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Zusammenfassung

Mikro- und Nanostrukturen stellen bis heute eine vielversprechende Technologie dar, weil sie
Funktionalitaten erlauben, die entweder so in der Natur nicht existieren, oder weil sie es erlauben
bestehende Anwendungen mit viel kleinerem Aufwand und hoh#ieekt umzusetzen.

Die Wechselwirkung von komplexen plasmonischen Nanostrukturen, ob periodisch oder
ungeordnet, mit polarisiertem Licht erzeugt interessante Physik, bei der Streuung, Beugung und
Absorption verbunden werden, zu einer Vielzahl von dspen Moden und Kopplungseffekten.

Jede dieser Anregungen hangt stark von der Polarisation, dem Einfallswinkel, der azimuthalen
Orientierung der Probe und der Wellenlange ab. Das alles fuhrt zu einer vielféaltigen
Wechselwirkung mit polarisiertem Licht. Aufer einen Seite ist dieses Zusammenspiel der
verschiedenen Wechselwirkungen nicht leicht zu verstehen, auf der anderen Seite erdffnet es die
Maglichkeit gezielt optische Antworten maf3zuschneidern.

Die komplette optische Antwort einer Probe lasst sich tbidier-Matrizen (MM), gemessen

fur verschiedene-Kektoren und einen weiten Frequenzbereich, unabhéngig von irgendwelchen
Modellannahmen, bestimmen. Obwohl spektroskopische Mulrix Ellipsometrie
mittlerweile vielféaltige Anwendungen in der Charaksézirung von komplexen Nanostrukturen
gefunden hat, bleibt die zugrundeliegende Physik oft in den komplizierten Daten versteckt, was
bei der physikalischen Interpretation der gemessenen MM immer noch zu Herausforderungen
fuhrt.

Das Ziel dieser Arbeit istsg an zwei relativ einfachen plasmonischen Nanostrukturen zu zeigen,
dass sich die optische Antwort dieser Proben vollstandig im Rahmen deElNpgometrie
verstehen lasst. In der Arbeit wird gezeigt, dass eine systematische Korrelation der in den MMs
bedbachteten Polarisationsmischung zu der ihr zugrundeliegenden Physik eine zuverlassige
analytische Methode darstellt, die auf alle Proben angewandt werden kann, die sowohl anisotrop
sind, als auch Dispersion zeigen. Au3erdem kann die Methode auf einen Beitsch von
Proben ausgedehnt werden, ob anisotrop oder nicht, ob sie lokalisierte oder propagierende
Plasmonenmoden zeigt, oder ob die beobachtete Dispersion ihren Ursprung in
Wellenleitermoden oder photonischen Moden hat, solange flrAiEkngigkeitder Dispersion

ein analytischer Ausdruck angeben werden kann. Am Beispiel von zwei relativ einfachen
Proben wird die Machtigkeit und Implementierung der Methoden gezeigt: an einem
eindimensionalen plasmonischen Metallgitter und an einem metallischerpaitkelArray.

Diese beiden Beispiele werden im Rahmen der Arbeit komplett analysiert und gelést und es wird
gezeigt, dass die Ergebnisse im Prinzip fir neue Anwendungen genutzt werden kénnen.

Eindimensionale AuGitter und Au/Ni/Au-Gitter
Ergebnisse publiziert unter: M. Wang, A. Lohle, B. Gompf, M. Dressel, and A. Berrier,



APhysi cal i nterpretation of Muell er matrix sp
Opt. Expressvol. 25, no. 6, pp. 6988996, 2017.

Eindimensionale Metallgitteerlauben es durch ihre periodische Struktur die Dispersion von
anregendem Licht und Plasmonen aufeinander abzustimmen und dadurch sehr effizient
Oberflachenplasmonen (SPP) anzuregen. Es ist seit langem bekannt das Metallgitter abrupte
Anderungen in ihrer gtischen Antwort zeigen konnen, die als Rayleiybods Anomalien

(RWA) bezeichnet werden. RWA koénnen zu sehr schmalen Plasmonenresonanzen in geordneten
metallischen Anordnungen fiihren, durch die beugungsbedingte Kopplung von lokalisierten
Plasmonen, oderies kdnnen die Reflexion von nicptasmonischen metallischen Kreuzgittern
beeinflussen. Obwohl SPPs in metallischen Gittern seit langer Zeit untersucht werden und
RWAs seit Jahrzehnten bekannt sind, fehlt bis heute ein tieferes Verstandnis wie sie die
Polaisationsmischung in Metallgittern beeinflussen.

Der erste Teil der Arbeit behandelt die eindimensionalen plasmonistégatigitter, die durch
Aufdampfen von dinnen Aubzw. Au/Ni/Au-Filmen auf PDMSGittern hergestellt werden

(siehe Abb.1). In einem erst&Schritt wird die Reflexion entlang der zwei optischen Achsen der
Probe, also entlang der Rillen und senkrecht dazu, -mihd& ppolarisiertem Licht gemessen.

Die so gemessene Reflexion wird dann mit ein
Ansatzmit DrudelLorentz Oszillatoren moduliert. Aus diesem einfachen Modell werden dann
Intensitatsplots Uber den ganzen Wellenlargemd Winkelbereich generiert. Ist die
Ubereinstimmung zwischen gemessenen und simulierten Intensitaten gut, kénnen-Mueller
Matrix Plots erstellt werden. Diesen Plots werden dann die, aus der bekannten Periodizitat des
Gitters erwarteten dispersiven SPBnd RWAModen Uberlagert. Der Vergleich der so
simulierten MM mit den gemessenen MM erlaubt es dann, den Einfluss der Anisotropie,
proparierender SPPs, der Beugung und der materialabhangigen Absorption durch ihre
unterschiedliche Dispersion zu identifizieren und ihre Wechselwirkung und Kopplung
hervorgehoben (Abb.2). Man sieht, dass SPPs sowohl dudrals much durch-polarisiertes

Licht angeregt werden kénnen, wenn die Einfallebene senkrecht oder parallel zu den Gitterlinien
verlauft. Beide Moden sind dispersiv und folgen den gleichen Phasenanpassungsbedingungen.
Dadurch kommt es zur einer Polarisationsmischung, die g-polarigertes Licht durch die
Anregung von SPPs verwandelt und umgekehrt. Diese Polarisationsmischung ist maximal, wenn
die Einfallsebene unter 45° zu den Gitterlinien verlauft. Zusatzlich zu der Anregung von SPPs,
werden die optischen Eigenschaften auch durehgdiometrische Anisotropie, die RWAs, die

direkt mit der Periodizitat des Gitters zusammenhangen, und zu einem kleineren Teil, durch die
Au Interbandibergange beeinflusst. Die Anisotropie, die Interbandibergange und nichtdispersive
Naherung fur die SPPs Rtnh e n ganz gut i n Rahmen ei nes A
beschrieben werden, der sich nur durch die Anpassung an die gemessenen Intensitaten ergibt.
Die dispersiven SRRund RWAModen missen dann aber diesem einfachen Modell tUberlagert
werden.

Danach werdn die Au/Ni/AuGitter mit einem &hnlichen Ansatz analysiert. Auch hier lasst sich
die Rolle der Anisotropie, propagierender SPPs und die materialabhdngige Absorption in
gleicher Weise identifizieren. Beugungseffekte haben bei den Au/MN&iarn nur eine
schwachen Einfluss, vermutlich wegen der hohen Absorption innerhalb dekn¥i Am Ende

des Kapitels wird noch die Mdglichkeit, die plasmonischen Eigenschaften durch Strecken
einzustellen und die Reversibilitat dieses Zugangs diskutiert.



Abbildung 1: Schematische Darstellung des relBIMS-Gitters (a)Jund des Atbedampften (b)
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Abb. 2: Gemessene und simulierte Muelgaitrix ElementeM12 undM13 zusammen
mit den dispersiven SPPs und RWAs und den Interbandiibergangen in der oberen Halfte
der Plots fur einen Einfallswinkel von 45°.

Ag-Nanopartikel Arrays

Manuskript eingereicht Meng WangBruno Gompf, Martin Dressel, Nathalie Destouclzes]
Audrey Berrier AiPure circular dichroism by curvedws of plasmonic nanoparticlésubmitted
to Optical Materials Express

Arrays aus metallischen Nanopartikeln wurden in den letzten Jahrzehteasiv untersucht.

Ilhre optische Antwort hangt nicht nur von der Gro3e und Form der einzelnen Partikel ab,
sondern auch von ihrer spezifischen Anordnung. Das Wechselspiel zwischen den verschiedenen
Beitragen kann dann zu einer komplexen optischen Antwort fihren, bei d&irdiss der
verschiedenen Beitrdge nicht mehr leicht voneinander zu trennen ist. Auf der anderen Seite ist es



aber wichtig dieses Wechselspiel der Beitrdge verstanden zu haben, wenn man gezielt optische
Antworten fur gewtinschte Anwendungen entwickelfi. vids gibt zwar zahlreiche Arbeiten die

das Wechselspiel in spezifischen Anordnungen von Nanopartikeln und ihre optische Antwort
untersuchen, aber es gibt im Fall von komplexen Proben, wo unterschiedliche optische
Eigenschaften, photonische und plasmdmsaiberlappen, keine eindeutigen Verfahren diese
sauber zu trennen.

Der zweite Teil der Arbeit beschaftigt sich mit metallischen Nanoparfkedys, die durch

einen laseinduzierten Selbstorganisationsprozess hergestellt wurden (Abb. 3). Die Ag
Nanopatikel sind in einen Ti@Wellenleiter eingebettet und bilden dort eine periodische
Anordnung entlang gekrimmter Linien. In diesem Teil wird gezeigt, wie die optische Antwort
dieses komplexen Nanopartiki&trays in ihre Details zerlegt und damit verstandegrden

kann. Bei dieser komplexen Probe tritt ein kompliziertes Wechselspiel von plasmonischen
Resonanzen, durch Periodizitat bedingter Mod&fe)lenleitermoden, Interferenzeffekten und
Kopplungseffekten zwischen nachsten NachbarnAdutliese Einflissdassen sich im Rahmen

der MuellerMatrix Ellipsometrie und mit Hilfe der anschlieBenden Matrixzerlegung,
entflechten. Dadurch lassen sich die fundamentalen physikalischen Mechanismen der
beobachteten optischen Signaturen identifizieren. Zuerst lasstusctiea azimuthabhéngigen
Transmission auf die Anisotropie, und aus der Einfallswid#iangigkeit auf die Dispersion
durch eine periodische Anordnung schlie3en, woraus sich dann ein erstes einfaches Modell
entwickeln lasst. Danach werden dann die gemesskiM mit denen aus dem einfachen Modell
simulierten verglichen. Die Dekomposition der MM in ihre fundamentalen optischen
Eigenschaften erlaubt es anschlieRend die beobachteten optischen Signaturen spezifischen
Anregungen der Nanopartikel zuzuordnen: ahé lokalisierte Oberflachenplasmonen,
Doppelbrechung durch eine anisotrope Anordnung in Linien, die Kopplung zwischen den Linien,
Beugung in Wellenleitermoden oder eine gebrochene Symmetrie die zu echtem zirkularem
Dichroismus fuhrt (Abb.1.2 (b)). Vor lah der letzte Aspekt lasst sich nur durch eine
vollstandige Analyse der Muelldatrizen erreichen; nur die differenzielle Zerlegung der
gemessenen Muelldatrizen in ihre fundamentalen optischen Eigenschaften erlaubt es
zwischen einer Polarisationsdrelgu hervorgerufen durch Doppelbrechung und echtem
zirkularem Dichroismus zu unterscheiden.

Abb. 3. (a) Schematische Darstellung des-RgnopartikelArrays (b) Transmission und
zirkularer Dichroismus Uber eine volle Rotation der Probe bei elfiefllswinkel von 0° und
20°.
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Abstract

Micro-and nanostructures are nowadays very important in science and technology as they allow
for a whole range of functionalities that either does not exist in nature or reproduce existing
effects with a much smalléootprint and higher efficiency.

The interaction oEomplexplasmonic nanostructures, periodic or random, with polarized light
creates very rich physics where scattering, diffraction and absorbance are linked to a variety of
dispersive modes and couplingffects. Each of these excitations depends strongly on
polarization, angle of incidence, azimuthal orientation of the sample and wavel@hgth.
presence of these modes awdipling effectgesults in manifold interactiowith polarized light
On the onéhand the interplay of these interactions cannot be easily understood and on the other
hand it opens up the possibility to tailor the optical response

The complete optical responeé complex samplesan be measured by Mueller matrices at
various kvectoss over a broad frequency range independently from any model. Even though
Mueller matrix spectroscopic ellipsometfiy MSE) is widely used in characterizing the optical
properties of complex nanostructures, MMSE results in complex data hiding the underlying
physics, making the physical interpretation of a measMigeller matrix (MM) a big challenge.

The goal of this projecis to demonstrate on the example of two simple plasmonic
nanostructures, that the optical response of these samples can be fully understood in the
framework of MM ellipsometry. It is demonstrated thatyatematic correlain of the observed
polarization nixing in MMs to their underlying physical origiis aversatile analytical method
suitable to all samples exhibiting both anisotropy and dispersive modes. Further, the applicability
can be extended to a wide variety of samples whether anisotropic ores&nying localized or
propagating plasmonic resonances, photonic medasther originating from waveguiding or
scattering or other dispersive modes at the only condition that an analytical expression for the
dispersion of these modes exists. To dematestrthe power of this method and its
implementation, we apply it to two very simpéxamples the onedimensional plasmonic
metallic grating andnetallic nanoparticle arrays. These two examples are completely analyzed
and solved in the following topics atite results can in principle be used for new application.

Au gratings and Au/Ni/Au gratings

Manuscript published: M. Wang, A. Lohle, B. Gompf, M. Dees e | and A. Berri
interpretation of Muel |l er matri x speddptra: a
Expressvol. 25, no. 6, pp. 6988996, 2017.

Onedimensional gratings are very efficient tools to excite SBPmatching their dispersion to

that of light. Whenconsidering gratindpased structures, it is well known that regular periodic
nanostructures can show abrupt changes in the optical response, referred to as Rayleigh wood’s
anomalies (RWAE [11]. RWAs can result in very narrow plasmaasonances in regular
plasmonic arrays of metallic nanoparticles, originating from the diffraction coupling of localized
plasmons, or modify the reflectance of pasmonic metallic square arraysven though SPPs

on metallic gratings have been studied for a long time and RWA effects have also been well
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known for decades, a cleamderstanding of how SPPs and RWAs influence the polarization
mixing of gratings is still lacking.

We focus on he onedimensional plasmonic metallic gratinghich is fabricated by
evaporating Au (Figure 1) or Au/Ni/Au thin film on PDMS grating.

First, for Au grating,we measure the reflectance along the two optic axes of the grating, along
and perpendicular to thgrooves under-aand ppolarization. The reflectance is then modelled by
a simple anisotropic effective medium approach using Dhaidentz oscillators. From this
anisotropic model, the intensity plots over the whole spectral and angular range areedenerat
Once the agreement between the generated and measured plots is insured, themistuiller
plots can be calculated. On top of this calculated MME we superimpose the expected dispersive
SPP and RWA modes, calculated from the known periodicity of thengraComparing this
composed result with measured MMs gives a deep insight on how the different physical
contributions originating from periodicity, anisotropy and material properties influence the
complex polarization mixingFigure 2) We have seen th&PPs can be excited by bothap s
polarized light when the incident plane is perpendicular or parallel to the grating grooves. Both
SPP modes are dispersive with @l and follow the same phase matching conditionoPs
polarized light can be conuwed to s or p- polarized light via SPP excitation, and maximum
polarization conversion occurs when the angle betweeident plane and grooves is 45°.
Additionally to the excitation of SPPs, the optical properties are influenced by geometric
anisotropy,the RWAs related to the periodic grating structure and, to a lesser extent, the Au
interband transition. The anisotropy, the interband transition and thedismersive
approximation of the SPPs are understood in terms of an effective medium approdnkdobta
from fitting the measured reflectance. However, the dispersion of the SPP modes and the RWAs
effects should be added on top of this model.

Thenwe have demonstrated how the complex optical response of a simplgAugrating
can be decomposed intts physical ingredientin the same approach with Au gratinthe
optical properties are influencéxy the excitation of SPRgeometric anisotropy and a lesser
extent, the AINi/Au interband transitionDue to the high absorption of Ni, the influenck
RWAs disappears and the plasmonic feature becomes broader as compared with Au grating.
Finally, we introduced an active way for tuning SPP via mechanical stretching. By actively
stretching the PDMS grating template, the periodicity of grating increaseSPP peak position
red shifts. The releasing of a stretched metallic grating gives us a way for tuning the gap size
between grating bulks with the shape of grating butkchanged.

