in parallel on a shared graph
structure require novel types of partitioning and synchronization methods. We developed and

120 5. QUERY-AWARE MULTI-QUERY GRAPH PROCESSING

evaluated the idea of scalable management of centralized knowledge about query workload to
perform query-aware adaptive partitioning. Combined with a novel synchronization mecha-
nism for CGA applications (hybrid-barrier), we observed a speedup of average query latency by
up to 2.2×.

6
Massive Hypergraph Partitioning with

Neighborhood Expansion

In the previous Chapters 3-5, we introduce specialized graph partitioning algorithms for dis-
tributed graph processing. But graphs can only capture binary relations between vertices, while
important application domains require a more generalized abstraction that is powerful enough
to express n-ary relations. Hence, we address the growing demand of partitioning billion-scale
real-world hypergraphs in this chapter.

6.1 Research Gap and Contributions

Many practical applications model problems as hypergraphs where connections between ver-
tices are multi-dimensional, i.e., each vertex can directly communicate to n vertices in a group
(called “hyperedge”) and each vertex can be in multiple groups. Hypergraph partitioning [4,
14, 26, 47, 54, 61, 128, 132] deals with the problem of optimally dividing a hypergraph into a
set of equally-sized components. Applications of hypergraph partitioning arise in diverse areas
such as VLSI design placement [58], optimizing the task and data placement in workflows [15],
minimizing the number of transactions in distributed data placement [23], optimizing storage
sharding in distributed data bases [54], and as a necessary preprocessing step in distributed
hypergraph processing [49].

Formally, dividing the hypergraph in k parts is denoted as the balanced k-way hypergraph par-
titioning problem. The goal is to divide the hypergraph into k equally-sized partitions such that
the number of times neighboring vertices are assigned to different partitions is minimal (this
is denoted as the (k-1) metric, as introduced in Section 6.2). The balanced k-way hypergraph

121

122 6. MASSIVE HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION

partitioning problem is NP-hard. Hence, a heuristic approach is needed to solve the problem
for massive hypergraphs.

In literature, a couple of heuristic hypergraph partitioning algorithms have been proposed, but
they have shortcomings. Streaming hypergraph partitioning [4] considers one vertex at a time
from a stream of hypergraph vertices. Based on a scoring function, it greedily assigns each
vertex from the stream to the partition that yields the best scoring. While this algorithm has
low run-time, it does not consider all relationships between all vertices when deciding on the
partitioning, so that partitioning quality suffers. A recent hypergraph partitioning algorithm,
Social Hash Partitioner [54], considers the complete hypergraph at once. It iteratively performs
random permutations of the current partitioning followed by a greedy optimization to choose
a better permutation over a worse one. While this approach generally converges to some form
of an improved partitioning and is highly scalable, we argue that random permutations may not
be the most effective choice for the partitioning heuristic.

In the related field of graph partitioning (cf. Chapters 3-5), a recently proposed algorithm uses
neighborhood expansion to exploit structural properties of natural graphs [150]. Graphs can be
regarded as special cases of hypergraphs, where each hyperedge contains only a single vertex.
However, the original neighborhood expansion algorithm for graphs cannot be directly applied
to hypergraphs. As hyperedges may contain a very large number of vertices, the neighborhood
of a single vertex can be huge, rendering neighborhood expansion infeasible.

In this chapter, we present the first algorithm which successfully incorporates neighborhood
expansion to hypergraph partitioning. We propose HYPE, a hypergraph partitioning algorithm
specifically tailored to real-world hypergraphs with skewed degree distribution. HYPE grows k
partitions based on the neighborhood relations in the hypergraph. We evaluate the performance
of HYPE on a set of real-world hypergraphs, including a novel hypergraph data set consisting
of authors and subreddits from the online board Reddit. Reddit is, to the best of our knowledge,
the largest real-world hypergraph that has been considered in evaluating hypergraph partition-
ing algorithms up to now. In our evaluations, we show that HYPE can partition very large
hypergraphs efficiently with high quality. HYPE is 39% faster and yields 95% better partition-
ing quality than streaming partitioning [4]. We released the source code of HYPE as an open
source project: https://github.com/mayerrn/HYPE.

6.2 Problem Formulation

In this section, we formulate the hypergraph partitioning problem addressed in this chapter.

Problem Formulation: The hypergraph is given as G = (V,E) with the set of vertices V and
the set of hyperedges E ⊂ 2V . Given vertex v ∈ V , we denote the set of adjacent vertices, i.e.,

https://github.com/mayerrn/HYPE

6.2. PROBLEM FORMULATION 123

/r/vita /r/vitahacks

halokilla77

/r/raspberryPi
/r/cryptocurrency

/r/algotradingbitcoin-dude

/r/leagueoflegends

/r/summonerschool

cubef0x

/r/Arduino

/r/mircocontrollers

makerfan18

/r/ArduinoProjects

/r/gaming

/r/niceguys

sudo_throw_
/r/kubernetes

/r/coreos

jmreicha

Subreddit

= Vertex

Author

= Hyperedge

/r/learnprogramming

Figure 6.1: A small extract of the global Reddit graph.

the set of neighbors of v, as N(v)⊆V . The goal is to partition the hypergraph into k partitions
P = {p0, p1, ..., pk−1} by assigning vertices to partitions. The assignment function A : V → P
defines for each vertex in V to which partition it is assigned. We write A(v) = pi if vertex v is
assigned to partition pi. Each hyperedge spans between 1 and k partitions. The optimization
objective is the (k− 1)-cut that sums over each hyperedge the number of times it is assigned
to more than one partition, i.e., ∑e∈E |{p ∈ P|∃v ∈ E : A(v) = p}| − 1. We require that the
assignment of vertices to partitions is balanced in the number of vertices assigned to a single
partition, i.e., ∀p0, p1 ∈ P : |{v ∈V |A(v) = p0}|< λ|{v ∈V |A(v) = p1}| for a small balancing
factor λ ∈R. This problem is denoted as balanced k-way hypergraph partitioning problem and
it is NP-hard [5].

Reddit Hypergraph Example: We give an example of the Reddit hypergraph in Figure 6.1.
The Reddit social network consists of a large number of subreddits where each subreddit con-
cerns a certain topic. For example, in the subreddit /r/learnprogramming, authors write
comments related to the topic of learning to program. Each author writes comments in an arbi-
trary number of subreddits and each subreddit is authored by an arbitrary number of users. One
way to build a hypergraph out of the Reddit data set (see Section 6.4) is to use subreddits as
vertices and authors as hyperedges that connect these vertices. This hypergraph representation
provides valuable information about the similarity of subreddits. For instance, if many authors
are active in two subreddits (e.g. /r/Arduino and /r/ArduinoProjects), i.e., many hyper-
edges overlap significantly in two vertices, it is likely that the two subreddits concern similar

124 6. MASSIVE HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION

G Hypergraph G = (V,E)

V Set of vertices V ⊂N ×N
E Set of hyperedges E ⊂ 2V

N(v) Set of adjacent vertices of vertex v ∈V

N(X) Union of all sets N(x) for x ∈ X

P Set of partitions pi ∈ P with |P|= k

A Function assigning vertices V to partitions P

λ Balancing factor

C Current core set of vertices

F Current fringe

dext(u,S) External neighbors score of vertex u

s Maximal size of the fringe

r Number of fringe candidate vertices

Table 6.1: Notation overview.

content.

The size of the hyperedges and the degree of the vertices resemble a power law degree distri-
bution for real-world graphs such as Reddit, Stackoverflow, and Github. Hence, most vertices
have a small degree and most hyperedges have a small size. These parts of the graph with small
degrees build relatively independent communities. In the reddit graph, there are local commu-
nities such as people who write in the /r/Arduino and /r/ArduinoProjects subreddits but
not in, say the /r/Baby subreddit. This property of strong local communities is well-observed
for graphs [136]—and it holds for real-world hypergraphs as well. Power law distributions
are long-tailed, i.e., there are some hub vertices or edges with substantial sizes or degrees. In
graph literature, it has been shown that focusing on optimal partitioning of the local commu-
nities at the expense of optimal placement of the hubs is a robust and effective partitioning
strategy [3, 34, 101]. In Section 6.3, we show how we exploit this observation in the HYPE
partitioner.

6.3 Hypergraph Partitioning with Neighborhood Expansion

In the following, we first explain the idea of neighborhood expansion in Section 6.3.1. We
introduce our novel hypergraph partitioning algorithm HYPE in Section 6.3.2 and discuss the
balancing of hypergraph partitions in Section 6.3.3. Finally, we present a more formal pseu-

6.3. HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION 125

docode notation of the HYPE algorithm in Section 6.3.4 and perform a complexity analysis in
Section 6.3.5.

6.3.1 Neighborhood Expansion Idea

A practical method for high-quality graph partitioning is neighborhood expansion [150]. The
idea is to grow a core set of vertices via the neighborhood relation given by the graph structure.
By exploiting the graph structure, the locality of vertices in the partition is maximized, i.e.,
neighboring vertices in the graph tend to reside on the same partition. The algorithm grows the
core set one vertex at a time until the desired partition size is achieved. In order to partition
the graph into k partitions, the procedure of growing a core set Ci is repeated k times for i ∈
{0,1, ...,k−1}.

We aim to adopt neighborhood expansion to hypergraph partitioning. To this end, we have to
overcome a set of challenges which are related to the different structure of hypergraphs when
compared to normal graphs. In particular, the number of neighbors of a vertex quickly explodes
as the hyperedges contain multiple neighboring vertices at once. Before we explain in detail
those challenges and our approach to tackle them, we sketch the basic idea of neighborhood
expansion in the following.

Figure 6.2 sketches the general framework for growing the core set Ci of partition pi ∈ P.
There are three overlapping sets: the vertex universe, the fringe, and the core set. The vertex
universe V ′ ⊆ V is the set of remaining vertices that can potentially be added to the fringe Fi,
i.e., V ′ = V \C0...\Ci \Fi. The fringe Fi is the set of vertices that are currently considered for
the core set. The core Ci is the set of vertices that are assigned to partition pi ∈ P. The three
sets are non-overlapping, i.e., V ′∩Fi = Fi∩Ci =Ci∩V ′ = /0.

Initially, the core consists of seed vertices that are taken as a starting point for growing the
partition. Based on these seed vertices, the fringe contains a subset of all neighboring vertices.
In graph partitioning [150], the fringe contains not a subset but all vertices that are in a neigh-
borhood relation to one of the vertices in the core set. In the Figure 6.2, a fringe candidate
vertex, say vertex v, is moved from the vertex universe to the fringe and then to the core set.
In other words, any strategy based on neighborhood expansion must define the two functions
upd8_fringe() and upd8_core().