Figure 1. Schematic of Au gratings.

12
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Figure 2: Measured and simulated Mueller matrix elements M12, M13 together with the SPP,
RWA and interband transitions draws in the upper half space at AOI 45°.

Ag nanopatrticle arrays

Manuscript submitted: Meng WangBruno Gompf, Martin Dressel, Nathalie Destoucleexs]
Audrey Berrier AiPure circular dichroism by curvedws of plasmonic nanoparticlesubmitted
to Optical Materials Express

Metallic nanoparticle arrays have been widely studied over the last deddms.optical
response depends not only on the individual particle, but also on their specific arrangement. The
interplay of different contributions can lead to a complex optical response, where the influence
of the different ingredients cannot be eas#yparated. On the other hand, however, this interplay
has to be perfectly known, in order to tailor the optical response for any desired application.
Numerous investigations describe the interplay between specific geometrical arrangements of
nanoparticlesand their optical response in different configurations where nanoparticles are
ordered or randomly distributed, with different sizes and shapes. However, in the case of
complex samples, where different opticgbhotonic or plasmonit effects overlap anthteract

with each other, hitherto no clear procedure is readily available.

We have in full detail and completeness investigated the optical properties of a complex
plasmonic sample where an interplay is found of the contributions from plasmonic resonances,
periodicity, interference with waveguide modes and neargghbor couphg between adjacent
particles. To fully characterize this sample, we have used the powerful framework of Mueller
matrices advanced by the differential decomposition formalism. We show that even in the
presence of large complexity, the optical responsebeanasily disentangled by the presented
method. The investigated sample is easily manufactured in-asselibly process stirred by the

13



properties of the illuminating laser light during fabricatifigure 3a)). It consists of silver
nanoparticlesperiodically arranged along curved lines, which are embedded in a TiO
waveguide. When light is impinging on the sample surface and reaches the nanoparticle layer,
several phenomena occur. First the plasmonic resonance of the individual nanoparticles is
excited, and part of the transmitted light is hence absorbed. The nanoparticles also serve as
scattering elements for the incident light: part of the light is coupled to the waveguide modes via
interaction with nanopatrticles. On its turn, the waveguide madedeaky modes and can be
scattered by the presence of nanoparticles: this diffracted part of the leaky mode will interfere
with the directly transmitted light. The result of this interference isthedad | ed fidest r u
i nterference aoicedmdetferencé mede e a tamgal influence on the optical
response of the sample. Its signature is found both in intensity plots as well as in the phase, as
attested byMM measurements. Moreover, it was discovered that such structures are
characterizedby a particular circular dichroism behavigFigure 3b)), which cannot be
explained by the sole superposition of the linear optical properties. Whereas the linear circular
dichroism is coming from the anisotropy of the sample, the true circular dichi®idne to the
coupling between destructive interference mode and plasmonic modes as well as the nearest
neighbor coupling between plasmonic nanopatrticles.

Figure 3: (a) Schematic of Ag nanoparticle array (b) Transmittance and circular dichroism at
AOI 0° and 20 over the whole azimuthal angles frormt0360°.
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Chapter 1

Introduction

Micro-and nanostructures are nowadays very important in science and technology as they allow
for a whole range of functionalities that either does not exist in nature or reproduce existing
effects with a much smaller footprint and higher efficiency. Plascsowhich explores how
electromagnetic fields can be confinedthe order of micreand nanometer is ongay to use
micro-and nanostructures in the field of photoniB$asmonic modes can be propagating or
localized. Surface plasmon polaritons (SPPs) epdective electron excitations coupled to the
electromagnetic radiation propagating along metalectric interfaces, evanescently confined

the perpendicular directioas shown inFigure 1.1 [1]. Owing to their unique dispersion and
strong field confinement, SPPs have attracted attention during the last decades and have
promising aplications in integrated optid], field erhancemeni3], [4], sensing5]i[7] and
imaging [8]. Localized surface plasmons (LSPs) on the other hand argropagating
excitations of the conduction electrons of metallic nanostructures coupled to the electromagnetic
field (Figure 1.1). It is well known that the LSPdepends on the size, shape, and material
properties of the nanoparticle as well as of the surrounding mdéjum
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Figure 1.1: (left) Sketch of charges oscillation and fields for a SBPa metal/dielectric
interface; (right) Sketch of charges oscillation for a LSP in a metallic nanop§totle

The interaction o€omplexplasmonic nanostructures, periodic or random, with polarized light
creates very rich physics where scattering, diffraction and absorbance are linked to a variety of
dispersive modes and coupling effects. Each of these excitations depends strongly on
polarization, angle of incidence, azimuthal orientation of the sample and waveldrggh.
presence of these modes awdipling effectgesults inmanifoldinteractionwith polarized light
On the one hand the interplay of these interactions cannot be @agdystood and on the other
hand it opens up the possibility to tailor the optical response

The complete optical responsé complex samplesan be measured by Mueller matrices at
various kvectors over a broad frequency range independently from anyl.n\ddeller matrix
spectroscopic ellipsometry (MMSE) itherefore a powerful and sensitive tool to fully
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characterizecomplex plasmonic nanostructureEven though MMSE is widely used in
characterizing the optical properties of complex nanostructures, Mid§Hs in complex data
hiding the underlying physics, making the physical interpretation of a medguedter matrix

(MM) a big challengeln principle it is of course possible to calculate the MMs for different
angles of incidence, various azimuthaleotations and a broad range of frequencies by solving
the Maxweltequations under thgpecificboundary conditions. But this approach is on the one
hand timeconsuming and computer intensive and on the other hand it does not really promote
the physical unerstanding of the origin of the observed optical behavior.

The goal of this project is ta@lemonstrate on the example of two simple plasmonic
nanostructures, that the optical response of these samples can be fully understood in the
framework of MM ellipsomey. It is demonstrated thatsystematic correlain of the observed
polarization mixing in MMs to their underlying physical origshaversatile analytical method
suitable to all samples exhibiting both anisotropy and dispersive modes. Further, itehéipyl
can be extended to a wide variety of samples whether anisotropic or not, presenting localized or
propagating plasmonic resonances, photonic medasther originating from waveguiding or
scattering or other dispersive modes at the only conditiost an analytical expression for the
dispersion of these modes exists. To demonstrate the power of this method and its
implementation, we apply it to two very simpéxamples the onedimensional plasmonic
metallic grating andnetallic nanoparticle array These two examples are completely analyzed
and solved and the results can in principle be used for new application.

Onedimensional gratings are very efficient tools to excite SBPmatching their dispersion
to that of light. When considering gratigsed structures, it is well known that regular periodic
nanostructures can show abrupt changes in the optical response, referred to as Rayleigh wood’s
anomalies (RWAE [11]. RWAs can result in very narrow plasmon resonances in regular
plasmonic arrays of metallic nanopatrticles, originating from the diffraction coupling of localized
plasmons, or modify the reflectance of rgasmonic metallic square arraysenthough SPPs
on metallic gratings have been studied for a long time and RWA effects have also been well
known for decades, a cleamderstanding of how SPPs and RWAs influence the polarization
mixing of gratings is still lacking.

Metallic nanoparticle aays have been widely studied over the last decades. Their optical
response depends not only on the individual particle, but also on their specific arrangement. The
interplay of different contributions can lead to a complex optical response, where teadaflu
of the different ingredients cannot be easily separated. On the other hand, however, this interplay
has to be perfectly known, in order to tailor the optical response for any desired application.
Numerous investigations describe the interplay betvesgatific geometrical arrangements of
nanoparticles and their optical response in different configurations where nanoparticles are
ordered or randomly distributed, with different sizes and shapes. However, in the case of
complex samples, where different impt T photonic or plasmonit effects overlap and interact
with each other, hitherto no clear procedure is readily available.

This work is organized as follows. For convenience of comparison, we first present a
thorough characterization of one dimensional ppaydimethylsiloxane (PDMS)grating
(Figure 1.2(a)) via MMSE andatomic force microscopylhe comparison of the measured MM
with calculations based on Bruggemanbiaxial layer model traces back the observed
polarization mixing tgure anisotropy and RWAs
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Figure 1.2: Schematic ofa) pure PDMS gratingnd(b) Au gratings.

Subsequently, we focus orhet onedimensional plasmonic metallic gratingshich is
fabricated by evaporating Airigure 1.2(b)) or AWNi/Au thin film on PDMS grating. First of
all, we compare both measured reflectance andMiMl data obtained from a ortémensional
gold grating in a broad wavelength range, full azimuthal range and varied angles of incidence.
The role of sample anisotropy, propagating SPPs, diffraction orders and material related
absorbance is respectively iderif by their different dispersion behavior and their interaction
and coupling are highlighte@he comparison of the measured MM with calculations based on a
simple biaxial layer traces back the observed polarization mixing to its physical &&giond
of all, we analyze the AtNi/Au grating in the similar approach with Au gratirithe role of
sample anisotropy, propagating SPPs and material related absorbance is respectively identified.
Diffraction ordersin Au/Ni/Au grating show very weak influence whiés probably due to the
big absorption inside the system by Ni. Timlity of tuning plasmonic propertidsy mechanical
stretching and the reversibilitf this approacls discusseat the end of this section

Finally, we focus ora metallic nanopartid array(Figure 1.3(a)) which is obtained by laser
induced seHassembly. We demonstrate how to decompose the optical response of a complex
nanoparticle array in all details and full completeness. This enables us to identify the basic
physical mechanisms for the different optidehtures observed. Starting with the azimuthal
dependent transmitted intensity giving the anisotropic arrangement and the dependence on the
angle of incidence (AOIyiving the dispersion due to a periodic arrangement of the nanoparticles
a first simple mdel is developed. Comparing the measured Mueafiatrices with the simulated
ones from the simple model and subsequently decomposing the Mualigces into their basic
optical properties allows us to explain the observed optical features to the spemifitions of
the nanoparticles: simple localized surface plasmon resonances, birefringence due to anisotropic
arrangement in lines, coupling between the lines, diffraction into waveguide modes or a broken
symmetry leading to true circular dichroigfigure 1.3 (b)).
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Figure 1.3: (a) Shematic ofAg nanoparticle arragb) Transmittance and circular dichroism at
AOI 0° and 20 over the whole azimuthal angles frormt0360°.
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Chapter 2

General Theory

2.1 Ellipsometry

2.1.1 Maxwell’s equation

Maxwell’s equation§l2] are a set of differential equatiotisat together with Lorentz force law
are the foundation of classical electromagmetislassical optics, and electric circuits. They
describe howelectric and magnetic fields are generated by chargesntsrrand changes of
each otherand how theareinfluenced by objects. The Maxwell’s equations in the free space in
Sl-units are:

Gauss’s law for electricity: 13 m (2.1)
Gauss’s law for electricity: n 2O T (2.2)
Faraday’s law: % o (2.3)
O
. , i3
Ampere’s law: no( * = (2.4)

whereE andH are the electric and magnetic field respectively Bndnd B are the electric
displacement field and the magnetic induction. The quaniitiasd J are the volume charge
density and the electric current density.
Thedefinitionsof the auxiliary fields are:

$ /% 0 (2.5)
( "= (2.6)

whereP is the polarization field anll is the magnetization field which are defined in terms of
microscopic bound chaeg and bound currentsspectively H and Ly arethe permittivityand
permeabilityof free spaceThe equations specifying the dependence of the polarizBtiamnd

the magnetizatiodM on the applied electric and magnetic field are called constitutive relations.
More generally, for linear materials the constitutive relations are:

$ A% 2.7)
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( " (2.8)

P
|_u_||
In a homogeneous isotropic mediuAgndp known as relative permittivity and permeability of
the materiahre related to the electric and magnetic polarization properties of the miglitna
electric and magnetic susceptibilitidsand 7 as follows:

R P A (2.9)

[ p 2 (2.10)
The relative permittivity is a complex value described as:

RS £ 5 EJ (2.11)

whered shows frequency dependence of the permittivity.

2.1.2 Polarization states

Maxwel |l 6s equations for a no charges and no
n@ 1 (2.12)
n'D T (2.13)
"% T (2.14)
wy R T
n %mn (2.15)

We can obtain the wave equation for the electric fieldaiyng the curl of the curquations,
and using the curl of the curl identity 1 8 nn &-1¢8

qc%z’f% T (2.16)

Electromagnetic plane wave is one of the solutions of the electric field wave equation:

% % A @ DB CE U) (2.17)

whereEy is a complex vector indicating the amplitude and polarization state of the wave.
the angular frequencitis wave numbeand is the initial phase.

Polarization states are usually odkgfined in terms of the direction and phase of the vector of
electric filed. We can describe the polarization state of light traveling along z direction by vector
sum of electric field components along two orthogonal axes x and vy:
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BWUh @GyUh & Uh OghBDSCE; 10 D WADDIGE; 15, U (2.18)

where x and y are unit vectors along x and y directions.

The polarization state of a light beam refers to the path of electric field traces at a fixed
position as the light propagatds. the descrption of the polarization statesnly the relative
phase difference ) zis important andaken into accountPolarization states are classified as
three typesn Figure 2.1: linear, drcular and elliptical state&inear polarization is defined when
two commnent waves in x and y directions are in phagg){z T1). Circular polarization is
defined whenE, and Eyo are equal in magnitude but are 90° out of phasgrf; )T h
general cases, the polarization states are elliptical polarizations.

Ex Ex Ex
// \ // ~
Ey E, ( / Ey
| /] [
Linear polarization Right-circular polarization  Elliptical polarization

Figure 2.1: Representationf linear, rightcircular and elliptical polarizations.

2.1.3 Jones vector

The Jones vector is defined Isyperimposinghe two electric field vectors in the x and y
directions.Jones vector can describe all totally polarized states including linear and elliptical
polarizations. Therefore, the Jones matrix is used to mathematically describe ellipsometry
measurementf we usekq. (2.18), the Jones vector is given by

. Y ROBEB O Uy ~ . Y%A OB
%Uh O o AGPSO+rH : 2.19
WU O hoescr oy, % %A OB (2.19)

By omitting the termA @ B S GF U and using the phase differengegs( ), we can simplij the
equationto

S Y% A @ By )¢
U F 00 e 0 By 10 220
v %
In ellipsometry measurement, only relative changes in amplitude and phase are taken into
account. So, we express the Jones vector by the normalized light inténsjtyThe linearly

polarized light parallel tthe x and y directions are expressed by
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%ETAA(Pp[HQJ %ETAA(‘gﬁU (2.21)
The rightcircular polarized light and leftircular polarized light are described by

p

0 £ .
% L2 L.

P % 2
e % 2)
Optical elementsalong the light path in the ellipsometry measurencantbe described by Jones
matrix to analyze the transfoation of polarization state$he Jones matrices for a polarizBj (

and an analyzery) in the case when the transmission axis is parallel to the x axis are expressed
by

p P T
o1 P T 2.23)

The Jones matrix for a compensatdrenthefast axis is parallel to the x axis is expressed by

P Tt

# n Ao®

(2.24)

In general cases, a polarizer or compensator is not installedxeigalong xor y axis.However,
we can simplify the equations by rotating the coordinate systems. The rotatioces are:

AT OEf AT O -OE]
OO 2., ALO -OF4 2.25)

OEf AT DO OEf AT PO

The above R({) and R{) correspond to the mateéswhen the coordinate system is rotated
clockwise and artlockwise respectively

Transmission .
y axis l Light

Transmission source

Transformation of

Light detector Analyzer coordinates Polarizer Incident light
E, 10 cosa —sina 1 0 E
[ 0 ] [O O] [sinar cosa [0 0] [ Op]

Figure 2.2: Representation of an optical instrument by Jones maftiégs
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Figure 2.2 shows asimple example ofising Jones matrices to describe an optical instrument
The measured intensity can be easily obtained by multiplying the Jones mafriegsry
element consequently along light path.

% p mAI;0-0BIp T % %WAIO (2.2%)
% mom Ol AiOn Tom m '

Sowe obtain the measured light intensity:

) S % AlP (2.27)

This above result is known as Malus’s law.
Jones matrix can also be used to describe a sg8)plé a sample is isotropic and not too rough,
thenoff-diagonal elements in the sample Jones matrix are zero:

» T
T (2.28)
T &
whereg and,are the complex Fresnel reflection coefficients for thamnu spolarized light,
respectively.If a sample is anisotropic, then the sample Jones matrix will probably have off
diagonal elements:

_” QD QO

o Do (229

2.1.4 Reflectance and Transmittance

Figure 2.3 shows light reflection and transmissiohp- and s polarized lighton an interface
between two mediarhe plane of incidence defined aghe planewhich contairs the surface
normal and the wave vector of the incoming radiatidme oscillatory direction of electric field
of p-polarized light is in the plane of incidence, while the ltetairy direction of electric field of
s-polarized light is perpendicular to the plane of incideneang spolarized lightscan interact
quite differently with the sampleThe reflectance is defined as the ratio of reflected light
intensityl, to incident light intensityl;. The reflectance for-pand spolarized light is expressed

by

Joo %o .« bo %6

= — X0 ¢80T
® ko %o O)Eo‘%zOS@C

The transmittances for pnd spolarized light are given by the following equations:

. AT/ g CATSO

~AT/D A0 @O (80¢

%
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where. ; and. . are the complex refractive indexes of the upper and lower medium respectively
and d; and d, are AOI and angle of transmission, @ @ and @are Fresnelcoefficients and
obtained by solving Maxwell’s equations under interface boundary conditions. The equations for
@, @ @and@are known as Fresnel equations

CATSZ AT . AKX Aljp
.:A'l'/p.pp,&'l'/p @ —Xi/p. cAlfp ¢8op
% b C. A/ s %o C. A/ c800

%o . AL/D . AT/D @ %o . AP . Alfp

Plane of incidence

Eip 1
|

/ I Ero
1

Figure 2.3: Electric field E for pand spolarization reflected and transmitted by an interface between two
media with refractive indexad; andN,. TheAOI and angle of transmission afeandd[14].

2.1.5 Ellipsometry

The amplitude reflection coefficients for pnd spolarizations differ significantly due to the
difference in electric dipole radiation. Therefore, after interaction with the sample, the incoming
linearly polarized light often becomes elliptically polarized liglais shown inFigure 2. 4.
Ellipsometry measures the change in polarization state of light reflected (6r transmitted
through) the surface of a sample. The change in polarization state is commonly characterized by
the twoellipsometricangleswyandgas Eq(2.34).
A . @
m OMNR OB 5 ¢80T

where@ and @are the Fresnel reflection coefficients fergmd spolarized light, respectively.
O Auyjis the magnitude of the reflectivity ratio, amdis the phase difference. Ellipsometric
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measurement has advantages over simple intdos#gd reflection ortransmission
measurements in terms of the high accuracy, precision, and sensitivity, making it highly suited
for applications in thin film metrologpl 5].

Linearly polarized Elliptically polarized

E;
P

Sample |

Figure 24: Measurement principle of spectroscopic ellipsometry.

The measured quantiti€sy, ) are not directly measurguarametersf interest (thicknesses,
optical constants, etaather theyare a function othem It is then necessary to solve the inverse
problemby modeling This model should contain both known parameters and unknown physical
parametersWe can vary th unknown physical parameters in the model, and generate data until
a set of optimized parametease found and camgield calculated data that closely match the
measured optical data. The LevenbBrgrquardt multivariate regression algorithm is employed
for the fitting processOverall, the four steps othe whole optical experiment procedwase
illustrated inFigure 2.5 below[16].
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Figure 25: General procedure used in ellipsometgasurements determine material propertigs.
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2.1.6 Dielectric function Models

There are many dielectric function models available for us to seletitei data analysis of
spectroscopic ellipsometry.h& appropriatelielectric function modsl are choseaccording to
the optical properties of the sample.

The Lorentz Oscillator Model

The Lorentzoscillatormodel is a classical physical model used to desthibdelielectric function
in the visible/UV regiorarise from he response of bound charges to the applied electric.fields
The electron and atomic nucleus are bound similar to a-spasgysystem and follows Hooke’s
law. The appliecklectric field causes thmotion ofthe electronss oscillating in a viscous fluid
According to Newton's second law, the equation of motion can be expre$$8{l as

Ko . Ao . A

S — ¢

I35 355/ S50 Z%A 0D OE

where/ and Aare the mass and the charge of the free electror®andhe displacement
RA B0 is the applied electric field/ & O 7Pis the acceleration forcd, 5 {»is the
Hooke’s force, wheré  is the resonant frequency of thecillator. / 3,,.—35 the viscous force.

3, p 4 is the damping factor which describes the damping uscattering, wheteis the
mean time an electron travels between two collsiorhe electron oscillates at the same
frequencyas theapplied electric field (i.eA @5 @). Thus, if we assume the solution can be
described by the for@ ORA @B @ we can get the description@és follows:

A'ZA%T P 80
7 3575< B9 ceoe

The dielectric polarization is expressedReseNx(t), whereNe is the number of electrons per
unit volume. So we obtain the dielectric functieas follows:

A-A P
Rd 3825 3ES

R D C80X

This dielectric function is the Lorentz oscillator model. We can obtain theaneaimaginary
part of this complex dielectric function as:

A p ISDC

R R 3SZ5¢ & 3556 c8oy
A 4 3 J

R 7 C80w

R 3SZ5¢ ¢ 305¢

In actual ellipsometry data analysigrentz model is expressed using photon energy as follows
[16]:

26



/ -
% : e 8
RORpE;pE%MZ:—"E% ¢c8tTm

whereA is the amplitudeE, is the center energy, al is the broadening of thé"oscillator, E
is the photon energy in eV.

The Drude Oscillator Model

The Drude oscillator modglL7] is based on the kinetic theory of electrons in a metal which
assumes that the material reasnass of motionless positively charged idesached from an
electron gas with neglectinglectronelectroninteraction It was constructed in order to explain

the transport behavior of free electrons in metals and free carriers in semiconductors. Drude
oscillator is a special case of the Lorentzilketor model having norestoring force and
resonance frequency. The motion equation is:

/'Acé) / A@M ARoB O 8
YRR Yo Rakd c8te
By solving the motion equation, we obtain Vv
A x P I8
BT 35 5 P o ¢81¢

A
whereJ g A

- P 7 fs the plasma frequency of the material. In the case of semiconductors,

Jpis located in the infrared region, whilg, is in the visible/UV region in metals. The real part
andimaginary part of dielectric function are:

IH
,%pzjcgc ¢8to0
Jp3
&—% ¢8T1rT
J J¢ 3¢

The Cauchy Oscillator Model

The Cauchy moddlL8] corresponds to the spectral region whir@ in the Lorentz model. By
assuming® matJSL Sand usinggTA @/, we obtain

Aox 186
Rl RAS IS

RR P ¢8rt1TwvUL

Cauchy oscillator model is then obtained from the series expansion of eqidficaand given
by:
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Cauchy oscillator modetorks bestvhen materials argansparent and it may be regarded as an
approximation of the lovenergy tail of oscillators in the UV far away from the energy range of
the instrumentDifferent from Lorentz and Drude oscillatorodels the relation between and k

are not Kramer&Kronig consistent.

2.2Mueller Matrix

Although the Jones vector describes polarized light and Jones matrix pravielegantmethod
to describe the interaction between optical elements and polarized light, unpaterpaatially
polarizedlight cannot beexpressedby Jones vector. Therefore, Stokes vectweusedin order
to describeall types ofpolarized light. The Stokes parameters are defasgti3]:

S Jo b ¢81 XA
3 )t ¢81yxA
% )t ¢8T1T XA
% b2 ¢81 XA

HereS is the total intensity of lightS; shows the light intensity determined by subtracting the
light intensity of linear polarization in the y direction from that in x direct®rshows the light
intensity obtained by subtracting the light intensity of linear polarizatiod5ft from that at
+45°, S represents the light intensity of lefircular polarized light subtracted from that of right
circular polarized light. Conventionglthe x and ydirections correspond te directions o&-
and p polarized light In other words parametef&.; represent relativintensity difference of
each state of polarization which can be described by four Stokes parameters or a Stokes vector:
=[S S S Sl

The Stokes parameters are real quantities and can be measured experimentally. Once light is
reflected or transmitted by a sample it can generally change its initial polarization sta&,from
to Sou The transformation of the Stokesctor is described by a 4x4 matrix called Mueller
matrix M:

-PP-pPC-pPpO-pT
- - -QOo-¢T

3 oo 3i _gg_gg_go_f”%f C81 U
-TP-TC-TO0-TT

Although the Stokes vector are traditionally numbered from O to 3, for sake of convenience, the
MM elementsaare numbereffom 1 to 4.

For a nondepolarizing sampléyiM is also called Muelledones matrix. In this case, thBvi
elements can be derived fraaomplex 2x2 Jones matrix as folloyl9]:
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- ¢ pL 30205 B5AQY C8TwA
. ccg GoZBsZQ5 R C8T WA
- C o0 XPRGEALB o (81 wC
- ¢1 )Q@EBE B0 81T WE
-0p Lo GBo c81TwE
- 0¢ TPPEIGo (81 wE
- 00 BMBoRG&» c81TwE
- 01 )A8BEIGo ¢8T I

- 1P 1 Qo B0 81 wli

-1¢2 1 QBERB o ¢8T1 wl

- 102 | QocB o ¢8T1 wli

-1 T LB o C8T wh

All MM elements areonventionallynormalized tothe M11 elementwhich represents total

reflected/transmitted intensity. The <iffock-diagonal submatrices E g: E : and

: Sg ?Crepresent plarization conversion effectdVM of a sample gives complete
information about polarization pperties of a sample under study therefoli@ is a powerful

and sensitive tool to fully characterize anisotropy and depolarization of samples, which cannot be
adhieved by simple intensity measuremesieller matrix spectroscopic ellipsome({iyMSE)

has been applied in different fields for example, depolarizg#io]) [21], metrology[22], [23],
plasmonic nanomaterial@4]i [29] as well as magnetic or biological materigd®], [31]. In
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particular it is a powerful method to characterize optical nanostructures, such as for instance
plasmonic meanders for palzation control and depolarizeja7], [29], and reveal their optical
properties.

2.3Mueller Matrix decomposition

Even though MM is a powerful tool to fully characterization, the interpretation of the hidden
physical effects in MM is a challeng®IM is normally reduced to Jones Matrix in order to
obtain the physial interpretationof the measuredMM in terms of opticalanisotropy[32].
However, notall MM can be deduced to Jones matrix due to depolarization effects. Therefore,
various decomposition methodsre built andused to determinethe physics behindhe
depolarizing M.

2.3.1 Product decomposition

M

Figure 26: Schematiof product decomposition

As shown inFigure 2.6, an arbitrarydepolarizingMM M can be decomposed into the product of
a diattenuator g, a retarder , and a depolarizer y in sequence g83]

- -y 2t ¢8um
Diattenuator is the optical component only changes the amplitude of the incoming electric field,
while retarder is the optical component only changes the phase. Potartzevave plate are

simple examples of diattenuator and retardiae diattenuatoMM - ¢ is completely constructed
from the first row of M as

30



S P
$4$I$h ¢8up
] s — & $
l's pZ5°) prm@@"h C8UC(
p /:TTPV B
& — /,nc h45 I 1 n ¢8vo
/"n/nc

where$ is the diattenuation vector is the 3x3 identity matrix andgsis the transmittance for
unpolarized light.
The depolarizer idefined as

i P 5
> q I3\h ¢8vurT
with @. andi  given by
oz $. p /:PTf
Q, ho -+ /,crr ¢8uvu
ngq /l'rr[/(”T
[, 0°0°% Tg. T3, I,)° I, I Ig0°0°% 177y 8c8uog

where 0 is the polarizance vector, is the 3x3 submatrix of the matrix- ° - - ¢ and
1,0l hl; are the eigenvalues of .Then, finallyE,, is calculated as

-2 ~¥T s ¢8uX
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2.3.2 Cloude decomposition

M
\ N
3
IV
H p— P
: ;,»!." M3

Figure 2.7: Schematiof Cloude decomposition

Cloude pointed out that any depolarizikig1 can be represented by a linear combination of up
to four nondepolarizing matricef34]

- - p dem ¢ Jom g I- <N le phig 8
Ep

The coefficientd zare the four real eigenvalues of the so called 4 x 4 Hermitian covariance
matrix C of M. From convention, these are sorted according to the &sde¢ 7, /.8The
physical image for the Cloude decomposition is that the medium is not homogeneous in the
direction perpendicular to the light propagation. The sample can be regarded as separated areas
with different M which are pure Muelledones matrice$35]. Various partial beams of the
incident light thus have different interactions. This incoherent mameseits in depolarizet¥l.
This is shown schematically Figure 2.7.

The Hermitian covariance matrixis constructed fronv by the following linear operation

# - e C8UW

ERE

where thed are Pauli spin matrices given by
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Let /gandA:be the eigenvalues and normalized eigenvecto@ oéspectively. The covariance
matrices#gof the nondepolarizing component gare then found from

e ¢8om

#-AEL  Eph ch oh 1 C8@p

whered stands for the Hermitian conjugate. Orggn Eq. @.61) is found,E; are finally
obtained by inverting Eq. (29).

2.3.3 Differential decomposition

With a given light path in an optical systethere areeight effects namely, mean absorption K,
mean refractiors, linear birefringence LB and LB{along xy and +45° axes, respectively)
linear dichroism LD and LOalong xy and +45° axes, respectivelygircular birefringence CB
and circular dichroism CpPcan bemeasuredThe definition of these effects are presented in
Table 2.1[36], where n is refractive indeyis extinction coefficient/is the path length through
the medium;/, is vacuum wavelength of light; the polarization of light is specified with
subscripts X, y, 45and 135 for linear polarized light and -+for right circular and left circular
polarized light.By using differential decomposition formalism as follows, &Bd LB, LD and
LD’, CB and CDcan be retrieved.

Table 2.1: Definition of symbol36]

Effect Symbol Definition
Isotropic phase retardation S cal Fi,
Isotropic amplitude absorptio E e Xl
(x-y) linear dichroism , 3 CA S Ty
(x-y) linearbirefringence " A Ty My
45° linear dichroism , $7 A St o o JHn
45° linear birefringence " TR/ ¢ .
Circular dichroism #$ A fZ iy

Circular birefringence # " Al Iy
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Figure 28: Schematiof differential decomposition

Figure 2.8 shows the schematic of differential decompositidme differentiaMM, m, relates to
theMM, M, as the following propagation equati@7]i [39]:

oE -
— I

oY C®q
whereM andm are theMM and differentiaMM of the medium at the position z. If m does not
depend on z, i.e., the sample is uniform in the direction of light propagatiorththenlution of
this differential equation is obtained by taking the logarithnMoflf L=In M, thenL is the
accumulated differential matriXx: =ml, wherel is the sample thickness.

The matrixL can further decomposed lasL ,+L . L, andL, can be written as:

n ,9%$ , $xe#$

e P .S moo#" " e
E CE eBe "Se#" T CHo
#$ , ", " T
! wn wn wn
e P on ! , $0 wn QN
B F e wh  wn !, $0 wn @
Wwn  wn W I #$0

G is the Minkowski metric and expressed &sdiag(l;1,-1,-1). L, corresponds to a
nondepolarizingM. LDP, L D P 6L, descdbe tGeDskelectiva depolarization of linear
horizontal, linear 45°, and circular polarized light respectivEhese three parameters vanish
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a nondepolarizingMM. The inhomogeneity of the sample or tineversal events/ould result
in the nondiagonal termp 1 [37].

The optical response of anisotropic materials which show circular effects cannot be simulated through
el lipsometric modeling. Because eadidshysatrmeetric
dimensional dielectric tensor in cartesian coordinates. Even though the Euler angle can alwags specify
arbitrarily oriented optical axifor orthorhombic crystals, the ellipsometric modeling can only generate
the linear effects (birahgence and linear dichroism) rather than circular effects (circular birefringence
and circular dichroism).

2.4Circular dichroism and birefringence

Circular BirefringencgCB) is the difference in refraction of left and right circularly polarized
light. CB effect can be observed in liquids and solutions and reflects the dissymmetry of the
liquid molecules or dissolved chromophores with lack of mirror symmaétng. polarization
plane of linearly polarized light rotates after traversi@Bamedium. The rattion angle is given

by

_non | 2. .65
3 > (2. )

wheren_andn, are the refraction index of the medium for dedhd right circularly polarized

light. & is the vacuum wavelength of light ahds the optical path length of the medium.
Circular Dichroism(CD) is the difference in the absorption of left and right circularly polarized
light. Like CB, the CD effect can be observed in liquids and solutions in which the
chromophores are randomly oriented space and reflects the dissymmetry of the liquid
molecules or dissolved chromophar€B and CD stem from the same quantum mechanical
phenomena and are connected with each other by Kiidnderg (KK) relation.