As we develop a hypergraph partitioning algorithm based on the neighborhood expansion
framework, we define the neighborhood relation and the three vertex sets accordingly. How-
ever, migrating the idea of neighborhood expansion from graph to hypergraph partitioning is
challenging. The number of neighbors of a specific vertex in a typical hypergraph is much larger
than in a typical graph. The reason is that the number of neighbors is not only proportional to
the number of incident hyperedges but also to the size of these hyperedges. For example, sup-

126 6. MASSIVE HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION

V′ ⊆ 𝑉

𝐹𝑖

𝐶𝑖

Vertex universe =

set of vertices not

assigned to any

core set or fringe

Fringe =

set of vertices that

are considered for

core set

Core Set =

set of vertices

building

partition i

Fringe

Candidate

Vertex

upd8_fringe()

upd8_core()

Vertex

𝑣

Figure 6.2: High-level idea of neighborhood expansion.

pose you are writing a comment in the /r/Python subreddit. Suddenly, hundreds of thousands
other authors in /r/Python are your direct neighbors. In other words, the neighborhood rela-
tion is group based rather than bidirectional which leads to massive neighborhoods. The large
number of neighbors changes the runtime behavior and efficiency of neighborhood expansion.
For instance, in such a hypergraph, the fringe would suddenly contain a large fraction of the
vertices in the hypergraph. But selecting a vertex from the fringe requires O(|V |) comparisons.
This leads to high runtime overhead and does not scale to massive graphs. HYPE alleviates this
problem by reducing the search space significantly as described next.

6.3.2 HYPE Algorithm

The HYPE algorithm grows the core set for partition pi ∈ P one vertex at a time. We load one
vertex from the fringe to the core set and update the fringe with fresh vertices from the vertex
universe. The decision of which vertex to include into the core and fringe sets is a critical
design choice that has impact on the algorithm runtime and partitioning quality.

In this section, we explain the HYPE algorithm in detail, including a discussion of the design
choices. In doing so, we first provide the basic algorithm in Section 6.3.2 and then discuss
optimizations of the algorithm in Section 6.3.2. These optimizations tremendously reduce the
algorithm runtime without compromising on partitioning quality.

6.3. HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION 127

 0

 100000

 200000

 300000

 400000

 500000

 600000

 2 4 8 16 32 64 128

k-
1

number of partitions

s=2
s=10
s=50

s=100

(a) Partitioning quality.

 0

 2000

 4000

 6000

 8000

 10000

 2 4 8 16 32 64 128

ru
n

ti
m

e
in

 m
ill

is
ec

o
n

d
s

number of partitions

(b) Runtime.

Figure 6.3: Limiting the fringe size s to a small value (e.g. s = 10) keeps partitioning quality
intact while reducing runtime significantly (StackOverflow hypergraph).

Basic Algorithm

The approach of growing a core set Ci is repeated in a sequential manner for each partition pi

for i ∈ {1,2, ...,k}. It consists of a four step process. We initialize the computation with step
1., and iterate steps 2. and 3., until the algorithm terminates as defined in step 4.

1. Initialize the core set.

2. Move vertex from vertex universe into fringe.

3. Move vertex from fringe into core set.

4. Terminate the expansion.

We now examine these steps in detail. A formal algorithmic description is given in Sec-
tion 6.3.4.

1. Initialize the core set The core set Ci must initially contain at least one vertex in order to
grow via the neighborhood expansion. In general, there are many different ways to initialize
the core set. This problem is similar to the problem of initializing a cluster center for iterative
clustering algorithms such as K-Means [42]. Here, the defacto standard is to select random
points as cluster centers [12, 65]. In fact, a comparison of several initialization methods for
K-Means shows that the random method leads to robust clustering quality [98]. As the problem
of selecting an initial “seed” vertex from which the core set grows is similar to this problem,
we perform random initialization.

128 6. MASSIVE HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION

2. Move vertex to fringe The function upd8_fringe() determines which vertices move
from the vertex universe to the fringe Fi. The vertex universe consists of all vertices that are
neither in the fringe Fi, nor in the core set Ci of any previous execution of the algorithm for any
partition p j ∈ P with j < i.

The standard strategy of neighborhood expansion is to fill the fringe Fi with all vertices that
are neighbors to any core vertex, i.e., Fi← N(Ci)\C0 \ ...\Ci. But for real-world hypergraphs,
this quickly overloads the fringe with a large number of vertices from the vertex universe. To
prevent this, we restrict the fringe to contain only s vertices, i.e., |Fi| ≤ s. In Figure 6.3, we
validate experimentally that setting s to a small constant value, i.e., s = 10, keeps partitioning
quality high but reduces runtime by a large factor. For brevity, we omit the discussion of similar
results observed for other hypergraphs.

But how do we select the next vertex to be loaded into the fringe? Out of the vertex universe
V ′, we select a vertex to be included to the fringe using a scoring metric as described in the
next paragraphs. The intuition behind this scoring metric is to find the vertex that preserves the
highest locality when assigned to the core set.

To this end, we define locality as the frequency that for a given vertex v ∈ V ′, a neighboring
vertex v′ ∈ N(v) resides on the same partition. High locality leads to low cut sizes and good
partitioning quality. To improve locality, our goal is to grow the core set into the smaller local
communities and assign all vertices of these smaller communities to the same partition. If a
high proportion of neighbors of vertex v ∈ V ′ is already assigned to the core set, assigning
vertex v to the core set as well will improve locality.

In Figure 6.4, we see an example hypergraph that has the typical properties of real-world hyper-
graphs: the size of the hyperedges follows a power law distribution. To grow the fringe, there
are three options: include vertex v1, v2, or v3. Intuitively, we want to grow the fringe towards
the local communities to preserve locality. We achieve this by selecting vertices based on the
external neighbors with respect to the fringe F . In other words, we want to add vertices to the
fringe that have a high number of neighbors in the fringe or the core set, and a low number of
neighbors in the remaining vertex universe. A vertex with low external neighbors score tends
to have high locality in the fringe and the core set. Formally, we write dext(v,Fi) to denote the
number of neighboring vertices of v that are not already contained in the fringe as defined in
Equation 6.1.

dext(v,Fi) = |N(v)\Fi| (6.1)

We denote the vertices for which we calculate the external neighbors score as fringe candidate
vertices. For each execution of upd8_fringe(), we select r fringe candidate vertices. The

6.3. HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION 129

Core set 𝐶𝑖

Fringe 𝐹𝑖

𝑑𝑒𝑥𝑡 𝑣1, 𝑆 = 17

𝑑𝑒𝑥𝑡 𝑣2, 𝑆 = 17

𝑑𝑒𝑥𝑡 𝑣3, 𝑆 = 2

Popular topic

/ hyperedge

Niche topics /

hyperedges

Hyperedge 𝑒1

𝑒2

𝑒4
𝑒5

𝑒3

𝑣3

𝑣2 𝑣1

Figure 6.4: The external neighbors metric determines which vertex to move into the fringe.

fringe Fi contains up to s vertices. Hence, after assigning one vertex to the core set, we take the
top s vertices out of the s−1+ r fringe candidate vertices as the new fringe.

In Section 6.3.2, we describe three optimizations on the upd8_fringe() function that reduce
the runtime while keeping the partitioning quality intact.

3. Move vertex to core set Next, we describe the function upd8_core() that moves a vertex
from the fringe Fi to the core set Ci. The function simply selects the vertex with smallest
(cached) external neighbors score. This vertex v is then moved to the core, i.e., Ci←Ci∪{v}.
This decision is final. Once assigned to the core Ci, vertex v will never be assigned to any other
core C j when considering a partition j > i. Hence, we remove the vertex from the remaining
set of vertices in the vertex universe, i.e., V ′←V ′ \{v}. In case the fringe can not be filled with
enough neighbors, we add a random vertex from the vertex universe to the fringe and proceed
with the given algorithm.

4. Terminate the expansion We terminate the algorithm as soon as the core set contains
|V |
k vertices. This leads to perfectly balanced partitions with respect to the number of vertices.

Upon termination, we release the vertices in the fringe Fi and store the vertices in the core set
Ci in a separate partitioning file for partition i. After this, we restart expansion for the next
partition i← i+1 or terminate if all vertices have been assigned to partitions. In Section 6.3.3,
we discuss other possible balancing schemes.

130 6. MASSIVE HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION

Dataset Vertices Hyperedges #Vertices #Hyperedges #Edges

Github [69] Users Projects 177,386 56,519 440,237

StackOverflow [69] Users Posts 641,876 545,196 1,301,942

Reddit Subreddits Authors 430,156 21,169,586 179,686,265

Reddit-L Comments Authors & Subreddits 2,862,748,675 21,599,742 5,725,497,350

Table 6.2: Real-world hypergraphs used in evaluations.

Optimization of Fringe Updates

When moving a vertex from the vertex universe to the fringe, we have to be careful in order
to efficiently select a good vertex. Calculating a score for all vertices in the vertex universe
would be much too expensive. For example, suppose we add vertex v2 to the fringe in the
example in Figure 6.4. Suddenly, all vertices in the huge hyperedge e1 could become fringe
candidate vertices for which we would have to calculate the external neighbors score. Note that
to calculate the external neighbors score, we must perform set operations that may touch an
arbitrary large portion of the global hypergraph.

Our strategy to address this issue involves three steps: (a) select the best fringe candidate
vertices from the vertex universe in an efficient manner by traversing small hyperedges first,
(b) reduce the number of fringe candidate vertices r to r = 2, and (c) reduce the computational
overhead to calculate the score for a fringe candidate vertex by employing a scoring cache.
These three optimizations help us to limit the overhead per decision of which vertex to include
into the fringe. Next, we describe the optimizations in detail.

Maximize the chance to select r good fringe candidate vertices First, we describe how we
maximize the chance to select good fringe candidate vertices from the vertex universe. The op-
timal vertex to add to the fringe has minimal external neighbors score, i.e., argminv∈V ′dext(v,Fi).
Vertices that reside in large hyperedges (e.g. e1 in Figure 6.4) have a high number of neighbors.
Hence, it is unlikely that these vertices have a low external neighbors score with respect to the
fringe F . For example, in Figure 6.4, vertices v1 and v2 have 18 neighbors, whereas vertex
v3 has only 4 neighbors. Thus, vertex v3 has a much higher chance of being the vertex with
the minimal external neighbors score. Based on this observation, we optimize the selection
of fringe candidate vertices by ordering all hyperedges that are incident to the fringe Fi with
respect to their size and consider only vertices in the smallest hyperedge for inclusion into the
fringe (e.g., hyperedges e4,e3,e2 with |e4| ≤ |e3| ≤ |e2| results in the initial selection of hy-
peredge e4). When we cannot retrieve r vertices from the smallest hyperedge (because it does

6.3. HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION 131

 0

 100000

 200000

 300000

 400000

 500000

 600000

 2 4 8 16 32 64 128

k-
1

number of partitions

(a) Quality: (K-1) Metric.

 0

 2000

 4000

 6000

 8000

 10000

 2 4 8 16 32 64 128

ru
n

ti
m

e
in

 m
ill

is
ec

o
n

d
s

number of partitions

r=1
r=2

r=4
r=8

(b) Runtime.

Figure 6.5: Limiting the number of fringe candidate vertices r to r = 2 leads to the best parti-
tioning quality (StackOverflow hypergraph).

not contain enough vertices that are not already in C or F), we proceed with the next larger
hyperedge.

Reduce the number of fringe candidate vertices to be selected Next, we limit the number
of fringe candidate vertices to r = 2 vertices. From these r vertices, we select the vertex with the
smaller external neighbors score. The basic principle of selecting the best out of two random
choices is known in literature as “the power of two random choices” [108] and has inspired
our design. We experimentally validated that considering more than two options, i.e., r > 2,
does not significantly improve the decision quality, cf. Figure 6.5. Clearly, the lower the
number of fringe candidate vertices r is, the lower is the runtime of the algorithm. Interestingly,
using two choices, i.e., r = 2 leads to better partitioning quality than all other settings of r.
Apparently, a higher value for r forces the algorithm to consider fringe candidate vertices from
larger hyperedges which distracts the algorithm from the smaller hyperedges.

Reduce the overhead to compute an external neighbors score for fringe candidate ver-

tices The external neighbors score requires calculation of the set intersection between two
potentially large sets (see Equation 6.1). This calculation must be done for all fringe candidate
vertices. To prevent recomputation, we use a caching mechanism. The score is calculated only
when the vertex is accessed for the first time (lazy caching policy). While this means that the
cached score may change when including more and more vertices into the fringe, our evalua-
tion results show that partitioning quality stays the same when using caching (see Figure 6.6).
But the benefit of reducing score computations improves runtime by up to 20%.

132 6. MASSIVE HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION

 0

 100000

 200000

 300000

 400000

 500000

 2 4 8 16 32 64 128

k-
1

number of partitions

Cache
Fresh

(a) Quality: (K-1) Metric.

 0

 1000

 2000

 3000

 4000

 5000

 2 4 8 16 32 64 128

ru
n

ti
m

e
in

 m
ill

is
ec

o
n

d
s

number of partitions

Cache
Fresh

(b) Runtime.

Figure 6.6: The caching optimization for external neighbors score computation keeps parti-
tioning quality intact while reducing runtime by up to 20% on the Stackoverflow hypergraph.

6.3.3 Balancing Considerations

The default balancing objective of the HYPE algorithm leads to a balanced number of vertices
on each partition. For n vertices and k partitions, the algorithm repeats the neighborhood ex-
pansion, one vertex at a time, until there are exactly max = n/k vertices per partition. Vertex
balancing is the standard method for distributed graph processing systems such as Pregel [80]—
considering that the workload per partition is roughly proportional to the number of vertices
per partition. Therefore, many practical algorithms such as the popular multilevel k-way hy-
pergraph partitioning algorithm [61] focus on vertex balancing.

However, some applications of hypergraph partitioning may benefit from balancing the sum of
vertices and hyperedges [4]. More precisely, for n vertices and m hyperedges, the algorithm
should partition the hypergraph in a way such that each partition is responsible for n+m

k vertices
or hyperedges. In the following, we discuss two ideas how HYPE can achieve this. First, we
assign a weight w(v) to each vertex v, i.e., the weight w(v) = 1+ |Ev| with Ev being the set
of incident hyperedges of vertex v. Then, we repeat the neighborhood expansion algorithm
by assigning vertices until each partition has max = n+m

k total weight (or less). The rationale
behind this method is the law of large numbers: it is not likely that a single vertex assignment
will suddenly introduce a huge imbalance in relation to the already assigned vertices. Second,
to achieve perfect edge balancing, we can flip the hypergraph, i.e., viewing each original vertex
as a hyperedge and each original hyperedge as a vertex. When balancing the number of vertices
in the flipped graph, we actually balance the number of hyperedges in the original graph. After
termination of the algorithm, we flip the hypergraph back to the original representation. We
leave an investigation of other balancing constraints as future work.

6.3. HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION 133

6.3.4 HYPE Pseudocode

Algorithm 9 HYPE algorithm for hypergraph G = (V,E).
1: V ′←V
2: for i ∈ [0..k−1] do
3: Ci←{V ′.random()}
4: V ′←V ′ \Ci

5: Fi←{}
6: c =< key,val > {} // clear cache
7: while |Ci|< |V |

k do
8: UPD8_FRINGE()
9: UPD8_CORE()

Algorithm 9 lists the main loop. We repeat the following method for all partitions pi ∈ P. After
some housekeeping tasks such as filling the core set Ci of partition pi with a random vertex
(line 3), initializing the fringe (line 5), and clearing the (key,value) cache (line 6), we repeat
the main loop (lines 7-8) until the core set has exactly |V |k vertices. The loop body consists of
the two functions upd8_fringe() and upd8_core() that are described next.

Algorithm 10 The function upd8_fringe() updates the fringe Fi with vertices from the vertex
universe V ′.

1: function UPD8_FRINGE()
2:
3: #Determine r fringe candidate vertices
4: Fcand ←{}
5: X ←{e ∈ E|Ci∩ e 6= /0}
6: X ′← [e0,e1, ...|e j ∈ X ∧|e j|> |e j−1|]
7: for e ∈ X ′ do
8: for v ∈ e∧ v 6∈ Fi∧∀ j ≤ i : v 6∈C j do
9: if |Fcand |< r then

10: Fcand ← Fcand ∪{v}
11: else
12: break loop line 7

13:
14: #Update cache
15: for v ∈ Fcand ∧ v 6∈ c.keys() do
16: c(v)← dext(v,Fi)

17:
18: #Update fringe
19: F ′i ← [v0,v1, ...|v j ∈ Fi∪Fcand ∧ c(v j−1)< c(v j)]

20: Fi←{v|v ∈ F ′i .subsequence(0..s−1)}
21: if Fi = /0 then
22: Fi←{V ′.random()}

Algorithm 10 lists the upd8_fringe() function. The function consists of three steps: deter-
mine the r fringe candidate vertices (lines 3-10), update the cache (lines 12-14), and update the

134 6. MASSIVE HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION

fringe (lines 16-20). The first step calculates the fringe candidate vertices Fcand by first sorting
the hyperedges that are incident to the core set Ci by size (ascending) and then traversing these
hyperedges for vertices that can still be added to the fringe (i.e., are not already assigned to the
fringe or any core set). The second step updates the cache with the current external neighbors
score with respect to the current fringe Fi. The third step sets the fringe to the set of top s ver-
tices with respect to the external neighbors score. If the fringe is still empty after these steps,
we initialize it with a random vertex.

Algorithm 11 The function upd8_core() updates the core Ci with vertices from the fringe Fi.
1: function UPD8_CORE()
2: v← argminv∈Fi c(v)
3: Ci←Ci∪{v}
4: Fi← Fi \{v}
5: V ′←V ′ \{v}

Algorithm 11 lists the upd8_core() function. We load the vertex with the minimal cached
external neighbors score into the core Ci and remove this vertex from the fringe Fi and the
vertex universe V ′.

6.3.5 Complexity Analysis

For the following analysis, we denote the number of vertices as n = |V | and the number of
hyperedges as m = |E|. Algorithm 9 repeats for k partitions the procedure of moving n

k vertices
from the vertex universe to the fringe and from the fringe to the core. Next, we analyze the
runtime for those procedures upd8_fringe() and upd8_core().

The function upd8_fringe() in Algorithm 10 consists of three steps. First, it determines r
fringe candidate vertices from the vertex universe (lines 3-12). As we set r to a small constant
(r = 2), this step is very fast in practice with the following caveat: The algorithm needs to
sort the incident hyperedges with respect to the hyperedge size (line 6). The computational
complexity of sorting all hyperedges is O(m ∗ log(m)). It is sufficient to sort the hyperedges
only once in the beginning of the HYPE algorithm. Recap that the algorithm fills the fringe
with r = 2 new candidate vertices. In the worst case, the fringe is incident to all hyperedges in
the hypergraph. Therefore, selecting the fringe candidate vertices is in O(m) to iterate over all
hyperedges. This is a pessimistic estimation—in practical cases it is sufficient to check the
first few smallest hyperedges to find the r = 2 candidates. Second, the algorithm updates the
cache with fresh external degree scores for new candidates vertices (lines 14-16). It calculates
the external degree score at most once for every candidate vertex (it is just read from cache
if needed again later). As there are only r = 2 fringe candidate vertices in each execution of
upd8_fringe(), the total number of external degree score calculations is limited to 2∗n. The
overhead of calculating the external degree of a vertex with respect to a set of s fringe vertices is

6.3. HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION 135

 0

 50000

 100000

 150000

 200000

 250000

 2 4 8 16 32 64 128

K
-1

number of partitions

hMETIS
hMETIS UB=0.1

MinMax NB
MinMax EB

HYPE

(a) Quality: (k-1) Metric.

 100

 1000

 10000

 100000

 1×106

 2 4 8 16 32 64 128

ru
n

ti
m

e
in

 m
ill

is
ec

o
n

d
s

number of partitions

hMETIS
hMETIS UB=0.1

MinMax NB
MinMax EB

HYPE

(b) Runtime.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2 4 8 16 32 64 128

n
o

d
e

im
b

al
an

ce

number of partitions

hMETIS
hMETIS UB=0.1

MinMax NB
MinMax EB

HYPE

(c) Balancing.

Figure 6.7: Evaluations on the Github hypergraph (lower is better).

O(s) (cf. Equation 6.1), but s is a constant (s = 10). Hence, the total computational complexity
of updating the cache is O(n). Third, the algorithm updates the fringe with vertices from the
fringe candidates (lines 18-22). As both the fringe and the fringe candidates have constant sizes
r = 2 and s = 10, the complexity of the third step is O(1).

The function upd8_core() in Algorithm 11 selects the vertex with minimal cached external
neighbors score from the constant-sized fringe. Thus, the complexity is O(1) including the
housekeeping tasks in lines 3-5.

In total, the worst-case computational complexity of the HYPE algorithm is O(m∗ log(m)+k∗
n
k ∗m+ n)) = O(m ∗ log(m)+ n ∗m). As highlighted above, in practice we observe that only
a small, constant number of hyperedges is checked in order to find the r candidate vertices, so
that we observe a complexity of O(m∗ log(m)+n).

136 6. MASSIVE HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION

6.4 Evaluations

In this section, we evaluate the performance of HYPE on several real-world hypergraphs.

Experimental Setup All experiments were performed on a shared memory machine with 4
x Intel(R) Xeon(R) CPU E7-4850 v4 @ 2.10GHz (4 x 16 cores) with 1 TB RAM. The source
code of our HYPE partitioner is written in C++.

Hypergraph Data Sets We perform the experiments on different real-world hypergraphs,
i.e., Github [69], StackOverflow [69], Reddit and Reddit-L1, as listed in Table 6.2. All of the
hypergraphs show a power law distribution of vertex and hyperedge degrees. In addition to
the number of vertices and hyperedges, we report the number of edges. An edge represents an
assignment of a vertex to a hyperedge.

We highlight that for this work, we crawled two large real-world hypergraphs from the Reddit
dataset using the relations between authors, subreddits and comments.

Benchmarks We choose our benchmarks for evaluating HYPE based on 3 categories.

Group (I) consists of a wide range of hierarchical partitioners such as hMetis [61], Mondri-
aan [132], Parkway [128], PaToH [14], Zoltan [26], and KaHyPar [47]. As no partitioner in
group (I) consistently outperforms the other partitioners in terms of partitioning quality, scal-
ability and partitioning time, we decided for the well-established and widely used hypergraph
partitioner hMETIS. Several recent papers show that hMETIS leads to competitive partition-
ing performance with respect to the (k− 1) metric [4, 54, 145]. Hence, we chose hMETIS as
the representative partitioner from group (I) in this work. We run hMETIS in two different
settings: with and without enforced vertex balancing. Due to the high partitioning quality,
hMETIS serves as the benchmark for partitioning quality on small to medium hypergraphs. We
used hMETIS in version 2.0pre1 with the parameters -ptype=rb -otype=soed -reconst.
To enforce vertex balancing, we set2 the parameter UB=0.1.