Nowadays CD spectroscopy is a technique used in chemistry and biotechnology for the
conformational analysis of chiral molecules of all types and szasmercial CD instruments
measures thalifference of transmittance or absorbance of the sample for daeft right
circularly polarized lightHowever, me camotsay a medium is optical active just by sensing the
differential absorption of circularly polarized light. The propagation of light in a material is a
continuous process. The polarization of thitiahwave progressively changes due to effects
such as linear effects (retardation, diattenuation or depolarization). Therefore, only in the case of
an isotropic optically active medithe circular polarization is preserved everywhere in the path
lengthand only n this case, commercial CD instrument meas@®g40]. In all other cases,

MM differential decomposition is advised to determine @®[41]. In transmission geometry,
the general MM for a homogeneous riepolarizing optical media can be written in the
following matrix[42]:

p -, %2, $ , $ , $ e #$ -, "% , " e $

(2.66)
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where CD is the trueCD corresponding to the intrinsic CD#($ ), and CB is the tru€B
corresponding to thmtrinsic CB ¢ " ). This MM representation illustrates clearly that each MME
can be described by combinations of the 6 basic optical properties. In particular, it is worth to mention that

-pT1 #$ -,"% ,".$ #9% istheapparel€@Dwith- , "§ , " =, #$

the linear prt of theCD originatingfrom the combination of the linear optical properties. Similarly,
-¢o #" and-, "", , $, $a#" . Moreover, we can see, #" <<#" and
#9$ <<#9$ ,then p1 - 1T @nd- ¢ o - o cCommercial CD instruments measiid4

as theCD. However, we can séé¢14 isCD only when- p tasno contribution from linear effectén
these cases, MM differential decomposition is required to obtain the intrinsic CD.

2.5Plasmonics

2.5.1 Surface plasmon polaritons

Surface plasmon polaritor{SPR) are electromagnetic excitations propagating at the interface
between a dielectric and a conductor, evanescently confined in the perpendicular direction. As
already know from previous section, in the absence of external charge and current densities and
nedect the variation of the dielectric function over distances on the order of one optical
wavelength, we obtain the central equation of electromagnetic wave {A8try

nA »=—— 1O C® X

First, we assume a harmonic time depenhdgectric field E(r,t)=E(r)Q . Then the known
Helmholz equation can be obtained:

nA Q-A m CH Y

Next, we define the wave propagates along x direction and shows no spatial variation in the
perpendicular, in plane y direction. We can obtain two sets oteeffistent solutions with TM
modes (p polarization) and TE modes (s polarization) of the propggeaves.

For TM modes, the governing equations of the system describes as:

o P'® @ o
T--14a
. .
andthe wave equation for TM mode is
1o . .
= Q- 1 0 m & p
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For TE modes, the governing equations are:

0 "Q—p E C& ¢
T Ta
. .
O Wfo h & o
and the wave equation for TE mode is
r o) 0 1h
Ta -1 C& T

wherg U is called the propagating const§3B].

In the last step, weonsiderSPR propagates along a single, flat interface between a dielectric
(z>0) and conductor (z<0). Thetie equatios (2.71 and 2.7% have to be solved separately in
both regions and the resulted solutions have to be matched using appropriate boundary
conditions.For instance, if we consider p polarization, then the continuit9 aind- ‘O at the
interface should be fulfilled. By applying the boundary condition to the above equations for TM
mode, the dispersion relation of SRfPopagating along the intaxde can be obtaingd3].

¥ 1 - T
N S & v

where- and- are the dielectric functions of metal and dielectic.

For TE polarization, the continuity d® and’O at the interface induces no possibility of the
existence of BPs. SoSPR only exiss for TM polarization.

If we assumehat- s s thenQ is a complex value expressed44]

Q X @

In order to haveaealQ, - mands S R which can be fulfilled in a metal or doped
semiconductor materialsThe intensity of SPs propagating along the interface decreases as
Q , where’Q determines the internal absorpticfherefore, the propagation length of the
SHPs can be defined as:

~

0 ¢Q & X

Since’™@ Q- 1 and relatong o Q and- T, wave vectorsQ andQ are
imaginary, so the field amplitude of B® decreases exponentially as egf( 9, normal to
the surface. The skin depthdefined as the length whettee field amplitude decreast 1/e, so
the skin depths in metal and dielectric gi4):
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Figure 2.9(a) shows the charge oscillation and fields for SiRRhe interface between metal and
dielectric. We can see frofiigure 2.9(b) that the projection of the momentifh Qi Q¢ —
along the interface on the dielectric side is always smaller than the propagation constast of SPP
therefore SP®cannot be excited dictly by light beam.

(b)
w
A _kxc
sinf,/g4
e SPP
RN
Metal, £,,, < 0 © H, > K,

Figure 2.9: (a) Sketch of charges oscillation and fields for a SRR metal/dielectric interface;
(b) Dispersion relation ddPPgred line) and light linén dielectric(black line) atAOI d [10].

In order toexcite SPB, special phasenatching techniques are usekhdreas Otto was the
first to propose a configuration for optically exciting nonradiativePsS45]. In Otto
configuration(Figure 2.10(b)), the beam of light is incident upon the prism with high refractive
index and refracted towards its bottom surface. The prism is spaced by air gap with a small
distancefrom the surface of the metal. The light in the prism would undergo total internal
reflection and an evanescent field would exist within the air gap iAtbeupon the bottom
surface of the prism is high enoughheltunneling of theevanescent fieldo the metal/air
interfacecan excite the SP if the energy and momentum conservation laws are satisfied. The
reflectivity drops, sometimes nearly to zero, and thus dbigpling scheme is also known as
attenuated total reflectiomAnother prismbased configuteon which has become the most
popular configuration for B excitation was proposed by Kretschmann and Rag#&r In
Kretschmann configuratio(Figure 2.10(c)), a thin metal film is evaporated on top of a glass
prism. Similar to Otto configuration, the light beam impinging from the glass side AD&n
greater than the critical angle of total internal reflection. The tunneled field into the metal film
excites SPs at the metal/air interfade. both Otto andKretschmanrconfigurations, the incident
beam must have a component of p polarization to couple to this surface charge oscillation. s
polarization cannot excite SP because the electric field lies in the direction orthogonal to the
surface charge oscillatio Besides, the thickness of the metal filnKietschmanrconfiguration
and thickness of air gap @tto configuration are critical for SBRoupling efficiency[43], [47].
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Figure 2.10: (a) The dispersion relation of the figgace light line and the tilted light line in prism. (b)
Otto configuration. (c) Kretschmann configuration. The metal layer and prism are indicated as M and P,

respectively47].

(a) 4 ke (b)
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Figure 2.11: (a) k matching of light to excite SBRIsing grating. (bchenatic of SPB excitation by
grating

The wave vector mismatch between th@lane momentum of the incoming photons and that
of the SPB™Q can also be overcome by a grating structure with periodiRigs shown in
Figure 2.11 Then the conservation of momentum is obtained by sé@ingquas to the sum of
the projected wave vector of the incident light on the sample surface with an integptenailti
the grating vectopl]:
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the grating vector equal t¢“ 70 , x andy are unit length vectors in x and y directionsis an
arbitrary integer,dis the incident angle, andis the azimuthal angle.

Q —— Q{8 Qe | QEHE « CG . @ p

Then the condition for SRRexcitation is obtained by taking the square value of both sides of
equation 2.81):

R Y RV g
I Qe 6—1 Qew € i T_ _ q g

The above relation for SBRxcitation is not related to the incident polarization, which means
that mixed s and p-modes can be used to excite SPPs obegmation (2.8). However, by
tuning the incident polarization value, optimal coupling with SPPs can be obtained at a given
incident anglg48]. The optimal copling condition is given by:

O E BEO G @o

wheres is the polarization angle (fror®0° to 90°s =0° ande =+90° correspond respectively
to p-polarization and -polarization),—is the AOI and U is the azimuthal angleUE0°
corresponds to grating ridges perpendicular to the plane of incidence).

2.5.2 Metallic nanoparticles: Particle Plasmon
Resonance

If the particle size d is much smaller than the wavelength of light in the surrounding medium, the
interaction of particle with the electromagnetic field can be analyzed using thestpigsi
approximation. We start with a simple geometry: an isotrogiesgal particle with radiua is
locatedin an isotropic and neabsorbing medium with dielectric functiain. The dielectric
response of the sphete the applied static electric field B4s described by the dielectric
function U Due to the azimhial symmetry in this condition, the solution for the potential of the
Laplace equatiom B  Tis as follow[43]:

H
B & 10 "3 e gAiSG L33

/I n
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whereg A} Gre the Legendre Polynomials of ordeandd the angle between the position
vector Oat point0 and the zaxis. By applying the boundary conditions of equality of the
tangential components of the electric field and the equality of the normal components of the
displacement field and fulfilling requirement that the potentials remain finite at the,dhg

inside and outside potentials are evaluate to

/

OR e
=1 /- %A /D v
Bes @ / Gy
.. . RZR Al/o
.~ /70 ) (e} i,
BlooZ/ﬁGU/OR C,‘?//ﬂa 3 h

If we introduce the dipole momepi 3| sean beexpressed as

Ly

R ‘
Bi 0 PR/ O— SR
RZRy
P uvrra° 20 8
Roky 8 & % c8yuyY

So, we can see thBt; sdescribes thpotentialsuperposition of the applied field and tfratm a
dipole located at the particle centiérve introduce the polarizability, defined viadb &R (%,
we arrive at

,ﬁ?/,

/ ma"R 0 CBwW

Cf?/,

RS R B s the dielectric function of the metal sphere.resonant enhancement of
polarizability occurs Wen the condition thatte A&Sis a minimumis fulfiled. So the
resonance condition is as

2ARS ZRO C8wWT

This is known as the Fréhlich conditip#O]. For a Drude metal with a dielectric function given
in equations(2.43, 2.44, the particle plasmonic resonance frequency becomes

S
2 Z3¢ cap

3
%DRPDCR

wherez is the damping constant. For example, a Drude metalRyithpand3 << Jgin air, the

resonance frequency becomisp J pIVio [49].

Figure 2.12 shows the spectral plaivgave extinction crossections of silver particles of 20,
60 and 100 nm diameter in glass, ca¢ed using the MiePlot softwai&0]. We can see
guasistatic approximation is valid for the 20 nm patrticle since only one dipolar mode is observed
However, &larger diameterghe dipolar mode is redshifted due to retardation and higher-multi
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polar moes start to appear, so quasistatic approximation is not valid any Wrereefore, for
spheres at higher dimensj@amore general theory (Mie thedBi]) is needed.

74 |——20nm
J|——60nmm
6 — 100 nm

Extinction cross section (x10™*)

10 15 20 25 30 35 40
770 (eV)

Figure 212 Calculated extinction cross section for single silver spheres using the Mig/f2ory

The nanopatrticles are strongly influenced by the presence of other particles in the near
neighbor range and the interaction of the neighgomanoparticles result in a shift in the
position of the plasmonic resonancempared to the case of an isolatealrticle. The influence
of nearby particles can be understood tsing the simple approximationf @n array of
interacting pointdipolesunder irphase illumination. Transverse mode (longitudinal mode) is
defined when polarizatiomirection of the exciting lights perpendicular (parallel) to the
nanoparticle chainAs sketched inFigure 2.13, the restoringforce acting on the oscillating
electrons of each particle in the chain isher increased or decreased by influenced of

neighboring particlegesultingin blue-shift for transvers modes, and a reshift for longitudinal
moded43].
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Figure 2.13 Schematic of nedreld dipole coupling between metallic nanoparticles for the two different
polarizationg52)].

2.6Rayleigh-Wood anomalies

Grating anomalies &refirst discovered dates back to 1902RgbertWood[53]. He studied the
spectra of ruled metallic diffraction gratingath p-polarized incident radiatiomnd viewed
abrupt changes in the reflectivity spectrum attain condition.Few years latem 1907 Lord
Rayleigh[11] correctly predicted the positions thife anomalies in the Tipectra as part of his
dynamicaltheory ofgratings. As shown irFigure 2.14, Rayleighexplained these anomalies as a
disappearance dhe diffracted beameither in reflectionor transmissiorwhen it crosses the
boundary between ambient medium and substgatehe condition for RWASs is given by

Ly aq &b G
Here, Ly 0 i "Qeis the component of the incident wave vector parallel to the sample

surface,m is an integer indicating the order of the RWA, an& the refractive index of the
medium. Solving this equatio2.82) gives the final condition for RWAs

o ..., . e
d—alQegoans € e I Qe I Qe cdo

where _ is the wavelength for RWAs a" order, andn; is the refractive index of medium
where the diffraction light propagates. The positive sign of the term in brackets corresponds to
negative diffraction orders, whereas the negative sign corresponds to positive orders.
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Figure 2.14: Schematic shows diffraction ordeof PDMS gratingboth in reflection and

transmission regions

2. 7\Waveguide mode

Dielectric slab of high refractive index can support confined electromagnetic propaddauson.
modes of propagatioare the seacalled guided modes and the structures that support guided
waves are called waveguides. Optical modes are presented as the solution of the eigenvalue
equation, which is derived from Maxwell’s equations subject to the boundary conditions
imposedby waveguide geometry. TBr TM modecan be excited and propagated along the

waveguide if the conditisarefulfilled.

Figure 215: Schematiarawing of an asymmetric slab wavegUii4.
TE mode condition can be expressed as:

EOEE QA BOP AlE@—E EA O
or
6AES 2N
E p ZD KE

wheret is the thickness of the waveguide layer dndj, andp are given by
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For TM mode, the condition can be expressed as:
EDN

OAEO EZ00 C@BYX

where Gis the thickness of the waveguide layéfis given in Eq ¢ @@ and P and Nare
expressed:
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The propagation constantmust satisfy the condition for TE and TM. Equations in general yield

a finite number of solutions fgr provided the thickness t is large enougigure 2.16 shows the
dependence of propagation constant®on the waveguide thickness for an asymmetric
waveguide. We can see the mode becomes confined above a certain cutoff value, while there is
no cutoff value in the case of symmetric slab Waveglﬁge (). Besides, the number of modes
which can be suppordeby waveguide can be tuned by varing the ratio of thickness and

wavelength.

A

Figure 2.16. Effective index versus thickness/wavelength for the confined modes of an asymmetric
waveguide with ,=1.0,/.=2.0, and’ ;=1.7[54].
The modes for TE and TM not only can be solved by the wguat®n but also can be

derived by using geometric opticEhe wave propagating in the waveguide experiences total
internal reflection at both interfaces. However, not all trapped rays by internal reflection
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constitute a mode, only when the extra transv@tsase shift is an integral multiple @f. For
asymmetriovaveguide, the condition can be written as:

33 KEL3,&3. ¢ AZmh pd0D CBW

wheref indicates the number of the modes which can propagate in the waveguide layer.
The phases inducedthie two interfaces for TE are expresse{bas, [56]:
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where/ 4is theangle of reflection respective to the direction of x axis.

2.8Destructive interference mode (DIM)

After discussing the waveguide eigenmode in section 2.7, now in this section, wbomilhow

the waveguide can lexcited by thepresence oh gratingembeddedn waveguiddayerand how

DIM is defined and excitedhen Ag nanopatrticle gratings embeddedFigure 2.17 shows a

cross section of the system, where we can see a grating with grating vector along x axis is
embedded in the waveguide lay&he gratingdiffracts he incident light into various diffraction
orders (violet open arrows Figure 2.17).
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Figure 2.17: Schematic ofvarious diffraction ordersin reflectionin waveguide layeat (a)
normal incidence and (b) oblique incidence in the case the incident plane is parallel to the grating
vectorath =0°.

In the case 1t JFigure 2.17a), the diffracted angle— can be calculated from the grating
eguatioralong x axisas:

OBl ¢ OEF a=ha poh ¢ D P TG
where— is the angle of incidencey, is the refractive index of theaveguidelayer, P is the
grating periodicityandmi s diffraction orders

In the cas¢ 1t (Figure 2.17b), the projection of the wave vector along thaxjs also
plays a role. So the grating equation is written along x and y directions as follows:

Xaxis OES Al O¢&¢ OEJAT O & —ha ph ¢ D ¢pmnoA
Y axis ¢ OEIOET OEY OET1 ¢cpmoA

wherg is the azimuthal anglef the sample— is the angt of incidence, is the azimuthal
angle of diffracted lightP is the grating periodicityThen we can reach Efj104by combining
Egs 2.103a) and (b)s follows:

OB Al O ¢ OFH O OFI 4 S-ho h ¢D

| O ¢ p T O] a v a ph ¢ CPp T
If the Ag nanoparticle grating is immersed in a homogeneougonmentwhen the diffracted
light propagates along theyxplane, this situation results in an energy redistribution observed in
reflectance or transmittancthe RayleighWwood anomaly. However, the situation is different
when waveguide system is formed. As shown in the schemakgime 2.17a, when one of
these diffracted light fulfill s the condition of waveguidenode excitation in E.99 the
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waveguide mode will be excited. In other words, the waveguide mode equation2r®&and
the grating equation in EG.104should be combined to determine the condgiof excitations
of the waveguide mode.