Group (II) consists of the recently proposed Social Hash Partitioner (SHP) [54]. The authors
released the raw source code of SHP. Yet, we could not reproduce their results as neither con-
figuration files and parameters, nor scripts, execution instructions, or documentations were

1https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_

reddit_comment/
2We determined the UB parameter experimentally such that the measured imbalance is comparable to HYPE

and MinMax. Schlag et al. [119] provide an equation to set UB in order to enforce a specific imbalance constraint
at a given k.

https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment/
https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment/

6.4. EVALUATIONS 137

provided. However, in our evaluations we partitioned hypergraphs of similar size as SHP in a
similar runtime, even though HYPE uses a purely sequential partitioning algorithm.

Group (III) comprises multiple streaming partitioning strategies proposed by Alistarh et al. [4].
The greedy MinMax strategy constantly outperformed all other strategies according to their
paper3. Moreover, we designed a novel vertex-balanced variant of MinMax that outperforms
the original approach with respect to the (k-1) metric4. We denote this variant as MinMax NB
(node balanced) in contrast to the standard MinMax EB (edge balanced).

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 2 4 8 16 32 64 128

k-
1

number of partitions

hMETIS
hMETIS UB=0.1

MinMax NB
MinMax EB

HYPE

(a) Quality: (k-1) Metric.

 100

 1000

 10000

 100000

 1×106

 1×107

 2 4 8 16 32 64 128

ru
n

ti
m

e
in

 m
ill

is
ec

o
n

d
s

number of partitions

hMETIS
hMETIS UB=0.1

MinMax NB
MinMax EB

HYPE

(b) Runtime.

Figure 6.8: Evaluations on the StackOverflow hypergraph (lower is better).

Experiments In all experiments, we capture the following metrics. (1) The (k-1) metric to
evaluate the quality of the hypergraph partitioning. This is the default metric for partitioning
quality [26, 61]. Other partitioning quality metrics such as the hyperedge-cut and the sum of
external degree performed similar in our experiments5. (2) The runtime of the algorithm to par-
tition the whole input hypergraph in order to evaluate the speed of the partitioning algorithms.
(3) The vertex imbalance as a metric to capture the fairness of the hypergraph partitioning. We
compute vertex imbalance as the normalized deviation between the maximal and the minimal
number of vertices assigned to any partition, i.e., maxsize−minsize

maxsize .

For each experiment, we increase the number of partitions from 2 up to 128 in exponential
steps.

3The optimization goal of MinMax is to minimize the maximum number of hyperedges associated with a par-
tition via the partition’s vertices. However, both metrics MinMax and (k-1) are closely related: They measure the
spread of hyperedges across partitions.

4We allowed a slack parameter of up to 100 vertices, cf. [4].
5The close relationship between these metrics is described in literature [54].

138 6. MASSIVE HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION

6.4.1 Performance Evaluations

The performance evaluations show the benefits of HYPE when partitioning large hypergraphs.
Its runtime is independent of the number of partitions, so that it is faster than streaming parti-
tioning when the number of partitions is large. Further, the hierarchical partitioning algorithm
hMETIS does not scale to very large hypergraphs, i.e., it cannot partition the Reddit hypergraph,
and takes orders of magnitude longer for the smaller hypergraphs. We discuss the detailed re-
sults next.

Github Figure 6.7a shows the partitioning quality on the Github hypergraph. In the (k-1)
metric, hMETIS performs best (e.g., 47 % better than HYPE at k = 128). HYPE performs up
to 45% better than MinMax hyperedge-balanced, and up to 34 % better than MinMax vertex-
balanced.

Partitioning runtime is depicted in Figure 6.7b. hMETIS took 70 to 338 seconds to partition
the Github hypergraph, which is orders of magnitude slower than MinMax and HYPE (up to
476 × slower than HYPE). The partitioning runtime of HYPE is independent of the number
of partitions, as each partition is filled with vertices sequentially until it is full. Different from
that, in MinMax, the partitioning runtime depends on the number of partitions, as MinMax
works with a scoring function that computes for each vertex a score for each partition and then
assigns the vertex to the partition where its score is best. Hence, for up to 32 partitions, HYPE
has a higher runtime than MinMax, up to 2.7 × higher, whereas for 64 and 128 partitions, the
runtime of HYPE is lower (up to 2.4 × lower).

In terms of balancing, cf. Figure 6.7c, HYPE shows perfect vertex balancing, while the Min-
Max vertex-balanced has a slight imbalance of up to 5%. Unsurprisingly, MinMax hyperedge-
balanced has a poor vertex balancing. In hMETIS, when vertex balancing is turned on, the
maximum imbalance was 3%, whereas without that flag, vertex imbalance was tremedously
higher (up to 55% imbalance). The balancing results are similar for all other hypergraphs, so
we will not discuss balancing in the following results any more.

StackOverflow Figure 6.8a shows the partitioning quality on the StackOverflow hypergraph.
In the (k-1) metric, hMETIS performs best (e.g., 39 % better than HYPE at k = 128). HYPE
performs up to 47% better than MinMax hyperedge-balanced, and up to 35% better than Min-
Max vertex-balanced.

Partitioning runtime is depicted in Figure 6.8b. hMETIS took between 206 and 4374 seconds
(i.e., 73 minutes) to partition the StackOverflow hypergraph, which is orders of magnitude
slower than MinMax and HYPE (up to 1,384 × slower than HYPE). In numbers, HYPE takes
3 seconds to build 128 partitions, while hMETIS takes more than 1 hour! The comparison

6.4. EVALUATIONS 139

 0

 2x107

 4x107

 6x107

 8x107

 1x108

 1.2x108

 2 4 8 16 32 64 128

k-
1

number of partitions

MinMax NB
MinMax EB

HYPE

(a) Quality: (K-1) Metric.

 100000

 1x106

 1x107

 2 4 8 16 32 64 128

ru
n

ti
m

e
in

 m
ill

is
ec

o
n

d
s

number of partitions

MinMax NB
MinMax EB

HYPE

(b) Runtime.

Figure 6.9: Evaluations on the Reddit hypergraph (lower is better).

between HYPE and MinMax on StackOverflow leads to similar results as on the Github hy-
pergraph: With up to 32 partitions, MinMax is faster (up to 4.1 × faster), but with 64 and 128
partitions, HYPE is faster (up to 1.8 × faster). Again, the reason for this is that the HYPE
runtime is independent of the number of partitions.

Reddit Figure 6.9a shows the partitioning quality on the Reddit hypergraph. For this hyper-
graph, we could not produce results with the hMETIS partitioner, as it crashed or was running
for days without returning a result. Consistent to the experiments reported in [54], many parti-
tioners from group (I) are not able to partition such large hypergraphs. Hence, in the following,
we only report results for MinMax and HYPE.

On the Reddit hypergraph, the advantage of exploiting local communities in HYPE pays off to
the full extent: HYPE outperforms the streaming partitioner MinMax, that ignores the overall
hypergraph structure, by orders of magnitude. For 2, 4 and 8 partitions, HYPE achieved an im-
provement of 95% compared to MinMax hyperedge-balanced, and 93% compared to MinMax
vertex-balanced in the (k-1) metric. Thus, HYPE leads to a partitioning quality that is up to 20
× better than when using MinMax. For 16 partitions, HYPE performs 93% and 91% better,
for 32 partitions 91% and 88%, for 64 partitions 88% and 84%, and for 128 partitions 83%
and 80% better than MinMax hyperedge-balanced and MinMax vertex-balanced partitioners,
respectively.

Comparing the partitioning runtime of HYPE and MinMax in Figure 6.9b, we see again that
the runtime of HYPE is independent of the number of partitions, whereas MinMax has a higher
runtime with growing number of partitions because of its scoring scheme. While at 2 partitions,
MinMax is up to 4× faster than HYPE, at 64 partitions HYPE becomes faster than MinMax, by

140 6. MASSIVE HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION

 0

 1×107

 2×107

 3×107

 4×107

 5×107

 6×107

 7×107

MinMax HYPE

k-
1

(a) Quality: (k-1) Metric.

 0

 2×107

 4×107

 6×107

 8×107

 1×108

 1.2×108

MinMax HYPE

ru
n

ti
m

e
in

 m
ill

is
ec

o
n

d
s

(b) Runtime.

Figure 6.10: Evaluations on the Reddit-L hypergraph (lower is better).

up to 36% at 128 partitions. As with the other hypergraphs, MinMax vertex-balanced is slightly
slower than MinMax hyperedge-balanced as the hyperedge balance can change significantly
after assigning a single vertex. This often forces assignment to a single partition (the least
loaded) such that the partitions remain balanced. In such cases, the forced partitioning decisions
for hyperedge-balanced partitioning can be performed very quickly.

Reddit-L In Figure 6.10, we compare partitioning quality and runtime of HYPE against Min-
Max on the large Reddit-L hypergraph with k = 128 partitions. MinMax requires more than
31 hours to partition Reddit-L compared to the 19 hours of HYPE. Although being 39% faster
than MinMax, HYPE still outperforms MinMax in partitioning quality by 88%: MinMax has a
(k-1) score of 68,709,969 compared to HYPE’s 8,357,200. Note that MinMax already belongs
to the fastest high-quality partitioners. However, HYPE is able to outperform MinMax because
its runtime does not depend on the number of partitions.

6.4.2 Discussion of the Results

We conclude that HYPE shows very promising performance in hypergraph partitioning. First,
it is able to partition very large hypergraphs, which cannot be partitioned by algorithms from
group (I). Second, it consistently provides better partitioning quality than streaming MinMax.
On top of that, the HYPE algorithm is comparably easy to implement and to manage because
all system parameters are fixed.

6.5. RELATED WORK 141

6.5 Related Work

In the last decades, research on hypergraph partitioning was driven by the need to place tran-
sistors on chips in Very-large-scale integration (VLSI) design [58], as logic circuits can be
modeled as large hypergraphs that are divided among chips. The most popular hypergraph
partitioning algorithm from that area is hMETIS [61] which is based on a multilevel contrac-
tion algorithm and produces good partitioning quality for medium-sized hypergraphs in the
magnitude of up to 100,000 edges.

However, multilevel partitioning algorithms do not scale to large hypergraphs, as shown in
our evaluations. Parallel implementations of multilevel partitioning have been proposed [26],
but the problem of high computational complexity and memory consumption remains. For in-
stance, Zoltan [26] is a parallel multilevel hypergraph partitioning algorithm. The evaluated
graphs on Zoltan are relatively small—within a magnitude of up to 30 million edges or less—
while using up to 64 parallel machines to process them. Other algorithms of that group are
Mondriaan [132], Parkway [128], PaToH [14], and KaHyPar [47]. For hypergraphs with hun-
dreds of millions of edges, these algorithms are not practical as they take hours or even days to
complete, if they terminate at all.

The bad scalability of multilevel partitioning algorithms led to the development of more scal-
able partitioners. Social Hash Partitioner (SHP) achieves scalability to very large hypergraphs
(up to 10 billion edges) by means of massive parallelization [54]. SHP performs random swaps
of vertices between partitions and greedily chooses the best swaps. Random swaps fit well
with the objective of parallelization and distribution in SHP, but may not be the most efficient
heuristic. Investigating on the phenomenon of scalability versus efficiency [91], we conceived
the idea to devise an efficient hypergraph partitioning algorithm.