In addition to the part of light which is diffracted to various diffraction orders, the other part of
the incidentlight directly transmits through the waveguide. This part of light is absorbed and
reradiated by Agranoparticles resulting in the characteristic presence of the localized surface
plasmon (LSP) resonance spectrum. The plasmonic resonance shape depends on the individual
particle shape and size distributions, as well as on nanoparticle interactionghaldimges or
between lines.

As shown in the schematic Figure 2.18, the waveguide mode is leaky and the leaky part of
the wave can interfere either constructivetydestructively with the transmitted, ndiffracted,
part from the incident light that is characterized by the plasmonic absorbance.

. Leak
Transmitted Y .
N waveguide
light
mode

\_'_)

A

Figure 2.18. Schematic of leaky waveguide mode.

From the schematic iRigure 2.19 which shows ray optics approximation of the light beam
the waveguidethe phase difference between transmitted beam and leaky wasegadk can
be expressed &z & G, 3. ,Whereg'QQ ¢&¢ —'OA i—Oapproximates the phase of the
waveguide mode is the wave vectoalongz direction,h is the thickness of waveguided
¢* andge are the two polarizatiedependent phase shifts introduced at the two interfaces
(GoosHanchen shifts)in case of DIM, the phase differeneg between the leaky waveguide

mode and the transmitted incident light beam should be equal to a multiplewdfich is
expressedby the following equation:

33 KEL Gy G Aprh A£nh p222D ¢8pTmu

20, and2l for TE polarization are expressed[85], [56]

e C8pmo
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For TM polarization (goolarization), the phases induced by the total internal reflection are:

A DEAZS < . ~xode TECOBRAZS ©
OR IS ~ 7P R ORT——"FF 8pTr

Therefore, in order to calculate tbéM between transmitted light and leaky waveguide mode,
the equation2.104and2.105should be combined.

Incident light

Transmitted Leaky .
light waveguide
mode
\ J
1
Ap

Figure 2.19: Schematic of thevaveguidemodein ray optics approximatioat normal incidence
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Chapter 3

Experimental Techniques

3.1Atomic force microscopy

Atomic-force microscopyAFM) is a veryhighresolution type ofcanning probe microscopy
examine surface structures thenanometesscalewhich ismorethan 1000 times better than the
optical diffraction limit It was developed in the 1980s by Gerd Binning, Calvin F. Quate and
Henrich Rohrer[57]. An AFM is a mechanical imaging instrument that measures the three
dimensionaimage based othe force interaction betwe@nsharpened tipnd the sample surface
The tip is mounted on a reflective cantilev@ihe deflection of the tipboth laterally and
vertically according to the surface morphologgasised by attracted and repulsive forceshen
surface of the sampl&he movements of the cantilever aneasuredy a laser, reflected off the
cantilever oto a position sensitivefour-quadrant photodiod¢58]. Then te deflection of
cantilever is fed ek into thefeedbackcontroller(PID) which moves the probe over the sample
to return thedeflection of the cantilever tis original value The AFM can be operated in a
number of modessuch ascontact modes and a vetty of norrcontact modes where the
cantilever is vibratedThe AFM imagesn our projectwere measured in air by means of-TT
AFM system(Figure 3.1) working in vibrating mode using probes purchased from Schaffer
technology GnbH. The imagesre analyzed by opesource software called Gwyddi@Bo].

Figure 31: TT-AFM systen{60].
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3.2Mueller Matrix ellipsometer

It is possible to measutdM experimentally by means of MM ellipsometer which generally
consists of a light source, a polarizer on the incident side and analyzer and the detector on the
reflection/transmission side. RecentMM ellipsometers of various types have been developed.
Figure 3.2 shows 4 types of rotatinglementMM ellipsometersFigure 3.2(a) illustrates the
simplest ellipsometer which is called the rotatawplyzer ellipsometry (RAE). Other
ellipsometers shown iRigure 3.2(b)-(d) ae just built with compensators introduced in the RAE
configuration.Only when the ellipsometer additionally contains two rotating compensators (one
before and one after the sample) with different rotating frequencies can enable us to measure all
sixteenMM elements.

Pq
Light mny Mueller matrix n
source 900 Detector

@ @ I eoe. I L]

Pa G A
Light o Mueller matrix my
source 00 Detector
000"
000"
G Aq
Light P my Mueller matrix my
source 0000 Detector
“ @ so8s —
0000
e o o o
Cr Cr A
Light P mny Mueller matrix 'Y
source 0000 Detector
" @ $358 —
0000
0000

Figure 3.2: Optical configurations foMM ellipsometry. B, Ar and G are rotating polarizer, rotating
analyzer and rotating compensafics].

3.2.1 RAE with compensator

RAE with compensator is popular in recentrgebecausall the Stokes paramessty O T'Y can
be measured.
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Figure 33: Schematic of a RAE witbompensatd61].
The configurationof a RAE with compensatas shown inFigure 3.3. It can be described as:

o =vedw 0o o

where Lo represents the Jones vector of the light detected by the detectshows the
normalized Jones vector of incident light.S, C andP represents the Jones matrix of analyzer,
sample, compensator and polarizer, respectivelg.the rotation angle of analyzer aRds the
rotation angle of polarizeWhen the fast ag of the compensator is in the direction ef s
polarization, the Jones matix of compens&ds expressed by:

AoPDQ n

Tt P o8

When the fast axis of the compensator is not in the directiop- afr spolarization, the
compensator iexpresseds R(C)CR(C), whereC is the rotation angle of the compensator.
Jones matrix for sampkeis expressed by:

i i QAPBw

v, od
s WEIQT

wheregl andware the two ellipsometric angles measured in spectroscopic ellipsaaetiypwn
in section 2.1.550 the matrix representation of above equation is descrijé8]as
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The measured light intensity for an arbitrary angle of the polarizer andzanalythe detector is
obtained as:

‘0O 0s O p wéch bl wéch Qe Gécd
i Qi FEATO© | i Qs od

By normalizing the termp @ é¢D w E¢l , we can describe the intensity as:
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where | i are referred to as normalized Fourier coefficients. We can rewrite the measured
light intensity as:

'O Op | Wéch T i Qd o0

Then, the equations for describing hw are obtained by solving ¢hequations:

[
OWE] —/8— D WSV WE W — o T

WhenP=45°, the detected intensity is expressed:

O s Op wécf ATcd i G wvéd 1 OKb
Op wéci ATO | @t os8AN Oi'Q¢ | MWRIO KD
Op YAT® “YAT OYOEIOKD oP p

We can see from the above equatiov,and "YA | O "YO E Tare measured as Fourier
coefficients. However, in order to obtaiviand™Y separately, at least two measurersamth
different] should be performed.

Figure 3.4 showsthe VASEfrom J. A. Woollam companyASE uses the RAEombined
with patented AutoRetarder configuration. A xenon lamp light in the wavelength ranger230
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23em i s used .dhentheilighhpasses thouglscanningmonochromatowith a

fiber and separated into individual wagebths. The scanning monochromator is designed
specifically for spectroscopic ellipsometnyhich automatically contr@ the selection of
wavelengths and spectral resolutidviter reflectionor transmissioron the sample, light passes
through a rotating alyzer, which operates at a frequency between 10 Hz and 100 Hz. Finally,
the intensity of the light is converted into voltage signal. The VASE has two detectors, one of the
two detectords made of siliconwith a spectral range between 18 and 1100hm and the

other is made of InGaAsith a spectral range between 8@ to 1700nm.

Broad range ofwavelength andAOIl (15°90°) allow a large variety ifmeasurement
geometriesincluding: reflection transmission and scatteringllipsometry in reflection and
transmission, reflectance and transmittance intensity, crog®larized reflectance and
transmittance, depolarization, scatterometry Bfdd can be measured6]. However,for the
MM measurementy ASE ellipsometer can only measure the first 3 rows of whole M4
elements because only one compensatocladed in the configuration

Figure 34: VASE ellipsometer from J.A. Woollaf62].

3.2.2 RAE with dual rotating compensatos

In order to measure all sixtediM elements, two rotating compensators (one before and one
after the sample) are introduced in RA&shown irFigure 3.5.
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Figure 35: Schematic oéllipsometecombined with dualotating compensators

The determination of th&M by an ellipsometer with two rotating compensators is roughly
explained below. The Stokes vectwr of the light after passing through the analyzer can be
expressed as tidM product[63]:

v o dvyey ¢4 6 )
Yy 04 vdy oP ¢

where - ,h- ,AT A5 representthe MM of analyzer, polarizer andsample respectively.
/hOJn#’h#’ are the rotation angdeof analyzer, polarizer and compensator betord afterthe
samplesz 1 A are the phase introduced by the compensator before and after the. Javaple
Mueller matrices of all these components are expressed as:

p p T T -pPpP-pPC-pPpOC-pT
.. pp T -Cp-CC-CO0-(QT
T T -0p-0C-00-0T
T T -TP-TC-TO0-T1TT
p T T L1 p T T T
T p T L1 T op L1 8
“Ar o AT OEzd “Ac o AN OEIJ
m T Z)Ezd AI]p m T Z)EzJ AI]p
Multiplication of the matrices leads to the expression of the first Sfukegneter:
"0 00 Doécd AT ¢ 0 i @ | OFEW6 ¢6 U
OETOEJ6 <¢o6 0 od v

where

o 0 OoOécd AT o O oi 9@ i OEW ¢0 0
OBTOEGS <¢0 O oP @
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The two compensators have the rotation frequericiesvith numberg still to be determined.
Their phase differenc€s-Cs, must be determined by calibration. Together with the sample in
the middle, the structure corresponds to the four indicated Miller matAftes.selecting an
exact ratio between the rotational frequencies of the compensfiorsxample of 3: 5, and

substituting of#g L ##3 ,and #7 O ##; . into above equation, we obtain:

Po
)O W P {1 AT O #Z.; roOEd] #1.; g8pX
I p

where 1. ;depends on the phasgg.The intensity signal is thus modulated in time bg th
rotation of the compensatofEhe equations (35-3.17) show that the Muller matrix elementg m
are explicitly contained in the coefficientg(; /. ) of the sine and cosine term$hey can
therefore be obtained by Fourier transformation of the signal from the Fourier coeffidieats.
detailed procedure for inverting the obtained coefficients is described, for exanip®,

Figure 3.6 showsvariable anglelual rotating compensatepectroscopiellipsometer RC2)
from J. A. Woollam companySynchronous rotation of two compensators provides high
accuracy, high speed, and complete Musttatrix measurementsRC2 is a CCD-based
ellipsometry therefore it isfast and allows dvanced measurement capdies with the best
accuracyRC2collects wavelengthgrom 210nm to 1690hm simultaneously.

Figure 36: RC2ellipsometer from J.A. Woollafa4].
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Chapter 4

Results and Discussion

4.1Pure PDMS gratings

We start the results and discussion chapter with pure PDMS grdtintpss section, | will first
introduce thdabrication method for PDMS gratiagThen | will show som&M measuremest
and how we decompose MM into physical effects by anisotropic modé&lwegpure gratingare
not interestinghemselvesbutthis sectiorlays a foundation for the analysis of miitagratings
in the followingsections 4.2 and 4.3.

4.1.1 Sample fabrication method

The pure PDMS grating is fabricatedthre followingtwo steps PDMS fabrication and PDMS
gratingfabrication

PDMS fabrication

PDMS is asilicon basedoolymerconsisting of repeating [Si(G)3O] units and is the simplest
silicone oil among thsiloxanes PDMS has lgh hydrophobicity, contamination resistance, and
longterm endurance, making it a very useful polymer for insulation, anticorrosion, and
antifouling coatings[65]. PDMS are fabricated from Sylgard 184, whidonsists two
commercially availableomponentgsilicone elastomer base and curing agenfigure 4.1)
manufactured by Dow Cornin§6].

The PDMS can be fabricated the followingprocedurd61]:

1.

5.

6.

Mix Siliconeelastomer base and curing ageside a beaker in a mass ratio of 10: 1 with
the help of a conventional digital scal®ilicone elastomer base and curing agent are
taken out angouredinside the beaker with plastic syrirjge

Stir the mixture immediatelyafter the components ammixed in a beakerwith a glass
pipette

Place he beaker in an ultrasonic bdibr 10 minutesto removeunwanted air bubbles
broughtin the PDMSafter stirring(It is important to ensure that the watgin the same
levelas the PDMS, so that all air bubbles are eliminated

Place the beaker in a desiccator for a total of 15 minutes to continue eliminate the bubbles
by means of a vacuum

Pour theliquid PDMS mixturein the prepared petri disfprocedurefor preparation is
shownbelow)slowly andtry to make the layer have homogeneous thickness

Place the petri dish in an oven at P@for 60 minutes

The petri dishshould be prepared before the above procedurerder to remove the cured
PDMS from petri distireely. The procedurér preparation of petri dish
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1. Clean the petri dish with acetone to remove all the oily and water residuals on the surface
andlet it dryin the air

2. Mix 20 mL acetone with 0.4nL 3-Aminopropyltriethoxysilan anthengive the solution
for around 3 minutes in the petri dish

3. Remove the solution and clean the petri dish three times with distilled water

4. Remove the last water inside the petrhdiy evaporating in the oven at 520

SYLGARD”

“ 1
SILICONE ELASTOMER

LOT: 0007442799 NET:1 M
Exp  BJAN-2013
*DATE: 29.pEC-2014

‘ 2o convivel

Rt T 0

Figure 4.1: Two components of PDMS (Sylgard 184). On the left is the silicone elastomer and
on the rightis thecuring agent

PDMS grating fabrication

The surface property of fabricated PDMS can be changed from strong hydrophobicity to
hydrophilicity by oxygen plasma treatmerRlasma etching equipment includes a reaction
chamber, a power supply, and a vacuum.@dré plasma etching process is actuallgeactive
plasma proceg67]. Thestretched PDMS slais fed into the reaction chamber evacuated by the
vacuum pump. Theoxygen plasmainitiates the oxidization at the surface of PDM&d
generates a thin surface film of silitke material.Then, by slowly eleasing the fqg-strain on

the PDMS, thin silicdike film supported byPDMS substrates spontaneously buclkdesl
sinusoidal grating is obtained. Tipaysical mechanisns that the stiff silicdike film tends to
buckle to releasthe total energy of the whobkystemby introducing thebending energy due to
the outof-plane deformation of théhin films [68]i [70]. We used this physical principle to
produce our grating sampl€he fabrication procedure of pure PDMS grating can be detailed in
Figure 4.2 and described here:
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4 79 °mm

Linear stretch Oxygen plasma Release
treatment

Figure 4.2: The fabrication proasof pure PDMS grating

1. The PDMS slalwith size 1mm thick, 13mm wide and 2mm long was gluedHigure 4.
3(a)) on a homenade stretching stagEigure 4.3(b)) with the unglued area Inm thick,
13mm wide and 8nm long.

2. PDMS slab wagut in the oven with 85°C for 1h.

PDMS Slab

Figure 4.3: (a) Glueand (b) homamade stretching stage

3. PDMS slabwas linearly stretched up to a percentage X less than 60%.

4. The stretched PDMS slab was treated by apl&ma (90V) for Y min inside a plasma
etcher chamber at a pressure of 1.4 mbar in order to modify the nature of the surface of
the elastomer.

5. One dmensionaperiodic grating was formed by slowly releasing thegirain.

During the fabrication proces®nly the parameters X and Y werhange to tune the
periodicity and amplitude of the grating. repetitive experimentvas performed m order to
investigatethe dependence dtretching percentagmn the stretchinglength.A drop ofblack ink
wasput on the center of the PDMS slab surfaoe formed a circular shapehe lengths of the
elongated ellipse along the stretching directi@aremeasured as shown kigure 4.4(a) and (b).