Another approach to partition very large hypergraphs are streaming algorithms. Streaming
hypergraph partitioning takes one vertex at a time from a stream of vertices, and calculates
a score for each possible placement of that vertex on each of the partitions. The vertex is
then placed on the partition where its placement score is best, and cannot be removed any
more. Alistarh et al. [4] proposed different heuristic scoring functions, where greedily assigning
vertices to the partition with the largest overlap of incident hyperedges is considered best. There
are two issues with the streaming approach. First, by only taking into account a single vertex
at a time and placing it, information about the neighborhood of that vertex is not exploited
although available in the hypergraph. Second, the complexity of the algorithm depends on the
number of partitions, as the scoring function is computed for each vertex on each partition. For
a large number of partitions, streaming partitioning becomes slow.

A closely related problem is balanced k-way graph partitioning which faces similar challenges
such as billion-scale graph data and the need for fast algorithms. Multilevel graph partition-

142 6. MASSIVE HYPERGRAPH PARTITIONING WITH NEIGHBORHOOD EXPANSION

ers such as METIS [59] and ParMETIS [60] do not scale very well. Spinner [81] is a highly
scalable graph partitioner that, like SHP, performs iterative random permutations and greedy
selection of the best permutation. There is a large number of streaming graph partitioning al-
gorithms, such as HDRF [101], H-load [87], and ADWISE [85]. The “neighborhood heuristic”
by Zhang et al. [150] follows a completely different approach by exploiting the graph struc-
ture when performing partitioning decisions. The algorithm grows a core set by successively
adding neighbors of the core set to a fringe set. However, the given heuristic can not be applied
directly to hypergraph partitioning as the calculation of scores is way too expensive in hyper-
graphs (see Section 6.3). While hypergraphs can be transformed into bipartite graphs, graph
partitioning algorithms cannot be used to perform hypergraph partitioning. First, the bipartite
graph representations contain one artificial vertex per hyperedge that destroys the vertex bal-
ancing requirement of hypergraph partitioning. Second, the (k-1) metric is ignored by graph
partitioning algorithms.

In recent years, several distributed hypergraph systems emerged that fueled the need for effi-
cient massive hypergraph partitioning. These systems are inspired from the area of distributed
graph processing systems and apply the vertex-centric programming model from graph process-
ing to hypergraph processing. For instance, HyperX [49] allows applications to specify vertex
and hyperedge programs which are then executed iteratively by the system. Also, Mesh [44]
builds upon the popular GraphX system [35] and shows promising performance. These systems
show significant reduction of processing latency with improved partitioning quality.

6.6 Chapter Summary

In this chapter, we propose HYPE, an effective and efficient partitioner for real-world hyper-
graphs. The partitioner grows k core sets in a sequential manner using a neighborhood expan-
sion algorithm with several optimizations to reduce the search space. Due to the simplicity of
the design and focus on the hypergraph structure, HYPE is able to partition the large Reddit
hypergraph with billions of edges in less than a day. This is the partitioning of one of the largest
real-world hypergraph reported in literature. HYPE not only improves partitioning quality by
up to 95% compared to streaming hypergraph partitioning, but reduces runtime as well by 39%.

A promising line of future research on HYPE is to explore how to grow the k core sets in
parallel. In this scenario, several core sets “compete” for inclusion of attractive vertices, so
the crucial questions are how to minimize the number of “collisions” and how to deal with
collisions when they happen.

7
Summary and Future Work

In this chapter, we provide a summary of contributions, draw conclusions, and propose future
work in the area of graph partitioning for distributed graph processing.

7.1 Thesis Summary

Modern graph processing systems have used general partitioning algorithms to minimize com-
munication and synchronization overhead in a distributed environment. In this thesis, we show
that—by tailoring the partitioning algorithms to the specific domain of distributed graph pro-
cessing on real-world data sets—we can significantly improve partitioning quality which re-
duces costs, communication volume, and processing latency. In particular, we summarize our
contributions in the following.

• Existing vertex-cut partitioning algorithms minimize the replication degree in order to
minimize communication overhead. However, in Chapter 3, we provide evidence that
the implicit homogeneity assumptions of vertex traffic and network costs are not valid for
modern graph processing. Instead, vertex traffic and network costs are heterogeneous. In
fact, following a power-law distribution, heterogeneity of vertex traffic is so prominent
that the reader might be surprised about the homogeneity assumption. The vertices with
top 20% of vertex traffic contribute 70-99% of total traffic for many standard graph al-
gorithms such as PageRank, subgraph isomorphism, and cellular automaton. To address
this issue, we proposed the graph processing system GrapH that takes heterogeneous
vertex traffic and network costs into account. The system dynamically tracks past and
predicts future vertex traffic and adapts the partitioning at runtime to minimize future

143

144 7. SUMMARY AND FUTURE WORK

expected communication costs. To calculate these expected communication costs, it con-
siders the investment costs of migrating graph data between partitions. In our evaluations,
we show that this integrated approach of graph processing, vertex traffic monitoring and
prediction, and repartitioning, outperforms state-of-the-art by up to 60% with respect to
communication costs, while improving end-to-end latency of graph computation by more
than 10%.

• A multitude of single-edge streaming partitioning emerged in recent years. The reason
for their popularity is their fast partitioning speed—they are able to solve the NP-hard
partitioning problem heuristically in linear runtime (in the graph size) while providing
reasonable quality. However, in Chapter 4, we show that this practice of investing min-
imal time into graph partitioning harms end-to-end latency of partitioning plus graph
processing. With the ADWISE algorithm, we made the trade-off between partitioning
latency and graph processing latency controllable. This allows us to invest more time
into partitioning to improve partitioning quality and ultimately reduce graph processing
latency. The evaluation results show that ADWISE reduces total end-to-end latency by
up to 23−47% compared to single-edge streaming in different realistic scenarios. On top
of that, we provide a small but highly effective optimization that can be applied to any
single-edge streaming partitioning algorithm which reduces replication degree by 3−4×
without introducing additional computational overhead.

• An emerging class of applications, which we denote as concurrent graph query analytics
(CGA), demands support of localized query access patterns. Here, the graph queries do
not access the global graph but only a local area of the graph. At the same time, many
queries run in parallel on the shared graph structure. Yet, traditional graph partition-
ing algorithms are oblivious to the graph queries which leads to suboptimal partitioning
performance. In Chapter 5, we present novel algorithms tailored to CGA applications
for more efficient communication, synchronization, and workload balancing. In partic-
ular, we developed a scalable method of managing centralized knowledge about query
workload to perform query-aware adaptive partitioning. Moreover, we provide a novel
concept of hybrid barrier synchronization observing a speedup of average query latency
by up to 2.2×.

• Many important real-world applications—such as social networks or distributed data
bases—can be modeled as hypergraphs. In such a model, vertices represent entities—
such as users or data records—whereas hyperedges model a group membership of the
vertices—such as the authorship in a specific topic or the membership of a data record in
a specific replicated shard. To optimize such applications, we need an efficient and effec-
tive solution to the NP-hard balanced k-way hypergraph partitioning problem. However,
existing hypergraph partitioners that scale to very large graphs do not effectively exploit
the hypergraph structure when performing the partitioning decisions. In Chapter 6, we

7.2. CONCLUSIONS 145

propose HYPE, a hypergraph partitioner that exploits the neighborhood relations between
vertices in the hypergraph using an efficient implementation of neighborhood expansion.
HYPE improves partitioning quality by up to 95% and reduces runtime by up to 39%
compared to streaming partitioning.

7.2 Conclusions

In this thesis, we have examined four independent research directions that all support our main
hypothesis: tailoring graph partitioning to the specific area of distributed graph processing—
and hypergraph partitioning to the specific properties of real-world graphs—opens the road
for many improvements of key performance metrics such as communication costs, processing
latency, and workload balancing. In specific, we show this in four dimensions: our algorithms
consider (i) heterogeneities of vertex traffic and network communication (Chapter 3), (ii) the
trade-off between partitioning latency and graph processing latency (Chapter 4), (iii) dynamic
workload of localized graph queries (Chapter 5), and (iv) the skeweness of large real-world
hypergraphs (Chapter 6).

Clearly, these considerations of application specifics come at a cost of more computational
work or memory footprint. In particular, (i) considering vertex traffic requires to maintain a
vertex traffic value for each vertex, (ii) investing more partitioning latency does not guarantee
to reduce later graph processing latency, (iii) repartitioning the graph reactively based on the
query workload can lead to oscillations and migration overhead when query workload can
not predicted adequately, and (iv) considering the hyperedge and hypervertex degree causes
additional maintenance overhead for the algorithm.

However, we have shown in this thesis that the benefits outweigh the costs significantly which
leads to much more accurate partitioning decisions. In our experience, workload patterns in
the area of distributed graph processing tend to repeat which offers a reasonable amount of
predictability. For example, (i) vertex traffic remains surprisingly stable—we have shown that
even simple prediction methods are able to catch these patterns well. Moreover, (ii) even for
modestly complex graph algorithms such as PageRank, it pays off to invest three times the min-
imal partitioning latency. Additionally, (iii) query workload hotspots change slowly and query-
centric partitioning is an excellent proxy for fine-grained vertex-centric partitioning leading to
improved partitioning quality at much smaller runtime complexity. Finally, (iv) considering
hypervertex degree and hyperedge degree reduces runtime overhead for many practical hyper-
graphs because the neighborhood heuristic avoids expansion in the computationally expensive
regions of the hypergraph (high-degree hypervertices and hyperedges). In conclusion, the al-
gorithms presented in this thesis improved efficiency of distributed graph processing, graph
partitioning, and hypergraph partitioning by tailoring the partitioning towards their specific ap-

146 7. SUMMARY AND FUTURE WORK

plication domains. In particular, we show that (i) considering dynamic traffic patterns lead to
much better partitioning quality, (ii) investing more time into partitioning reduces integrated
latency of partitioning plus graph processing, (iii) lifting the partitioning algorithms from the
vertex level to the query level reduces partitioning overhead and improves partitioning quality,
and (iv) considering the skewed degree distribution improves efficiency of hypergraph parti-
tioning.

7.3 Future Work

The presented algorithms constitute only the first few steps towards efficient distributed graph
processing and hypergraph partitioning—when considering the wide range of application do-
mains in these areas. Novel application areas arise frequently such as graph processing on
GPUs or modeling complex machine learning applications as distributed data flow graphs. An
example for the latter is the popular TensorFlow system [1] proposed by Google for distributed
(deep) machine learning. For TensorFlow, we propose several fast heuristics for partitioning
and scheduling of distributed data flow graphs [88]. However, a detailed analysis of this prob-
lem is still an open research question.

Many different paths for optimization are still unexplored (or under-explored) in the area of
graph partitioning for distributed graph processing. One such optimization is to perform par-
tial replication to increase access locality and scalability at the cost of a larger memory footprint
and synchronization overhead. Other ideas include highly-parallelized graph partitioning on a
GPU, the use of meta-heuristics and automatic heuristics selection, and using machine learn-
ing to learn the scoring function of streaming partitioning algorithms (when partitioning large
graphs, we can have billions of training data items to learn a prediction model).

To wrap up, this thesis provides a first step towards efficient processing of graph-structured data
sets by proposing new domain-specific partitioning algorithms.

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning. In
Proceedings of the 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI). Savannah, Georgia, USA, 2016.

[2] T. Aittokallio and B. Schwikowski. Graph-based methods for analysing networks in cell
biology. Briefings in Bioinformatics, 7(3):243–255, 2006.

[3] R. Albert, H. Jeong, and A.-L. Barabási. Error and attack tolerance of complex networks.
Nature, 406(6794):378, 2000.