The percentage of stretchingas then calculated as, -, p Tt IR wiere, ; is the

diameter of theircular dropwithout stretching and is the length after stretchingigure 4.4(c)
shows the relation between stretching percentage and stretching Wiegthn seehe stretching
percentage is linearly dependent on the stretching lemlgén stretching length is less than 3
mm, while nonlinear behavior appears at stretching lengtre than 3nm.
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Figure 4.4: Images ofPDMS slabunderthe condition (a) without stretching and (b) after
stretching with /mm. (c) The relation between stretching percentage and stretching length

Figure 4.5 shows theplasma systenused in our method. It is Rico lowpressureplasma
systemfrom Diener electronic companyhe detailedprocedire for oxygen plasma treatmeint
the 4" stepof the fabrication process as follows

1. Main poweron,ventilaion onand open the chamber

N

o0k W

7.

8.

9.

Put the sample in a glass petri dish gidce thepetri dishbelow the black rodn the
chamberlIn order b getreproducible results, the sample should be always placed at same
position.

Close the chamber, ventilatioff and pumpon

Adjust the generator power button to wanted powe(ej8als90 W)

Set timer and wait pregge 0.1<P<0.2

Press GAS 1 to usexygengas. Adjust the oxygen valve just a little smaller than 1.4
mbar.

When the pressure is OK, psegenerator to start the plasriféhen time is over, plasma
switches off automatically.

Oxygen valve off an@5AS 1 off

Pump off and ventilation on.

10.Remove thesample from the chamber, close the chamber
11.Ventilation off and Pump on.

12.Pump off when pressure below 0.6 mbar

13. Main power off

For the whole oxygen plasma treatment procedbieve only the value oftimer Y is varied to
investigate the dependencestifetching percentage on the stretching length

62



Figure 4.5: Pico lowpressure plasma system from Diener electronic company

The periodicity and amplitude of fabricated grating only depend on the percentage of prestrain
X and O, plasma treatment time Y if the rest parameters are fikikdhe grating sampleénat
only pure PDMS gratingn this section, but alsAu, Au/Ni/Au grating in the next sectiong)
the thesis were fabricated witlifferent X and Y values by keeping other parameters unchanged.
The dependence om,@lasma time (keeping the prestrain constant at 30%) is sholigure 4.
6. We can seebothperiod and amplitude increase as the treatment dydreating the PDMS
surface with different time less tham®n, we can have big tuning range of the pef@@d nm-
550nm) and amplitude (4@m-140nm).

30% prestrain
1200

tton | | —-prioacy |
1000 -
900 -
800
700
600

500 4 -60
400 4

-40
300

0o 1 2 3 4 5 6 7 8 9
02 plasma time (min)

Periodicity (nm)
Amplitude (nm)

Figure 4.6: Dependence of grating periodicity and amplitude erpl@sma treated time with fixed
prestrain at 30%
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, O, treated PDMS
| E; vy

Figure 4.7. Schematic shows the parameters of the syaftemQ plasma treatmethieforereleasing the
presstrain

Mechanics models ka been developed to calculate the pecibgd P and amplitudeA of
PDMS gratingoased on energy meth{@b]:

. ¢ Q Op
L . , P
o - 0o " o0 p
o) - p T8
p - p .,

whereas shown irFigure 4.7, O andOaret h e Y o u n g 6f $reatedbstffutHinuilen and

PDMS substrate and’ arethec or r espondi n gQiPtbd tisickness ofshe stii t i o

thin film., —- p - represents the large deformation and geometrical nonlinearity in

the substrate underestrain, and- - denote the prstrain and minimum

strain needed to achieve buckling, respectivélye thickness of stiff thin film increases as
increasing the oxygen plasma treatment time. So both patipdnd amplitude increasses we

can see from Heptiors (4.1) and @.2). Besides, the prestrain X also influences the period and
amplitude. Amplitude increases and peidit§ decreases with the increase of the pres{&dn

56]. Therefore, i tuning both X and Y, we have a big freedom woe theperiodicity and
amplitudeof gratings.One of ourpure PDMS grating samples is fabricated with 25% prestrain
and 8min O, plasma treatmentigure 4.8 showsthreephotographs taken at different angles
from a fixed light source. The homogeneous colors of the patterned &x&é8snm) indicat the

high quality and excellent homogeneity of tiratingmade by our method
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Figure 4.8. Three photographs taken from different reflection angles with sunlight coming from
the incident side with fixed incident angle.

In order to obtain the precise periodicity aaohplitude of fabricated grating AFM was
measuredFigure 4.9 (a) and (b) show the top view andiBnensionaliew of measured AFM
image over an areaf 5 umx5 um, respectively. The fabricated gratingdhea sinusoidal shape
and is quite homogeneoulhe periodtity and amplitude of this gratingereanalyzed from the
Gwyddion softwaréo be670nm and 140m.

L

Figure 4.9: AFM imageover an area of fmx5 um of the grating fabricated with 25% prestrain
and 8min O, plasma treahent in(a) top view and (b) 3D view.

4.1.2 Ellipsometry of pure PDMS

Spectroscopic ellipsometric measurements were performdthtoRDMS atAOI35° and65°

over the spectral range from 2hén to 1690nm. Thecomplexrefractive index of PDMS was
extracted from a general oscillator layer model with 1mm thickness. We can se€igune 4.

10(c) thatrefractive indexn increases towards the ultraviolet region and keeps constant at 1.4 in
the visible and infrared rang&he extinction coefficiehk is zeroover the spectral range from
210nm to 1690nm which means our PDMS sample is a very good transparent material without
absorption.
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Figure 4.10: Ellipsometric angles (&) and (b)wmeasured at two different angles of incidence
35 and 63 fitted with a general oscillator model. (c) Refractive indeand Qof PDMS
extracted from this model.

4.1.3 Mueller Matrix in reflection

To get a insight in the influence oflifferent physicalorigins on the optical behavior of the
PDMS grating, MME measements were carried out in reflection in the spectral range between
400 nm and 500 nm atAOI30° and60° over a complete azimuthal rotatidfigure 4.11). All

the MM elementsverenormalized to M11 element which represents the total reflectance of the
sample. To visualize the huge amount of data accumulated in this kind of measurement, the
elements of the MM are presented at a given incident angle as polar contour plots, where the
azimuthal angldJis the polar angle and the radial axis represents the wavelémggineral, as

we can see fronfrigure 4.11, all 16 elements exhibit complex patterns and depend on the
azimuthal angle and the wavelength. In reflection, the MMEs show the expected symmetry with
identical element pairs M12/M21, MIM41, M24/M42 andoppositeelement pairs M13/M31,
M23/M32 and M34/M43. All the patterns reflect the symmetry of the grating withabpixes

along U=0° and 90°.From the offblock-diagonal elements which are the upper right and the
lower left 2x2 submatices and represent the anisotropy and crpsdarization information of

the sample, one can see tloatr simple PDMSgrating is strongly anisotropic and therefore
mixes polarization states.
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Figure 4.11: MM measured in reflection &0l (a) 30° and (b)60° in the spectral range
betweerd00 nm and 500 nm as a function of whole azimuthadtation.
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4.1.4 Modelling and interpretation

After viewing themeasuredVIM, we discuss in this section how we decompose the ikigl
different physical originszia an effective modelFrom the schematic of diffraction orders in
reflection and transmission shown kigure 2.14, it is intuitive to see only the negative
diffraction orders in reflection and transmission can fulfill the condition of RWAs. R\AAS)

and RWAs PDMS(1) which were calculatedith Equation2.93represent the first negative order
RWA in reflection andransmission, respectivebis shown inFigure 4.12, RWAs air(-1) and
RWAS_ppms.1) were superimposed in the MM elemenidong the 180-0° azimuthal line, we
can sedrom Figure 4.12(a) that the anisotropy lobe in M12, M33 and M44 is modulated by the
presence of th&WAs_airf1). For other MM elements, we can see lobes at higher wavelength
follow RWAs lines. So we can atibute thee lobes to the influence of the presence of
RWASs air(-1) and RWAsPDMS(1). It is interesting to seall MM at AOI30° and 60 show
anisotropy at wavelength ne&®0nm. The seconarder RWASs(not shown)which are supposed

to appear at lower wavelengthow nocleareffecton theMM.

E o-30° [ e=60°
tz/_ 0 5 12 0 1
150/7°0(°) 0 )
a \ ol A
2405757300 x2 x12 z7o 4 x9 i x6
oo el e /\r\f\\ N
> x5 4 x2 x7
0.0 0.0
a2 y 3 N 25 |

L3 | ‘& |
1 = ;(2 x5 R
\ ) ) i 1 ] . ; : @ )
L ‘
x12 x2 x2 1.0 x6 x7 x2 -1.0

—RWAs_air (-1)
—RWAs_PDMS (-1)

Figure 4.12 MM measured in reflection &0l (a) 3° and (b)60° in the spectral range
between400 nm and 500 nm as a function of whole azimuthedtation together with RWAs
lines.

In order to understand tliedden physical effectsf the anisotropic lobe at lower wavelength,
modeling was madén the first step, we generated the MM of ptie¢ PDMS layer alAOI 60°
in the wavelength range 400m to 1500 nm. PDMS layer with optical constants from
ellipsometry library was used. The thickness of PDMS layer was defined to be Asnm.
expectedfrom an isotropic materiatthe values of ofblock-diagonal elements are alkro as
shownin Figure 4.13. In addition the lobes in M12, M21, M33 and M44 are isotropic.
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Figure 4.13: MM generatedrom ellipsometric model with flat PDMS layar reflection atAOl
60° in the spectral range 400 nm to 1500 as a function of whole azimuthadtation

In the second stepgccording to the geometry of the grating structure, we built an anisotropic

model to see¢heinfluence ofthe anisotropy frongeometry orthe MM elements. A shown in
Figure 4.14, we simulated the grating sample asbiaxial Bruggeman effective medium
approximation layer with thickness 11@m on top of 1mm substrateof PDMS The
Bruggemann effective medium approximation (BEM#&) homogeneous systeramposed by
two materias. The equation describes the BEMA is as folldva|:

Q — p Q — T T®
- U - - - U - -

Where- and™Qare thedielectric constanandfilling fraction for one material; and™Q p
"Q are thedielectric constanandfilling fraction for the other material is the depolarization
factor and has values in the rangel]OL is a descptor of the extent to which thaclusion
polarizationis diminishedaccordingto the particle'shape and orientation withgmgect to the
applied electrical field[72]. In our model, we used biaxial BEMA layer model, where3-
dimensional shape of the inclusiossdefined byL in x, y and z directionsL{, Ly andL,). We
considered PDMS as the inclussinside the air environment

Now | will introduce how we define the parameters in tBisxial Bruggeman layefirst of
all, due to the symmetric geometry of sinusoidal structure, the filling fraction of PRQ&S0%.
From the results of AFM,he perialicity of the grating is about 5 timesigger than the
amplitude. So, we defined PDMS inclusions as elliptical shape withdrisglong xdirection
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as shown in the crossection inFigure 4.14. In the 3dimensional space, the inclusions are
cylinderswith infinite lengthalongy direction.So, we defined depolarization factarsx, y and
z directionsasL,=0.25,L,=0 andL,=0.75.

o

} 1mm

9 PDMS cylinders [

110nm {;’5‘;.'; N AR g

-

Figure 4.14: Biaxial Bruggemareffective medium approximatiamodel for PDMS grating

Then,MM in reflection atAOIl 30° and 60°werecalculated from this effective modé&igure
4. 15 shows the measured arglmulaed MM atAOI 30° in the spectral range from 400n to
1500 nm as a function of whole azimuthal rotatidfigure 4.16 shows the measured and
simulated MM atAOI 60°. In order to obtain a better visualization due to weak values in some
MM elements, we scale some elements with multiplication factors. For convenience of
comparison, measured asinulated MM have same multiplication factors. We can alkéhe
MM elementat AOI 30° and 60°reproduce the anisotropy at wavelength close tord0while
the lobes at higher wavelength cannot be reproduded.effective model only considers the
geometry of the grating which is described by the depolarisation fdgtoky( L,) of PDMS
inclusions but neglects thedfects fromperiodicity. Therefore we can say the anisotropic lobe at
wavelength near 400m is coming from the pure geometry of the grating. Since the periodicity
is neglected in the model, our RWAs effects cannajdrerated. However, by adding the lobes
manuallywhich following the RVAs lineson the simulated MM element&e can reproduce the
measured MM.

To conclude, the physical origin shown tmgasuredMM can be decomposed into two parts,
one at lower wavelength coming from the pure anisotfomy geometryand the other one at
higher wavelength from RWAs.
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Figure 4.15 MM measuredand simulatedn reflection atAOIl 30° as a function of whole
azimuthalrotation together with RWAs lines.
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Figure 4.16. MM measuredand simulatedn reflection atAOIl 60° as a function of whole
azimuthalrotation together with RWAs lines.
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4.1.5 Conclusion

In summary, we have demonstrated how the complex optical responsgimopla sinusoidal
PDMS grating can be decomposed into its physical ingredients. First, we nubéseiMM in
refection at differenAOI over a complete azimuthal rotatiorhe MM wasthen modelled by a
simple anisotropic effective medium approaatelled Biaxial Bruggeman effective
approximation From thissimple anisotropic model, th&M plots over the whole spectral and
angular rangevere generated. On top of this calculated MME we supposel the expected
dispersive RWA modes, calculated from the known periodicity of the grating. Comparing this
composed result with measured MMs gives a deep insight on how the different physical
contributions originating from periodicitand geometryinfluence the complex polarization
mixing.
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4.2Au gratings

After showing PDMS gratingin the previousection we turn out attention to metallic gratings
formed by evaporating a thin Au layer on top of PDMS gratifilpe presence gropagating
surface plasmon modesnakes the optical response more cawpthan the PDMS gratisg

Mode coupling or hybridization can take place and results in complex interactions with polarized
light which is very interesting to be unraveled by MM charazation. Similar to PDMS
gratings, our goal is to correlate the observed polarization mixing in MMs to their underlying
physical origins via effective media approximation model.

4.2.1 Introduction

Onedimensionalmetallic gratings are very efficient tools texcite SPB by matching their
dispersion to thaof light. Figure 4.17 shows the measurement configuratidok® is defined as
the classical mountingvhich means that the grating ridges are perpendicular to the plane of
incidence of the incoming light, whilll 0 A i s defined as conical mo
SPPs in ongimensional gratings follows either the classical mounting or the conical mgunt

For classical mountingvhereU=0° as shown irFigure 4.17 (a), p-polarized lightinstead of
s-polarized lightis used to excite the SPHa. this configuration, the propagation direction of
SPR is along the grating vectoContrary to the cas&=0°, as shown inFigure 4.17(c), s
polarized lightrather than gpolarized lightcanexcite the SPPat U=90°. In this case, in plane
wave vector of incident lighKy, grating vectorG and wave vector of SPR,, form a right
triangular relationFor all other azimuthal rotationthe symmetry is broken and bothgnd s
polarized light can be used to excite SHIP3], [74] as shown inFigure 4.17(b). The
propagatingdirection of SPB can be determined from the triangle relation betwgrG and
Ksppregardless ohny azimuthal rotations.

e a=0° Plane of incidence G a=45° Plane of incidence ° a=90° Plane of incidence

Figure 4.17: Schematic drawing of the measurement configuraitgla)O:,0° (b) U=45° and (c)
U=90°. Uis the azimuthal angle witti=0° for classical mountingarild O A f or coni c al n

Similar to PDMS gratingfRWAs s expected tinduceabrupt changes in the optical response
of Au gratings RWAs can result in very narrow plasmon resonances in regular plasmonic arrays
of metallic nanoparticles, originating from the diffraction coupling of localized plasiii&iis
[79], or modify the reflectance of ngrlasmonic metallic square arrg{3g].

Even though SPPs have been studied fang kime and RWA effects have also been well
known for decadept8], [81]i [84], a clear understanding of how SPPs and RWAs influence the
polarization mixing of gratings is still lacking. Moreover, so far, only few reports discuss the
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azimuthal angle dependence of the optical response of gratings in terms of MMsrdluégnce
of diffraction orders irMM elements (MMEs)28], [85].

Here we present a simple but versatile method to identify the physical properties present in
the Mueller matricesWe present a very general procedure to analyzéVitiedataof a one
dimensional gold gratingising simple analytical tools. The calculat&tM contour plots
obtained from an effective anisotropic layer moaeiich is different from the effective
anisotropic model irsection4.1 are completed by the presendeptasmonic modes, Rayleigh
Woods anomalies and the interband transition absorbance. A comparison ofctiestsocted
contour plots with the measured ones satisfactorily connects the optical properties of the grating
to their physical origin.