[4] D. Alistarh, J. Iglesias, and M. Vojnovic. Streaming min-max hypergraph partitioning.
In Proceedings of the 28th International Conference on Neural Information Processing
Systems (NIPS) - Volume 2, 2015.

[5] K. Andreev and H. Racke. Balanced graph partitioning. Theory of Computing Systems,
39(6):929–939, Nov 2006.

[6] R. Angles and C. Gutierrez. Survey of graph database models. ACM Computing Surveys
(CSUR), 40(1):1, 2008.

[7] A. Arora, S. Galhotra, and S. Ranu. Debunking the myths of influence maximization: An
in-depth benchmarking study. In Proceedings of the 2017 ACM SIGMOD International
Conference on Management of Data, pages 651–666. ACM, 2017.

[8] D. A. Bader, S. Kintali, K. Madduri, and M. Mihail. Approximating betweenness cen-
trality. In International Workshop on Algorithms and Models for the Web-Graph, pages
124–137. Springer, 2007.

[9] C. Bahnmüller. Improving google’s open-source machine learning system tensorflow.
Master’s thesis, 2018.

[10] T. Y. Berger-Wolf and J. Saia. A framework for analysis of dynamic social networks. In
Proceedings of the 12th ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pages 523–528. ACM, 2006.

147

148 BIBLIOGRAPHY

[11] P. Boldi, M. Rosa, M. Santini, and S. Vigna. Layered label propagation: A multireso-
lution coordinate-free ordering for compressing social networks. In Proceedings of the
20th international conference on World Wide Web (WWW), pages 587–596. ACM, 2011.

[12] P. S. Bradley and U. M. Fayyad. Refining initial points for k-means clustering. In ICML,
volume 98, pages 91–99. Citeseer, 1998.

[13] F. Cacheda, N. Barbieri, and R. Blanco. Click through rate prediction for local search
results. In Proceedings of the Tenth ACM International Conference on Web Search and
Data Mining (WSDM), pages 171–180. ACM, 2017.

[14] U. V. Catalyurek and C. Aykanat. Hypergraph-partitioning-based decomposition for par-
allel sparse-matrix vector multiplication. IEEE Transactions on Parallel and Distributed
Systems (TPDS), 10(7):673–693, Jul 1999.

[15] U. V. Çatalyürek, K. Kaya, and B. Uçar. Integrated data placement and task assignment
for scientific workflows in clouds. In Proceedings of the 4th International Workshop on
Data-intensive Distributed Computing, 2011.

[16] Ò. Celma and P. Lamere. If you like the beatles you might like...: a tutorial on music
recommendation. In Proceedings of the 16th ACM International Conference on Multi-
media, pages 1157–1158. ACM, 2008.

[17] M. Cha, A. Mislove, and K. P. Gummadi. A measurement-driven analysis of informa-
tion propagation in the flickr social network. In Proceedings of the 18th International
Conference on World Wide Web (WWW), pages 721–730. ACM, 2009.

[18] R. Chen, J. Shi, Y. Chen, and H. Chen. Powerlyra: Differentiated graph computation and
partitioning on skewed graphs. In Proceedings of the 10th ACM European Conference
on Computer Systems (EuroSys), page 1. ACM, 2015.

[19] R. Chen, M. Yang, X. Weng, B. Choi, B. He, and X. Li. Improving large graph process-
ing on partitioned graphs in the cloud. In Proceedings of the Third ACM Symposium on
Cloud Computing, page 3. ACM, 2012.

[20] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang, L. Zhou, F. Zhao,
and E. Chen. Kineograph: taking the pulse of a fast-changing and connected world.
In Proceedings of the 7th ACM European Conference on Computer Systems (EuroSys),
pages 85–98. ACM, 2012.

[21] A. Ching, S. Edunov, M. Kabiljo, D. Logothetis, and S. Muthukrishnan. One trillion
edges: Graph processing at facebook-scale. Proceedings of the VLDB Endowment,
8(12):1804–1815, 2015.

BIBLIOGRAPHY 149

[22] F. Claude and G. Navarro. Fast and compact web graph representations. ACM Transac-
tions on the Web (TWEB), 4(4):16, 2010.

[23] C. Curino, E. Jones, Y. Zhang, and S. Madden. Schism: a workload-driven approach to
database replication and partitioning. Proceedings of the VLDB Endowment, 3(1-2):48–
57, 2010.

[24] M. Das, A. Simitsis, and K. Wilkinson. A hybrid solution for mixed workloads on
dynamic graphs. In Fourth International Workshop on Graph Data Management Expe-
riences and Systems (GRADES), page 1, 2016.

[25] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker,
K. Yang, Q. V. Le, et al. Large scale distributed deep networks. In Advances in Neural
Information Processing Systems (NIPS), pages 1223–1231, 2012.

[26] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V. Catalyurek. Paral-
lel hypergraph partitioning for scientific computing. In Proceedings 20th International
Parallel Distributed Processing Symposium, 2006.

[27] A. Dubey, G. D. Hill, R. Escriva, and E. G. Sirer. Weaver: A high-performance, transac-
tional graph database based on refinable timestamps. Proceedings of the VLDB Endow-
ment, 9(11), 2016.

[28] R. Eigner and G. Lutz. Collision avoidance in vanets-an application for ontological
context models. In Pervasive Computing and Communications, 2008. PerCom 2008.
Sixth Annual IEEE International Conference on, pages 412–416. IEEE, 2008.

[29] L. Epple. Billion-scale hypergraph partitioning. Master’s thesis, University of Stuttgart,
2018.

[30] U. Feige, M. Hajiaghayi, and J. R. Lee. Improved approximation algorithms for mini-
mum weight vertex separators. SIAM Journal on Computing, 2008.

[31] S. Galhotra, A. Arora, S. Virinchi, and S. Roy. Asim: A scalable algorithm for influ-
ence maximization under the independent cascade model. In Proceedings of the 24th
International Conference on World Wide Web (WWW), pages 35–36. ACM, 2015.

[32] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified np-complete problems.
In Proceedings of the Sixth Annual ACM Symposium on Theory of Computing, STOC
’74, pages 47–63, New York, NY, USA, 1974. ACM.

[33] H. Geppert. Scalable hypergraph partitioning. B.S. thesis, 2017.

[34] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Distributed
graph-parallel computation on natural graphs. In OSDI, 2012.

150 BIBLIOGRAPHY

[35] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica. Graphx:
graph processing in a distributed dataflow framework. In OSDI, 2014.

[36] J. Grunert. Concurrent query analytics on distributed graph systems. Master’s thesis,
2017.

[37] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu, V. Wang, B. Pang,
H. Chen, et al. Pingmesh: A large-scale system for data center network latency measure-
ment and analysis. ACM SIGCOMM Computer Communication Review (CCR), 2015.

[38] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh. Wtf: The who to follow
service at twitter. In Proceedings of the 22nd International Conference on World Wide
Web (WWW), pages 505–514. ACM, 2013.

[39] G. Hamerly and C. Elkan. Learning the k in k-means. In Advances in Neural Information
Processing Systems (NIPS), pages 281–288, 2004.

[40] M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin. An experimental com-
parison of pregel-like graph processing systems. Proceedings of the VLDB Endowment,
7(12):1047–1058, 2014.

[41] P. B. Hansen. Parallel cellular automata: A model program for computational science.
Concurrency: Practice and Experience, 1993.

[42] J. A. Hartigan and M. A. Wong. Algorithm as 136: A k-means clustering algorithm.
Journal of the Royal Statistical Society. Series C (Applied Statistics), 28(1):100–108,
1979.

[43] M. Hauck, M. Paradies, and H. Fröning. Can modern graph processing engines run
concurrent queries efficiently? In Proceedings of the Fifth International Workshop on
Graph Data-management Experiences & Systems, page 5. ACM, 2017.

[44] B. Heintz, S. Singh, C. Tesdahl, and A. Chandra. Mesh: A flexible distributed hyper-
graph processing system. 2016.

[45] B. Hendrickson and T. G. Kolda. Graph partitioning models for parallel computing.
Parallel computing, 26(12):1519–1534, 2000.

[46] N. R. Herbst, N. Huber, S. Kounev, and E. Amrehn. Self-adaptive workload classification
and forecasting for proactive resource provisioning. Concurrency and Computation:
Practice and Exper., 2014.

[47] T. Heuer and S. Schlag. Improving coarsening schemes for hypergraph partitioning
by exploiting community structure. In 16th International Symposium on Experimental
Algorithms, (SEA 2017), 2017.

BIBLIOGRAPHY 151

[48] J. Huang and D. J. Abadi. Leopard: Lightweight edge-oriented partitioning and replica-
tion for dynamic graphs. Proceedings of the VLDB Endowment, 9(7):540–551, 2016.

[49] J. Huang, R. Zhang, and J. X. Yu. Scalable hypergraph learning and processing. In
Proceedings of the IEEE International Conference on Data Mining (ICDM), 2015.

[50] N. Jain, G. Liao, and T. L. Willke. Graphbuilder: scalable graph etl framework. In First
International Workshop on Graph Data Management Experiences and Systems, page 4.
ACM, 2013.

[51] C. Jayalath, J. Stephen, and P. Eugster. From the cloud to the atmosphere: Running
mapreduce across data centers. IEEE Transactions on Computers (ToC), 2014.

[52] Y. Jing and S. Baluja. Visualrank: Applying pagerank to large-scale image search. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 30(11):1877–1890, 2008.

[53] S. Jo, J. Yoo, and U. Kang. Fast and scalable distributed loopy belief propagation on
real-world graphs. In Proceedings of the Eleventh ACM International Conference on
Web Search and Data Mining (WSDM), pages 297–305. ACM, 2018.

[54] I. Kabiljo, B. Karrer, M. Pundir, S. Pupyrev, and A. Shalita. Social hash partitioner:
a scalable distributed hypergraph partitioner. Proceedings of the VLDB Endowment,
10(11):1418–1429, 2017.

[55] E. Kao, V. Gadepally, M. Hurley, M. Jones, J. Kepner, S. Mohindra, P. Monticciolo,
A. Reuther, S. Samsi, W. Song, et al. Streaming graph challenge: Stochastic block
partition. In High Performance Extreme Computing Conference (HPEC), 2017 IEEE,
pages 1–12. IEEE, 2017.

[56] D. R. Karger. Global min-cuts in rnc, and other ramifications of a simple min-out al-
gorithm. In Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA ’93, pages 21–30, Philadelphia, PA, USA, 1993. Society for Industrial
and Applied Mathematics.

[57] J. Kari. Theory of cellular automata: A survey. Theoretical computer science, 334(1-
3):3–33, 2005.

[58] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel hypergraph partitioning:
applications in vlsi domain. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 7(1):69–79, 1999.

[59] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning
irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.

152 BIBLIOGRAPHY

[60] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph partitioning and
sparse matrix ordering. Journal of Parallel and Distributed Computing, 48(1):71–95,
1998.

[61] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. In Proceedings of
the 36th ACM/IEEE Design Automation Conference, 1999.

[62] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and G. Weikum. Naga: Searching
and ranking knowledge. In Data Engineering (ICDE), 2008 IEEE 24th International
Conference on, pages 953–962, April 2008.

[63] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a
social network. In Proceedings of the 9th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 137–146. ACM, 2003.

[64] A. Khan and S. Elnikety. Systems for big-graphs. Proceedings of the VLDB Endowment,
7(13), 2014.

[65] S. S. Khan and A. Ahmad. Cluster center initialization algorithm for k-means clustering.
Pattern recognition letters, 25(11):1293–1302, 2004.

[66] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and P. Kalnis. Mizan: A
system for dynamic load balancing in large-scale graph processing. In Proceedings of
the 8th ACM European Conference on Computer Systems (EuroSys), EuroSys ’13, pages
169–182, New York, NY, USA, 2013. ACM.

[67] G. Koutrika and Y. Ioannidis. Personalization of queries in database systems. In Data
Engineering (ICDE), 2004 IEEE International Conference on, pages 597–608. IEEE,
2004.

[68] D. Kumar, A. Raj, D. Patra, and D. Janakiram. Graphive: Heterogeneity-aware adaptive
graph partitioning in graphlab. In ICCPW, 2014.

[69] J. Kunegis. Konect: the koblenz network collection. In Proceedings of the 22nd Inter-
national Conference on World Wide Web (WWW), pages 1343–1350. ACM, 2013.

[70] K. LaCurts, S. Deng, A. Goyal, and H. Balakrishnan. Choreo: Network-aware task
placement for cloud applications. In Proceedings of the 2013 Conference on Internet
Measurement Conference, 2013.

[71] L. Laich. Graph partitioning and scheduling for distributed dataflow computation. B.S.
thesis, 2017.

[72] A. Lenharth, D. Nguyen, and K. Pingali. Parallel graph analytics. Communications of
the ACM, 59(5):78–87, 2016.

BIBLIOGRAPHY 153

[73] J. Leskovec, K. J. Lang, A. Dasgupta, and M. W. Mahoney. Community structure in large
networks: Natural cluster sizes and the absence of large well-defined clusters. Internet
Mathematics, 2009.

[74] C. Li. Distributed data analytics using graph processing frameworks. Master’s thesis,
University of Stuttgart, 2015.

[75] D. Li, C. Zhang, J. Wang, Z. Zhang, and Y. Zhang. Grapha: Adaptive partitioning for
natural graphs. In Distributed Computing Systems (ICDCS), 2017 IEEE 37th Interna-
tional Conference on, pages 2358–2365. IEEE, 2017.

[76] H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated local search. In Handbook of
metaheuristics, pages 320–353. Springer, 2003.

[77] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, and J. M. Hellerstein. Dis-
tributed graphlab: a framework for machine learning and data mining in the cloud. Pro-
ceedings of the VLDB Endowment, 5(8):716–727, 2012.

[78] Y. Lu, J. Cheng, D. Yan, and H. Wu. Large-scale distributed graph computing systems:
An experimental evaluation. Proceedings of the VLDB Endowment, 2014.

[79] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Capturing topology in graph pattern matching.
Proceedings of the VLDB Endowment, 5(4):310–321, 2011.

[80] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Cza-
jkowski. Pregel: a system for large-scale graph processing. In Proceedings of the
2010 ACM SIGMOD International Conference on Management of data, pages 135–146.
ACM, 2010.

[81] C. Martella, D. Logothetis, A. Loukas, and G. Siganos. Spinner: Scalable graph parti-
tioning in the cloud. In Data Engineering (ICDE), 2017 IEEE 33rd International Con-
ference on, pages 1083–1094. Ieee, 2017.

[82] C. Mayer, R. Mayer, and M. Abdo. Stream learner: Distributed incremental machine
learning on event streams: Grand challenge. In Proceedings of the 11th ACM Interna-
tional Conference on Distributed and Event-based Systems (DEBS), DEBS ’17, pages
298–303, New York, NY, USA, 2017. ACM.

[83] C. Mayer, R. Mayer, S. Bhowmik, L. Epple, and K. Rothermel. Hype: Massive hyper-
graph partitioning with neighborhood expansion. In Big Data (Big Data), 2018 IEEE
International Conference on, 2018.

[84] C. Mayer, R. Mayer, J. Grunert, A. Tariq, and K. Rothermel. Q-graph: Preserving
query locality in multitenant graph processing. In 1st Joint International Workshop on

154 BIBLIOGRAPHY

Graph Data Management Experiences & Systems (GRADES) and Network Data Ana-
lytics (NDA) 2018, page 7. ACM, 2018.

[85] C. Mayer, R. Mayer, M. A. Tariq, H. Geppert, L. Laich, L. Rieger, and K. Rothermel.
Adwise: Adaptive window-based streaming edge partitioning for high-speed graph pro-
cessing. In Distributed Computing Systems (ICDCS), 2018 IEEE 38th International
Conference on, 2018.

[86] C. Mayer, M. A. Tariq, C. Li, and K. Rothermel. Graph: Heterogeneity-aware graph
computation with adaptive partitioning. In Distributed Computing Systems (ICDCS),
2016 IEEE 36th International Conference on, pages 118–128. IEEE, 2016.

[87] C. Mayer, M. A. Tariq, R. Mayer, and K. Rothermel. Graph: Traffic-aware graph pro-
cessing. IEEE Transactions on Parallel and Distributed Systems (TPDS), 2018.

[88] R. Mayer, C. Mayer, and L. Laich. The tensorflow partitioning and scheduling problem:
it’s the critical path! In Proceedings of the 1st Workshop on Distributed Infrastructures
for Deep Learning, pages 1–6. ACM, 2017.

[89] R. Mayer, C. Mayer, M. A. Tariq, and K. Rothermel. Graphcep: Real-time data analytics
using parallel complex event and graph processing. In Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems (DEBS), pages 309–
316. ACM, 2016.

[90] R. R. McCune, T. Weninger, and G. Madey. Thinking like a vertex: a survey of vertex-
centric frameworks for large-scale distributed graph processing. ACM Computing Sur-
veys (CSUR), 2015.

[91] F. McSherry, M. Isard, and D. G. Murray. Scalability! but at what cost? In Proceedings
of the 15th USENIX Conference on Hot Topics in Operating Systems, 2015.

[92] S. Mittal. A survey of techniques for approximate computing. ACM Computing Surveys
(CSUR), 48(4):62:1–62:33, Mar. 2016.

[93] R. H. Möhring, H. Schilling, B. Schütz, D. Wagner, and T. Willhalm. Partitioning graphs
to speed up dijkstra’s algorithm. In International Workshop on Experimental and Effi-
cient Algorithms, pages 189–202. Springer, 2005.

[94] I. Narayanan, A. Kansal, A. Sivasubramaniam, B. Urgaonkar, and S. Govindan. Towards
a leaner geo-distributed cloud infrastructure. In USENIX HotCloud, 2014.

[95] J. Nishimura and J. Ugander. Restreaming graph partitioning: simple versatile algo-
rithms for advanced balancing. In Proceedings of the 19th ACM SIGKDD International
Conference Knowledge discovery and data mining, 2013.

BIBLIOGRAPHY 155

[96] L. Page, S. Brin, R. Motwani, and T. Winograd. The pagerank citation ranking: bringing
order to the web. 1999.

[97] S. Papadopoulos, Y. Kompatsiaris, A. Vakali, and P. Spyridonos. Community detection
in social media. Data Mining and Knowledge Discovery, 24(3):515–554, 2012.

[98] J. M. Pena, J. A. Lozano, and P. Larranaga. An empirical comparison of four initializa-
tion methods for the k-means algorithm. Pattern recognition letters, 20(10):1027–1040,
1999.

[99] C. Peng, M. Kim, Z. Zhang, and H. Lei. Vdn: Virtual machine image distribution
network for cloud data centers. In INFOCOM, 2012.

[100] J. Pérez, M. Arenas, and C. Gutierrez. Semantics and complexity of sparql. In Interna-
tional semantic web conference, pages 30–43. Springer, 2006.

[101] F. Petroni, L. Querzoni, K. Daudjee, S. Kamali, and G. Iacoboni. Hdrf: Stream-
based partitioning for power-law graphs. In Proceedings of the 24th ACM International
on Conference on Information and Knowledge Management (CIKM), pages 243–252.
ACM, 2015.

[102] C. Pizzuti. Ga-net: A genetic algorithm for community detection in social networks. In
International Conference on Parallel Problem Solving from Nature, pages 1081–1090.
Springer, 2008.

[103] A. Prat-Pérez, D. Dominguez-Sal, and J.-L. Larriba-Pey. High quality, scalable and par-
allel community detection for large real graphs. In Proceedings of the 23rd International
Conference on World Wide Web (WWW), pages 225–236. ACM, 2014.

[104] Q. Pu, G. Ananthanarayanan, P. Bodik, S. Kandula, A. Akella, P. Bahl, and I. Stoica.
Low latency geo-distributed data analytics. In SIGCOMM, 2015.

[105] A. Quamar, A. Deshpande, and J. Lin. Nscale: neighborhood-centric large-scale graph
analytics in the cloud. The VLDB Journal, 25(2):125–150, 2016.

[106] F. Rahimian, A. H. Payberah, S. Girdzijauskas, and S. Haridi. Distributed vertex-cut
partitioning. In IFIP International Conference on Distributed Applications and Interop-
erable Systems, pages 186–200. Springer, 2014.

[107] Z. Riaz, F. Dürr, and K. Rothermel. Optimized location update protocols for secure and
efficient position sharing. In International Conference and Workshops on Networked
Systems, pages 1–8, 2015.

[108] A. W. Richa, M. Mitzenmacher, and R. Sitaraman. The power of two random choices:
A survey of techniques and results. Combinatorial Optimization, 9:255–304, 2001.

156 BIBLIOGRAPHY

[109] L. Rieger. Distributed graph partitioning for large-scale graph analytics. Master’s thesis,
University of Stuttgart, 2016.

[110] R. A. Rossi and N. K. Ahmed. The network data repository with interactive graph
analytics and visualization. In AAAI, 2015.

[111] A. Roy, L. Bindschaedler, J. Malicevic, and W. Zwaenepoel. Chaos: Scale-out graph
processing from secondary storage. In Proceedings of the 25th Symposium on Operating
Systems Principles, pages 410–424. ACM, 2015.

[112] J. Ruan and W. Zhang. An efficient spectral algorithm for network community discovery
and its applications to biological and social networks. In Data Mining (ICDM 2007),
Seventh IEEE International Conference on, pages 643–648. IEEE, 2007.

[113] H. Sajjad, A. H. Payberah, F. Rahimian, V. Vlassov, and S. Haridi. Boosting vertex-cut
partitioning for streaming graphs. In BigData Congress, 2016.

[114] S. Sakr and G. Al-Naymat. Relational processing of rdf queries: a survey. ACM SIG-
MOD Record, 38(4):23–28, 2010.

[115] S. Salihoglu and J. Widom. Gps: A graph processing system. In Proceedings of the 25th
International Conference on Scientific and Statistical Database Management, 2013.

[116] A. E. Saríyüce, B. Gedik, G. Jacques-Silva, K.-L. Wu, and U. V. Çatalyürek. Streaming
algorithms for k-core decomposition. Proceedings of the VLDB Endowment, 2013.

[117] V. Satuluri and S. Parthasarathy. Scalable graph clustering using stochastic flows: appli-
cations to community discovery. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 737–746. ACM, 2009.

[118] P. Schäfer. Finding relevant videos in big data environments-how to utilize graph pro-
cessing systems for video retrieval. Master’s thesis, 2017.