4.2.2 Sample Falrication

For our study we use Au gratings producedh®s sameselfassembly techniquas described in
section4.1 First of all,the PDMSgrating templatevas fabricated with30% prestrainand 10

min O, plasmatreatmentThen thePDMS grating templateas treated again by,@lasma for 1

minute to increase the surface hydrophilicity and enable the deposition of a homogeneous
metallic thin film. A 35nm thin goldfilm was finally evaporated (Univex 300) on the sample
surface while keeping the time affgasma treatment as short as possible to avoid degradation of
the surface treatmelfess than ). An AFM image over an area of inx5 um is shown in

Figure 4.18(b). The AFM analysis reveals that the fabricated gratings have a regular grating
period equal t@=570nm. The depth of the grating is estimatedHte100 nm. Figure 4.18(c)

shows five photographs taken at different angles from a fixed light source. The homogeneous
colors of the patterned areas change from blue to red with increasing viewing angle indicating
the high quality and excellent homogeneity of the grating.

m @ g,

" (4)

Figure 4.18: (a) Schematic drawing and (b) 3D AFM image of the sinusoidal Au grating with
periodp=570nm, amplitudeH=100nm and Au thicknesk = 35nm. (c) Fivephotographs taken

from different reflection angles with sunlight coming from the incident side with fixed incident
angle. The numbers of the photographs are related to the angles in the schematics in the right
inset.
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4.2.3 Reflectance dispersion

In order to visialize thedispersionof the excited modes, the measured reflectance for p-and s
polarized light atAOI from 25° to 65°are shown together with the expected positions (dashed
lines) of the SPPs and RWAs kigure 4.19(a) and (b)Figure 4.1%a) shows the reflectance
measured with 4polarized lightat an azimuthal anglé=0°. The dispersion from 822n atAOI

25° to 1052nm at AOI 65° indicates the excitation of SPPs propagation along the sample
surface. The line cut on the left side represents the valud®la#5° along the vertical dotted
lines. SPP dispersion relation is calculated and shown by a black dashed line and it follows the
measured SPPs mode dispersion. The-ainfder) RWA indicated by the red dashed curve is
slightly shifted to lower wavength from SPPs positionsigure 4.19b) shows the reflectance
measured with-polarized light atU=90°. Interestingly, $olarization also excites a surface
plasmon resonance B£90° indicated by an resonance around &7 for AOI 25° and around
515nm for AOI 65° and it also fits quite well with the calculated SPP line. The reflectance at
AOI 45° with SPP excited around 54t is shown in the line cut. However, instead of the large
red shift as for fpolarization, the SPP excited bypelarization blue shifts slightly with
increasingAOl. Besides, theRWAs air(-1) at U=90° does not follow the SPP anymore and
strongly influences reflectance away from the SPP resonance.

P55 T 000 @=90° ™03 3.7

1200

SPP* "
1000 i e
t - . i 1
T — ’/;' ‘ T 800
c - « RWA air-1 =
= 800 . =
g 600 : g .
g E
= 400 = 400
— AOI 45° —AOI 45° R
200 s 200 — - P e —
00 04 0830 40 50 60 00 03 06 30 40 50 60
Reflectance AOI () Reflectance AOI (7)

Figure 4.19: (a) Contour plot of the reflectance witkpplarized light betweeAOI 25° and 65°

in steps of 5° atk=0° in the spectral range between 210 and 1280 (b) Contour plot of the
reflectance with golarized light betweeAOI 25° and 65° in steps of 5° @90° in the spectral
range between 210 and 1006. The dashed lines in the contour plots correspond to SPPs and
RWAs. The line cuts in the left side of (a) and (b) are reflectance measu@d 45°, along the
dotted lines, with gpolarized light at’i=0° and with spolarized light at}=90°, respectively.

4.2.4 Reflectance angular dependence

In order to visualize the azimuthal dependence of the excited modes, the measured reflectance
for p and spolarizel light atAOI from 25° to 65° by 10° over a complete azimuthal rotation in
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steps of 5° in the spectral range between r@2t0and 120(hm together with SPPs is shown in
Figure 4.20. To illustrate the influence of RWAs at higher angle of incidetioe,expected
position of RWAs _air(-1) is only superimposed insRat AOI 65°. As expected, theeflectance
shows a simple G&ymmetric behavior due to the symatry of the grating. According to
Equation(2.83), the optimal azimuthal angles for SPP excitation witlmd s polarized light is
atU=0° andU=90°, respectively. The positieof the excited resonances (i.e., reflectance dips) in
Figure 4.20 follow the calculated SPPs lines very well confirming their plasmonic origin. We
can see that the SPP mode excited-pwglarized light lecomes weaker, while the influence from
RWASs air(-1) becomes stronger with increasing tA®Il. This is in accordance with the
dispersion plot shown iRigure 4.19(b).
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Figure 4.20: Measured R, and Rsat d from 25° to 65° by 10° are plotted with full azimuthal
rotation in the spectral range from 24 to 1200nm. The blackandmagentdines indicate the
calculatedposition of the SPP modsdRWAS _air(-1), respectively
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Figure 4.21: Contour plots of experimental reflectance witpgdarized (a) and-polarized light

(b) together with the SPPs, different order RWAs and the interti@mdition lines. The
excitations are only plotted in the upper kgttice to avoid masking of the raw data in the other
half space. (c), (d) experimental polarization conversignaRd R, with SPP lines. All the
contour plots are aAOIl 45° over a comgte azimuthal rotation in step of 5° in the spectral
range between 210m and 1200hm. The polar axis represents the wavelergtnd the polar
angle represents the azimuthal arigle
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Figure 4.21(a) and (b) show the measured reflectance f@ng spolarized light alAOIl 45°
together with SPPs, RWAs and interband transition lines. The interband transition of Au at 480
nm [86] exhibits no dispersion and therefore corresponds to a circle in the polar plot, while the
azimuthal dependent RWAs form arched curvedtigure 4.21(a) and (b) the influence of the
RWAs is in general rather weak. Figure 4.21(c) ard (d), the polarization conversion,R
(incoming pinto reflected olarized light) and R (vice versa) are shown. As expected for a
C2-anisotropic sample Rand R, are identical with maximum values &@45° and two optical
axes atU=0° and 90°. The parization conversions Rand R, basically trace the calculated
SPPs curve, indicating that polarization conversion is mainly caused by surface plasmons and
that the contribution of the RWAs is small. The isotropic interband transition exhibits no
polarization conversion.

In the previous section, we already know the wavelength position of $P#sa.phase
matching relatiordescribed byEquation (2.80), we can also obtaithe propagating direction of
SPPsIn Equation(2.80), the wave vector o8P can be described as the sum of thelame
incident wave vectob and an integer multiple of thegrating vectorG. Experimental
reflectancein Figure 4.21(a) and (b) areexpressed in contour plot witha@esian coordinate
systemin Figure 4.22(a) and (b).The insets show the phase matching relat@andifferent
azimuthal anglesiWWe can sedérom Figure 4.22(a), by using goolarized light,SPR propagates
perpendicular to the grating grooves only when thplame component of incident wave vector
is perpendicular to the grating groovés.U=90°, SPR cannot be excited with-polarized light.
However, we can see froRigure 4.22(b), s-polarized lightcan exciteSPR at U=9(°. Besides,

0 , G andKsppform aright angularelationat U=90°.
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Figure 4.22: Contour plots of experimental reflectance w(i#) p-polarized andb) s-polarized
light over a complete azimuthal rotatiom Cartesian coordinategether with phase matching
relationin the insets.

4.2.5 Mueller matrix in reflection

To get a deeper insight in the influence of SPPs and RWAs on the complex optical behavior of
the Au grating, MME measurements were carried out in reflection geometryspebtal range
between 21Gm and 120Gim atAOI from 25° to65° by 10° over a complete azimuthal rotation
(Figure 4.23). All the MM elements are noralized to M11 element which represents the total
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reflectance of the sample. MM are presented at a gh@&nas polar contour plotsame as MM
plotted for PDMS gratings in section 4Also, some elementare scalal with multiplication
factorsto improvevisualization In generalwe can seall 16 MM elements exhibit complex
patternsandshow the expected symmeiryreflection.All the patterns reflect the symmetry of

the grating with optial axes at}=0° and 90°. From the offlock-diagonal elements, one can see
that the Au grating is strongly anisotropic and therefore mixes polarization states. Moreover, the
off-block-diagonal elements show curved lobes with maxima ardustb® and 135° at the
excitaion wavelengths of the dispersive SPP and RWA modes. The element M12 represents
linear dichroism and reflects,Rand Ry, which are equal. The diagonal elements resemble the
reflectanceplots of Figure 4.20. We cansee the anisotropy at lower wavelength becomes
weaker at higher angle of incidence. The lobes near azimuthal angle 90° in M12, M33 and M43
become weaker as increasid@I. These lobes confeom the SPPs excited bymolarized light.

SPPs become weaker as increash@l which are shown in the reflectance pl¢Esgure 4.

19(b)). Moreover, we casee the lobes near azimuthal angle 90° which follow the SPP lines in
M23 at AOI 35° disappear afOl 55°. By multiplying the MM by an input Stokes vector
correspondinga p-polarized light $=(1 1 0 0) or gpolarized light $=(1 -1 0 0) we obtain a
contour plot equal tmmeasured R or Rss(not shown).
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Figure 4.23: MMEs measured in reflection &OI from 25° to 65° by 10° over the complete
azimuthal rotation in the spectral range betweenr2a@nd 1206im. All MMEs are normalized
to M11.
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4.2.6 Biaxial Model

In principle it is of course possible to calculate the MMs for different angles of incidence,
various azimuthal orientations and a broad range of frequencies by solving the Maxwell
equations under the boundary conditions given by tdem@nsional geometry of the grating.

But this approach is on the one hand tito@suming and computer intensivedaon the other

hand it does not really promote the physical understanding of the origin of the observed optical
behavior. In order to correlate the observed MM pattern to the known properties of the grating,
i.e., its periodicity, the material parameterslghe SPP and RWA modes, we present here a
much simpler Zimensional approach based on a cumulative method, starting with a simple
anisotropic effective medium model based on the Fresnel equations to which we add the
dispersive modes described above.begin witha simple anisotropic effective medium maqdel
thedielectric functiorof PDMS and 3%im Au is required.

Dielectric function of Au layer

In order to obtain the dielectric function of the Au layer, spectroscopic ellipsometry
measuremenwvas perfomed on a35 nm thin gold filmwhich is evaporatedn an Q plasma
treated flat PDMS slab under the same evaporationitimmsl as the Au grating sampde AOI

from 20° to 60°. Then an Au_nk1 layer with 86 from the CompleteEase software was used.
Figure 4.24 show the measured and modeled ellipsometric angkesdwas a function of broad
range of wavelengtfrom 210nm to 1690nm. Both measured andwfit the modeled ones. So,

we can say5nm Au thin layer is already a flat film and has the similar dielectric function with
Au_nkl.In the next sectionslielectric function of Au_nk1 as shown kigure 4.25is usedin
simulationsto represent the dielectric function of ther8a Au.
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Figure 4.24: Spectroscopic ellipsometric angfesandwat AOI from 20° to 60° in the spectral
range from 21Gim to 1690nm.
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Figure 4.25: Dielectric function of 3% m Au.

After obtaining the dielectric function of PDMS and Au layeg start toprepare an optical
model able to reproduce the measured intensity taking into account the anisotropy of the sample.
According to the symmetry of the grating, the sample has two optical axes along X and Y.
Therefore, we model the reflectance alds)° andU=90° using Gaussian oscillators with the
ellipsometry softwargl8]. The extracted permittivitpf PDMSwith 1 mm thicknesss used as
substrate of for all models. A 38n thick biaxal layer is placed on top of the substrate. Along Z
direction normal to the layer interface, a Cauchy oscillator is used, while in X and Y directions
we use general oscillator models. The parameters of the oscillators in X and Y direction are
obtained byfitting the measured reflectancg Rnd Ry along the azimuthal angles 0° and 90°.
The model generated by fitting the measurggl(Rsy along its optical axis is called in thigrk
Apnodel 0-madél|l dsrespectivel y.

P-model

In a first step, B, at U=0° is modeled with a 3Bm general oscillator layer (genoscx) on
measured PDMS layer using nine Gaussian oscillators. Theat B=90° is modeled with 36m

general oscillator layer (genoscy) on measured PDMS layer using seven Gaussian oscillators and
one Drude oscillator. A perfect fit was obtained in both directions as showigume 4.26(a)

and (b).Then, as shown iRigure 4.26(c), a biaxial model is built with a Cauchy oscillator along

Z direction and genoscx and genoscy in X and Y directions, respectively. The thickness of the
biaxial layeris also 35nm and the measured PDMS is used as substrate of thickness 1mm.
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Figure 4.26. (a) Genoscx and (b) Genoscy layer model with the fR at U=0° and 90°
respectively. (c) Biaxial layer model.

S-model

The reflectance R at both angledE0° andU=90° were fitted in the ®hodel. Rs at U=90° is
modeled with a 3mim general oscillator layer (genoscx) on the measured PDMS layer by eight
Gaussian oscillators.sRat U=0° is modeled with 3Bm general oscillatdayer (genoscy) on the
measured PDMS layer by twelve Gaussian oscillators and one Drude oscillator. A perfect fit was
obtained by genoscy layer model@0° shown inFigure 4.27(b), the fit atU=90° (Figure 4.

27(a)) is na perfect but still works wellThen as sbwn in Figure 4.27(c), a biaxial model is

used with a Cauchy oscillator along Z direction and genoscx and genoscy in X and Y directions,
respectivelySimilarly to the pmodel, the biaxial layer is 3%m thick and again PDMS is used

as a substrate.
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Figure 4.27: (a) Genoscx and (b) Genoscy layer model wigkfiRat U=90°and 0° respectively.
(c) Biaxial layemodel.

4.2.7 Modelling results and interpretation

Modelled reflectance

UsingP- and S models, we start by calculating both theapd sreflectance afOl 45° over the
whole azimuthal range and compare the result with the experimentally obtained reflectece plo
in Figure 4.28. The expected anisotropy of the reflectance is visible in both, the experimental
and the modelled plots. The calculated and meddygand Rsare very similar.
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Figure 4.28: Ry, (a) and Bs(b) measured aOl 45° over a complete azimuthal rotation in the
spectral range between 2hth and 1200hm. Ry, (c) and Rs(d) generated from the-@nds-

biaxial models, respectively. All the plots are shown together with the calculated SPP lines in the
top half space.

The second step of the method is to add the analytically calculated positions of the excited
SPPs from Egation (2.82), which is also shan in all graphs ofFigure 4.28. Since no
dispersion effects are included in our biaxial models, the dispersive SPP modes are not
accurately reproduced. In particular, in our simple model the plasmonic resonances are
independent of the azimuthal orientation and therefore appear as part of a circle due to the
simplification of the model. This is visible when one compdfegure 4.28(c) with (a).
However, this method allows us to determine what comes from the plasmonic mode from what is
due to anisotropy. The outer feature of the measured reflectance is attributed to the plasmonic
resonance, which follows very well the &ieal curve inFigure 4.28(a). The signal at lower
wavelengths is mostly determined by anisotropy and-dispersive effects, therefore both
modellel and measured graphs are very similar in this wavelength range. We now turn our
attention to R (Figure 4.28(b) and(d)). Similarly to Ry, the pola plots of Rsare reproduced
by the biaxial model at shorter wavelengths while deviations are observed at the SPP
wavelengt h. | rs hpagpretdi coufl at iFr9° SeBtRRPvaduaed by the pure
biaxial model and can be identified only when the analytical mode dispersions are superimposed.

Modelled MM

Once the models obtained for @nd spolarized light reproduce reasonably well the intensity
data, we use theno tcalculate the MMs afOIl 45° as shown irFigure 4.29%a) and (b),
respectively. In general, we can see that both p anddels can reproduce the maeed signal

in the shorter wavelength region (2690 nm). However, in the longer wavelength region 890
990 nm), which is mainly influenced by SPPs, the generated MME show deviations to the
measurements. Here also the effects of dispersion are notedciund all the features at longer
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wavelengths corresponding to SPPs follow circles instead of arcs. For example, the measured
M12 shows SPP curved features nea®° and another SPP feature at lower wavelength near
U=90°. This can be understood by recallithat the pmodel (smodel) considers as a
simplification only the golarization (spolarization respectively). However, the measured
MME exhibit the full optical response and therpdarization also plays an important role.
Therefore Figure 4.29(a) and (bneed to be combined to explain the full measurements. We can
see that the features né##90° are reproducing the measured features, which also prove that the
SPPs neatE90° are excited by-polarization. However, the calculated M24, M23 and M34 at
higher wavelength have opposite phase compared to the measurements, a feature obviously not
capgured by the simplifying model. From this preliminary result we can see that we obviously
need both the pure anisotropy modelled by an effective medium approach for lawith |5
excitation, including the plasmonic effects, and the dispersion originatingthe periodicity of

the sample. In the next section, we will give more details on the physical interpretation of all the
features as well as their interplay.

P-model S-model

Figure 4.29: SimulatedMM at AOI 45° in the spectral range tveeen 210nm and 1200hm
with full azimuthal rotation generated from P biaxial model (a) and S biaxial model (b).
Multiplication factors are used to scale the datalgl].

Identification of the optical features

For sake of simplicity, we now choose wrthe four MME (M12, M13, M24 and M34) for a

more detailed analysis shown Fkigure 4.30. Our aim here is to illustrate the method of
superposition of the separated physical effects through their respective analytical models. This
superposition, taking into account the assumgtioiheach model, is helpful in comparison with

the measured data in order to reveal the origin of the optical properties. The detailed comparison
of all the elements of this figure gives us a complete description and interpretation of the
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complex pattern fothe measured MM. Each row &fgure 4.30 corresponds to one of the four
chosen MME, all measured or generatedh@i 45°. The first column displayhe measured

data superposed with the analytical dispersion of the SPP modes. The second column compares
the measured data with the expected positions of some RWA lines as well as the interband
transition of gold. The last two columns illustrate the MMHEcualated by the anisotropic-p

(resp. s) models, together with the analytical positions of the SPPs, RWAs and the interband
transition of gold.

The first column, comparing the measured data with the expected position of the propagating
SPP mode, reveatbat the outer feature of the MMEs is strongly influenced by the plasmonic
mode. However we can see that the measured signal follows the SPP lines only over a certain
azimuthal angle range. Indeed, the excitation angle range is determined by the sasoplepani
and can be calculated by our anisotropic layer model (last two columns): the simulated MMEs,
dependent on anisotropy, indicate the azimuthal range where the excitation of the features is
allowed and its respective strength. Moreover the compaoistite pmodel and snodel allows
us to determine which measured feature is linked with which polarization. However, since the
anisotropic layer model does not take dispersion into account, it is expected that the curvature of
the SPP mode is not reproddcés a result of a dispersionless model, the simulated elements
M12 and M13 predict the SPP mode position correctly onlyz@t (for pmodel) andJ}=90° (for
s-model). For all azimuthal angles in between these values, the spectral position of the SPP
modes deviates following the SPP analytical line. In other words, intentionally curving the
simulated features with respect to the azimuthal angle following the SPP mode dispersion leads
to similar patterns as those measured. Therefore the interpretatiom afrttparison shown in
Figure 4.30 is as follows: the simulated MMES last two columns display the range of
azimuthal anglet) where spectral feates due to anisotropy appear (in the respective MMES),
while the position of the dispersive modes interact with the anisotropy related features by either
curving the branches or modifying their shape and width.

When we turn our attention to the featuretha center (shorter wavelengths betweenrh0
and 690nm), we can see that the superposition works similarly to the case of the SPP modes. In
this spectral region, the optical propestiare influenced by anisotropyiffraction orders
(RWAs) and interbnd transitions. In particular, the direct visual comparison between the
anisotropy related lobes, the position of the RWAs and the measured MMEs indicate clearly that
the shape of the MMEs is produced by a modification of the anisotropic signal byailydieal
phenomena present in this spectral range. If we first consider M12, along tk@°l86fmuthal
line, we can clearly see that the anisotropy lobe is modulated by the presence of the RWA AIR (
2) (green) and RWA PDMSZ) (black) orders. The same valid for M13 along the 23545°
line, and for M34 at most azimuthal angles. The latter is, in addition to the influence of the
RWAs, also influenced by the Au interband transition. Quite interestingly, if we compare M13
with Figure 4.21, we can see that M13 is really similar to the crosisirized reflectance gror
Rsp over the whole measurement range, because M13 reflects the anisotropy effect of the sample,
which strongly influences the polarization conversion.

The method presented here is based on the direct comparison of simple analytical models,
each describing andistinct physical aspect: in our particular case, these are linked to anisotropy,
SPP, dispersion, diffraction and interband transition. The influence of these four main aspects is
easily identified. The interplay between modes can be found at theetttersbetween their
expected positions.
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Figure 4.30: Measured and simulatédM elements M12, M13, M24 and M34 together with the

SPP, RWA and interband transitions draws in the upper half spAc@l &5°. Simulated pand
smodel means, that the Mueller matrices are calculated only from the anisotropic effective

medium approach obtained from the and preflectance measurements. The multiplication
factors give the enhancement factor in respect to the scale bar.
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4.2.8 Conclusion

In summary, we have demonstrated how the complex optical response of a simple Au grating can
be decomposed into its physical ingredients. First, we measure the reflectance along the two
optic axes of the grating, along and perpendicular torbevgs under-sand ppolarization. The
reflectance is then modelled by a simple anisotropic effective medium approach using Drude
Lorentz oscillators. From this anisotropic model, the intensity plots (reflectance in our case) over
the whole spectral anchgular range are generated. Once the agreement between the generated
and measured plots is insured, the Muathatrix plots can be calculated. On top of this
calculated MME we superimpose the expected dispersive SPP and RWA modes, calculated from
the know periodicity of the grating. Comparing this composed result with measured MMs gives

a deep insight on how the different physical contributions originating from periodicity,
anisotropy and material properties influence the complex polarization mixingaVéesken that

SPPs can be excited by bothqy spolarized light when the incident plane is perpendicular or
parallel to the grating grooves. Both SPP modes are dispersive waldthend follow the same

phase matching condition- Br spolarized lightcan be converted te sr p- polarized light via

SPP excitation, and maximum polarization conversion occurs when the angle betvidsmt inc
plane and grooves is 45Additionally to the excitation of SPPs, the optical properties are
influenced by geometrianisotropy, the RWAs related to the periodic grating structure and, to a
lesser extent, the Au interband transition. The anisotropy, the interband transition and-the non
dispersive approximation of the SPPs are understood in terms of an effective meplioach,
obtained from fitting the measured reflectance. However, the dispersion of the SPP modes and
the RWAs effects should be added (directly from their analytical expressions) on top of this
model.
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4.3Au/Ni/Au gratings

After demonstrating how the complex optical response of a simple Au grating can be
decomposed into its physical ingredientssattion4.2, we nowturn out attention ta@nother
metallic gratings formed by evaporating a thin/luAu multiple layerson top of PDMs
grating.In this section first of all, we apply the same analytical methaded for Au grating in
section 4.20 decompose the complex optical response into its physical ingredients. Second of
all, we compare the results Afti/Ni/Au gratingwith Au grating to see the influencé Ni layer

on the optical response. Finally, we discussathiéty to tune SPP by mechanical stretching.

4.3.1 Sample Fabrication

Au/Ni/Au grating was produced by the same-sa§embly technique as Au gratings. The PDMS
grating was fabricated under the condition 40% prestrain amdiri@, plasma treatment. Then
15nm Au, 10nm Ni and 10nm Au layerswere evaporatedn top of the PDMS grating after a
second time @ plasma treatmentor 1min. The sample is shown iRigure 4.31(a). The
patternedgrating structure is in the center with siza8nx13 mm. Figure 4.31(b) and (c)
respectively show the top view image over an area @m20um and 3D view image over an
area of 5umx5 um measured bAFM. The AFM analysis reveals that tA&/Ni/Au gratinghas

a periodp equas to 530nm anddepthH equasto 95 nm.

i
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Figure 4.31: (a) A photagraphof the sample glued oanauminum plate. (b) Top view of AFM
image over an area of 20nx20um and (c) 3D view of AFM image over anea of Sumx5 pum.

4.3.2 Dielectric function of Au/Ni/Au

In order toget the dielectric function of the multiple Au/Ni/Au layers on the PDMS grating,
spectroscopic ellipsometry measuremeiats performed on a sample with Itm Au/10 nm
Ni/10 nm Au layerson a fat PDMS atAOI from 40° to 60° by 10°. The 1Bm Au/10 nm Ni/10

nm Au films wereevaporated (Univex 300) on an Plasma treated flat PDMS slab under the
same evaporation conditions as th@Ni/Au grating sample. Thethe General oscillator layer
with 35nm from the WVASE software was usédgure 4.32 shows the measured and modeled
ellipsometric angles andwin the spectral range from 300n to 1800 nm. Both measurgd
andwfit very wellthe modeled ones excegviationsin the range neaultraviolet rangeThe
realpart- and imaginary part of effective delectricconstanof the multiple Au/Ni/Au layers
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wasthen extractec&nd showedby the blue linesn Figure 4.33. This dielectricconstantwas
thenused in the next sections to calculate the SPP dispersian line
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Figure 4.32: Spectroscopic ellipsometric angfesandwat AOI from 40° to 60° by 10° in the
spectral range from 30@m to 1800nm.

Figure 4.33 alsoshowsthe dielectic constants oNi (from Palik [86]) andAu (from Johnson
and Christy[87]). As we expected, both the real and imaginary parts of the dielectric constants of
AuU/Ni/Au locate in between that of Ni and Au.
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Figure 4.33: (a) Real part- and (b) imaginary part of dielectric constants of ANi/Au, Au
and Ni.

4.3.3 Reflectance dispersion

Figure 4.34(a) and (c) respectively show the reflectance dispersion plotsumaehwith p
polarized light atl=0° and with spolarized light at}=90° atAOI from 20° to 60° in a broad
spectralrange 200nm-1600 nm together with calculated SPP IlinEigure 4.34(b) and (d)
respectively show the reflectanceda20°, 30° and 40° in accordanteethe left contour plots.
We can seéoth p and s polarized light excite SPRgich is thesame with Au graings
Besides, both SP&xcited by p and s polarized lightare dispersive modes. Foipplarization,
the SPP resonance shifts to higher wavelength #40mm atd=20° to990 nm atd=60°, while
for s-polarization, the SPP resonance slightly shifts to lower wavelengthF80mm atd=20°
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to 470 nm atd=60°. We can see frorfigure 4.34(c) that the influence of RWAsir(-1) on the
reflectance is very weak, while for Au grating as showRigure 4.19b), RWAs air(-1) shows
stronginfluence.
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Figure 4.34: Reflectance dispersion plots measured with {pdlarized light at}=0° and (c) s
polarized light alJ=90° atAOI from 20° to 60° in spectral rangem 200 nm to 1600nm. (b)
and (d)respectively show the reflectanceda®20°, 30° and 40° in accordantzethe (a) and €)
contour plotsrespectively
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Figure 4.35. SPP dispersion lines as a function of whole azimuthal angles and wavelength range
(400-1200nm) atAOI 20°, 40° and 60.
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We already know the condition for SPP excitation in Equatio@. B§ obeying equation
2.82, mixed sand p polarizationcan be used to excite SPPs. Therefore, we calculate the SPP
lines from Equation 2.8 as a function otJ (complete azimuth angles) aeg400-1200nm) at
d=20°, 40° and 60° ifrigure 4.35. We can see SPP lines appear as constricted circles and show
strong dispersioas both AOI and azimuthal rotatioRor instance, we can see the SPP position
red shiftalong U=0° and blue shifalong U=90° asAOI. The redshift and blueshift features
shown inFigure 4.34 (b) and (d) confirm the SPP origin.

Figure 4.36 shows the comparison of reflectance Afi/Ni/Au grating and Au grating
measured with 4and spolarized lightat AOI 30° and 40° in spectral range from 2@@ to1600
nm. The total thicknessfoAu/Ni/Au layer is 35 nm which is the same with Au layer of Au
grating. Besides, Au/Ni/Au and Au grating were fabricated with same method and have similar
periodicity and amplitude. So even though SPPs for Au grating and Au/Ni/Au grating are excited
at different wavelengthsye canstill comparethese two grating samples. We @e in general
that reflectance forAu gratingis higher than AINi/Au grating.This is because Au hasnaller
extinction coefficientthan AuUNi/Au, resultingin small absorptionBesides,due to the large
absorption of Ni, as expected from u&gion (2.76), the full width at half maximumof the
plasmonic peakor Au/Ni/Au grating is muctbroaderthan Au grating.
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Figure 4.36: Reflectance measured with (ajpplarized lightalong U=0° and (c) spolarized
light alongU=90° atAOI 30° and 40° in spectral range from 20® to1600nm for Au grating

andAu/Ni/Au grating.

4.3.4 Reflectance angular dependence

In order to visualize the anuthal dependence of tlexcited modes, pasured reflectance for p
and spolarized light atAOI from 20° to 60° by20° over a complete azimuthal rotation in steps
of 5° in the spectral range between 208 and 1600hm together withcalculated SPPRWAS
and interbandtransitionlines is shown inFigure 4.37. In general,same with Au gratingthe
reflectance shows a simple Sgmmety. The positios of the excited resonanceskigure 4.37
follow the calculated SPPs lines very well confirming their plasmonic orligia.necessary for
the incident light to have a component of polarization that is perpendicular to the gfbloves
Thereforeonly p-polarized light can excite SRPU=0° andonly s-polarized light can excite the
SPPthe positios at U=90°. Besides, we can sgle positios of the excitedSPPresonances in
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the azimuthal rang=-45° to 45° for p-polarized light ands in the azimuthal rangg=45° to
135’ for s-polarized light

If we compare the reflectance with Au gratinge wan se¢he resonances are much more
blurred and broaddghanthatof Au gratingsshown inFigure 4.20. Also,t he AVO0 ®mhape |
Rss due to SPP at arourld=90° are broadr than Au grating The broad resonance at lower
wavelength rang00 nm-700 nm is coming from the anisotromnd non-dispersive effects
Similar to the Au interband transition featwwich is clearly visible and represented as a circle
at 480nm in Figure 4.20, the reflectance for Aii/Au grating also shows weak circular
intensity dropat around510nm as indicated withed dotted linewhich can be explained by the
effective interband transition of the whole /NiYAu layers.Moreover, amewith Au grating, the
influence of RWAs igather wealas shown ithese angular depdert reflectanceplots.
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Figure 4.37: Measured R, and Rsat d=20°, 40° and 60° are plotted with full azimuthal rotation
in the spectral range from 20@n to 1600nm. The blackand dotted redines indicate the
calculatedposition of the SPP modadinterband transition, respectively
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4.3.5 Mueller Matrix in reflection

To get a deeper insight in the influence of SRfterband transition and probably RW#s the
complex optical behavior of the AMi/Au grating, MME measurements were carried out in
reflection in the spectral range between 208 and 1600nm at d=20°, 40° and 60° over
azimuthal rotatior{0-180C). In order to display the completeness of whole azimuthal rotatien, w
duplicate the data in the range 1B8)° based on the data in the rangel@¥) due to the
symmetry of the gratin¢fFigure 4.38). All the MM elements are normalized to M11 elemamd
sone elementsvere scaleavith multiplication factorsn order to obtain a better visualization. In
general,we can see all the lobes in MM elementn be explained by SPP lin€he broad
anisotropy lobe at lower wavelength rarageshownn reflectance plots has no contribution to
the MM patterns thereforeRWA _air(2), RWA_PDMS(2) and interband transition lines which
locate at this lower wavelength range as showfigire 4.39 alsohave no contribution to the
MM lobes. Same with MM measured for Au gratintpe MMEsfor Au/Ni/Au gratingshow the
expected symmetrgndthe oftblock-diagonal elementgresentthe strong anisotrop In detalil,
the oftblock-diagonal elements show curved lobes with maxima artkd&° and 135° at the
excitation wavelengths of the dispersive SPP mobes.lobes near azimuthal angle 90° in M12,
M33 and M43 become weaker as increagi@. These lobes eoe from the SPPs excited by s
polarized light. Moreover, we can see the lobes near azimuthal Zfgie M23 which follow
the SPP lines aAOIl 20° andAOI 40° disappears aAOl 60° due to the dispersion of SPP
excited by s polarized light.
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Figure 4.38 MMEs measured in reflection d&) d=20°, (b)d=40° and (c)d=60° over the
azimuthal rotatior{0-18() in the spectral range between 280 and 1600m. The data in the
range (18eB6(C°) are duplicated from measurathta in the range {08C°). All MMEs are
normalized to M11.

97































































































































