[119] S. Schlag, V. Henne, T. Heuer, H. Meyerhenke, P. Sanders, and C. Schulz. k-way hyper-
graph partitioning via n-level recursive bisection. In 2016 Proceedings of the Eighteenth
Workshop on Algorithm Engineering and Experiments (ALENEX), pages 53–67. SIAM,
2016.

[120] Z. Shang and J. X. Yu. Catch the wind: Graph workload balancing on cloud. In Data
Engineering (ICDE), 2013 IEEE International Conference on, 2013.

[121] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 22(8):888–905, 2000.

BIBLIOGRAPHY 157

[122] Y. Simmhan, A. Kumbhare, C. Wickramaarachchi, S. Nagarkar, S. Ravi, C. Raghaven-
dra, and V. Prasanna. Goffish: A sub-graph centric framework for large-scale graph
analytics. In European Conference on Parallel Processing, pages 451–462. Springer,
2014.

[123] I. Stanton and G. Kliot. Streaming graph partitioning for large distributed graphs. In Pro-
ceedings of the 18th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 1222–1230. ACM, 2012.

[124] T. Stützle. Iterated local search for the quadratic assignment problem. European Journal
of Operational Research, 174(3):1519–1539, 2006.

[125] T. Suzumura, C. Houngkaew, and H. Kanezashi. Towards billion-scale social simula-
tions. In Simulation Conference (WSC), 2014 Winter, pages 781–792. IEEE, 2014.

[126] P. Symeonidis, E. Tiakas, and Y. Manolopoulos. Product recommendation and rating
prediction based on multi-modal social networks. In Proceedings of the Fifth ACM
conference on Recommender systems, pages 61–68. ACM, 2011.

[127] K. Ten Tusscher, D. Noble, P. Noble, and A. Panfilov. A model for human ventricular
tissue. American Journal of Physiology-Heart and Circulatory Physiology, 2004.

[128] A. Trifunovic and W. J. Knottenbelt. Parallel multilevel algorithms for hypergraph par-
titioning. Journal of Parallel and Distributed Computing, 68(5):563 – 581, 2008.

[129] C. Tsourakakis, C. Gkantsidis, B. Radunovic, and M. Vojnovic. Fennel: Streaming
graph partitioning for massive scale graphs. In Proceedings of the 7th ACM International
Conference on Web Search and Data Mining (WSDM), 2014.

[130] J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM (JACM),
23(1):31–42, 1976.

[131] L. M. Vaquero, F. Cuadrado, D. Logothetis, and C. Martella. Adaptive partitioning for
large-scale dynamic graphs. In Distributed Computing Systems (ICDCS), 2014 IEEE
34th International Conference on, pages 144–153. IEEE, 2014.

[132] B. Vastenhouw and R. H. Bisseling. A two-dimensional data distribution method for
parallel sparse matrix-vector multiplication. SIAM review, 47(1):67–95, 2005.

[133] S. Verma, L. M. Leslie, Y. Shin, and I. Gupta. An experimental comparison of partition-
ing strategies in distributed graph processing. Proceedings of the VLDB Endowment,
10(5):493–504, 2017.

[134] A. Vulimiri, C. Curino, B. Godfrey, K. Karanasos, and G. Varghese. Wanalytics: Ana-
lytics for a geo-distributed data-intensive world. Proceedings of the 7th Biennial Con-
ference on Innovative Data Systems Research (CIDR) 2015, 2015.

158 BIBLIOGRAPHY

[135] L. Wang, Y. Xiao, B. Shao, and H. Wang. How to partition a billion-node graph. In Data
Engineering (ICDE), 2014 IEEE International Conference on, 2014.

[136] D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks. Nature,
393(6684):440–442, 1998.

[137] T. Weiss. Experimental comparison of distributed graph processing systems. B.S. thesis,
2018.

[138] M. Wu, F. Yang, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin, Y. Dai, and L. Zhou. Gram:
Scaling graph computation to the trillions. In Proceedings of the 6th ACM Symposium
on Cloud Computing (SoCC), SoCC ’15, pages 408–421, New York, NY, USA, 2015.
ACM.

[139] J. Xiang, C. Guo, and A. Aboulnaga. Scalable maximum clique computation using
mapreduce. In Data Engineering (ICDE), 2013 IEEE 29th International Conference on,
pages 74–85. IEEE, 2013.

[140] C. Xie, L. Yan, W.-J. Li, and Z. Zhang. Distributed power-law graph computing: The-
oretical and empirical analysis. In Advances in Neural Information Processing Systems
(NIPS), 2014.

[141] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and I. Stoica. Graphx: A resilient distributed
graph system on spark. In First International Workshop on Graph Data Management
Experiences and Systems (GRADES), page 2. ACM, 2013.

[142] N. Xu, B. Cui, L. Chen, Z. Huang, and Y. Shao. Heterogeneous environment aware
streaming graph partitioning. IEEE Transactions on Knowledge and Data Engineering
(TKDE), 2015.

[143] J. Xue, Z. Yang, S. Hou, and Y. Dai. Processing concurrent graph analytics with de-
coupled computation model. IEEE Transactions on Computers (ToC), 66(5):876–890,
2017.

[144] S. Yang, X. Yan, B. Zong, and A. Khan. Towards effective partition management for
large graphs. In Proceedings of the 2012 ACM SIGMOD International Conference on
Management of Data, pages 517–528. ACM, 2012.

[145] W. Yang, G. Wang, K.-K. R. Choo, and S. Chen. Hepart: A balanced hypergraph par-
titioning algorithm for big data applications. Future Generation Computer Systems,
83:250 – 268, 2018.

[146] J. S. Yedidia, W. T. Freeman, and Y. Weiss. Generalized belief propagation. In Advances
in Neural Information Processing Systems (NIPS), pages 689–695, 2001.

[147] Y. Yuan, G. Wang, J. Y. Xu, and L. Chen. Efficient distributed subgraph similarity
matching. The VLDB Journal, 2015.

[148] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed graph engine for web
scale rdf data. In Proceedings of the VLDB Endowment, volume 6, pages 265–276.
VLDB Endowment, 2013.

[149] F. B. Zhan and C. E. Noon. Shortest path algorithms: an evaluation using real road
networks. Transportation science, 32(1):65–73, 1998.

[150] C. Zhang, F. Wei, Q. Liu, Z. G. Tang, and Z. Li. Graph edge partitioning via neighbor-
hood heuristic. In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 605–614. ACM, 2017.

[151] D. Zhang, D. Yang, Y. Wang, K.-L. Tan, J. Cao, and H. T. Shen. Distributed shortest
path query processing on dynamic road networks. The VLDB Journal, 26(3):399–419,
2017.

[152] A. Zheng, A. Labrinidis, and P. K. Chrysanthis. Planar: Parallel lightweight architecture-
aware adaptive graph repartitioning. In Data Engineering (ICDE), 2016 IEEE Interna-
tional Conference on, 2016.

[153] A. Zheng, A. Labrinidis, P. K. Chrysanthis, and J. Lange. Argo: Architecture-aware
graph partitioning. In Big Data (Big Data), 2016 IEEE International Conference on,
2016.

[154] A. C. Zhou, S. Ibrahim, and B. He. On achieving efficient data transfer for graph pro-
cessing in geo-distributed datacenters. In Distributed Computing Systems (ICDCS), 2017
IEEE 37th International Conference on, pages 1397–1407. IEEE, 2017.

[155] X. Zhu, W. Han, and W. Chen. Gridgraph: Large-scale graph processing on a single ma-
chine using 2-level hierarchical partitioning. In USENIX Annual Technical Conference
(ATC), pages 375–386, 2015.

160 BIBLIOGRAPHY

Erklärung

Ich erkläre hiermit, dass ich, abgesehen von den ausdrücklich bezeichneten Hilfsmitteln und
den Ratschlägen von jeweils namentlich aufgeführten Personen, die Dissertation selbstständig
verfasst habe.

(Christian Mayer)

161

	Abstract
	Deutsche Zusammenfassung
	1 Introduction
	1.1 Research Statement
	1.1.1 Traffic-aware Graph Partitioning and Processing
	1.1.2 Latency Trade-off between Graph Partitioning and Processing
	1.1.3 Query-centric Graph Partitioning and Processing
	1.1.4 Neighborhood-centric Partitioning of Skewed Hypergraphs

	1.2 Contributions
	1.3 Structure of the Thesis

	2 Background
	2.1 Distributed Graph Processing
	2.1.1 System Model
	2.1.2 Data Graph
	2.1.3 Synchronization Model
	2.1.4 Programming Model

	2.2 Graph Partitioning
	2.2.1 Edge-cut Partitioning
	2.2.2 Vertex-cut Partitioning
	2.2.3 Comparison Vertex-cut and Edge-cut Partitioning

	3 Heterogeneous Partitioning for Distributed Graph Processing
	3.1 Preliminaries and Problem Formulation
	3.1.1 Preliminaries
	3.1.2 Network- and Traffic-aware Dynamic Vertex-cut

	3.2 Partitioning Algorithms
	3.2.1 H-load: Initial Partitioning
	3.2.2 H-adapt: Distributed Migration of Edges

	3.3 Graph Algorithms
	3.3.1 Subgraph Isomorphism
	3.3.2 Cellular Automaton

	3.4 Evaluations
	3.4.1 Summary of Evaluation Results

	3.5 Related Work
	3.6 Chapter Summary

	4 Adaptive Window-based Streaming Partitioning
	4.1 Problem Statement and Analysis
	4.1.1 The Vertex-cut Graph Partitioning Problem
	4.1.2 Streaming Partitioning
	4.1.3 Window-based Streaming Partitioning

	4.2 ADWISE
	4.2.1 Adaptive Window Algorithm
	4.2.2 Lazy Window Traversal
	4.2.3 Scoring Window Edges
	4.2.4 Spotlight Partitioning

	4.3 Evaluation
	4.3.1 Efficacy of ADWISE to Minimize Total Graph Latency
	4.3.2 Spotlight
	4.3.3 Summary of Evaluation Results

	4.4 Related Work
	4.5 Chapter Summary

	5 Query-aware Multi-query Graph Processing
	5.1 Research Gap and Contributions
	5.2 Problem Description
	5.3 Q-Graph System
	5.3.1 System Overview
	5.3.2 Q-cut: Centralized Query-aware Partitioning
	5.3.3 Hybrid Barrier Synchronization for Multi-Query Graph Processing
	5.3.4 Adapting to Dynamic Query Workload

	5.4 Evaluations
	5.4.1 Experimental Setup
	5.4.2 Adaptive Q-cut Partitioning:
	5.4.3 Scalability and Hybrid Barrier
	5.4.4 Summary of Evaluation Results

	5.5 Related Work
	5.6 Chapter Summary

	6 Massive Hypergraph Partitioning with Neighborhood Expansion
	6.1 Research Gap and Contributions
	6.2 Problem Formulation
	6.3 Hypergraph Partitioning with Neighborhood Expansion
	6.3.1 Neighborhood Expansion Idea
	6.3.2 HYPE Algorithm
	6.3.3 Balancing Considerations
	6.3.4 HYPE Pseudocode
	6.3.5 Complexity Analysis

	6.4 Evaluations
	6.4.1 Performance Evaluations
	6.4.2 Discussion of the Results

	6.5 Related Work
	6.6 Chapter Summary

	7 Summary and Future Work
	7.1 Thesis Summary
	7.2 Conclusions
	7.3 Future Work

	Bibliography

