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Zusammenfassung 

Mikro- und Nanostrukturen stellen bis heute eine vielversprechende Technologie dar, weil sie 

Funktionalitäten erlauben, die entweder so in der Natur nicht existieren, oder weil sie es erlauben 

bestehende Anwendungen mit viel kleinerem Aufwand und höherer Effizient umzusetzen.  

Die Wechselwirkung von komplexen plasmonischen Nanostrukturen, ob periodisch oder 

ungeordnet, mit polarisiertem Licht erzeugt interessante Physik, bei der Streuung, Beugung und 

Absorption verbunden werden, zu einer Vielzahl von dispersiven Moden und Kopplungseffekten. 

Jede dieser Anregungen hängt stark von der Polarisation, dem Einfallswinkel, der azimuthalen 

Orientierung der Probe und der Wellenlänge ab. Das alles führt zu einer vielfältigen 

Wechselwirkung mit polarisiertem Licht. Auf der einen Seite ist dieses Zusammenspiel der 

verschiedenen Wechselwirkungen nicht leicht zu verstehen, auf der anderen Seite eröffnet es die 

Möglichkeit gezielt optische Antworten maßzuschneidern. 

Die komplette optische Antwort einer Probe lässt sich über Müller-Matrizen (MM), gemessen 

für verschiedene k-Vektoren und einen weiten Frequenzbereich, unabhängig von irgendwelchen 

Modellannahmen, bestimmen. Obwohl spektroskopische Müller-Matrix Ellipsometrie 

mittlerweile vielfältige Anwendungen in der Charakterisierung von komplexen Nanostrukturen 

gefunden hat, bleibt die zugrundeliegende Physik oft in den komplizierten Daten versteckt, was 

bei der physikalischen Interpretation der gemessenen MM immer noch zu Herausforderungen 

führt.  

Das Ziel dieser Arbeit ist es, an zwei relativ einfachen plasmonischen Nanostrukturen zu zeigen, 

dass sich die optische Antwort dieser Proben vollständig im Rahmen der MM-Ellipsometrie 

verstehen lässt. In der Arbeit wird gezeigt, dass eine systematische Korrelation der in den MMs 

beobachteten Polarisationsmischung zu der ihr zugrundeliegenden Physik eine zuverlässige 

analytische Methode darstellt, die auf alle Proben angewandt werden kann, die sowohl anisotrop 

sind, als auch Dispersion zeigen. Außerdem kann die Methode auf einen weiten Bereich von 

Proben ausgedehnt werden, ob anisotrop oder nicht, ob sie lokalisierte oder propagierende 

Plasmonenmoden zeigt, oder ob die beobachtete Dispersion ihren Ursprung in 

Wellenleitermoden oder photonischen Moden hat, solange für die k-Abhängigkeit der Dispersion 

ein analytischer Ausdruck angeben werden kann.  Am Beispiel von zwei relativ einfachen 

Proben wird die Mächtigkeit und Implementierung der Methoden gezeigt: an einem 

eindimensionalen plasmonischen Metallgitter und an einem metallischen Nanopartikel-Array. 

Diese beiden Beispiele werden im Rahmen der Arbeit komplett analysiert und gelöst und es wird 

gezeigt, dass die Ergebnisse im Prinzip für neue Anwendungen genutzt werden können. 

 

Eindimensionale Au-Gitter und Au/Ni/Au-Gitter 

Ergebnisse publiziert unter: M. Wang, A. Löhle, B. Gompf, M. Dressel, and A. Berrier, 
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“Physical interpretation of Mueller matrix spectra: a versatile method applied to gold gratings,” 

Opt. Express, vol. 25, no. 6, pp. 6983–6996, 2017. 

Eindimensionale Metallgitter erlauben es durch ihre periodische Struktur die Dispersion von 

anregendem Licht und Plasmonen aufeinander abzustimmen und dadurch sehr effizient 

Oberflächenplasmonen (SPP) anzuregen. Es ist seit langem bekannt das Metallgitter abrupte 

Änderungen in ihrer optischen Antwort zeigen können, die als Rayleigh-Woods Anomalien 

(RWA) bezeichnet werden. RWA können zu sehr schmalen Plasmonenresonanzen in geordneten 

metallischen Anordnungen führen, durch die beugungsbedingte Kopplung von lokalisierten 

Plasmonen, oder sie können die Reflexion von nicht-plasmonischen metallischen Kreuzgittern 

beeinflussen. Obwohl SPPs in metallischen Gittern seit langer Zeit untersucht werden und 

RWAs seit Jahrzehnten bekannt sind, fehlt bis heute ein tieferes Verständnis wie sie die 

Polarisationsmischung in Metallgittern beeinflussen. 

Der erste Teil der Arbeit behandelt die eindimensionalen plasmonischen Metallgitter, die durch 

Aufdampfen von dünnen Au- bzw. Au/Ni/Au-Filmen auf PDMS-Gittern hergestellt werden 

(siehe Abb.1). In einem ersten Schritt wird die Reflexion entlang der zwei optischen Achsen der 

Probe, also entlang der Rillen und senkrecht dazu, mit s- und p-polarisiertem Licht gemessen. 

Die so gemessene Reflexion wird dann mit einem einfachen anisotropen „effective medium“ 

Ansatz mit Drude-Lorentz Oszillatoren moduliert. Aus diesem einfachen Modell werden dann 

Intensitätsplots über den ganzen Wellenlängen- und Winkelbereich generiert. Ist die 

Übereinstimmung zwischen gemessenen und simulierten Intensitäten gut, können Mueller-

Matrix Plots erstellt werden. Diesen Plots werden dann die, aus der bekannten Periodizität des 

Gitters erwarteten dispersiven SPP- und RWA-Moden überlagert. Der Vergleich der so 

simulierten MM mit den gemessenen MM erlaubt es dann, den Einfluss der Anisotropie, 

proparierender SPPs, der Beugung und der materialabhängigen Absorption durch ihre 

unterschiedliche Dispersion zu identifizieren und ihre Wechselwirkung und Kopplung 

hervorgehoben (Abb.2). Man sieht, dass SPPs sowohl durch p- als auch durch s-polarisiertes 

Licht angeregt werden können, wenn die Einfallebene senkrecht oder parallel zu den Gitterlinien 

verläuft. Beide Moden sind dispersiv und folgen den gleichen Phasenanpassungsbedingungen. 

Dadurch kommt es zur einer Polarisationsmischung, die s- in p-polarisiertes Licht durch die 

Anregung von SPPs verwandelt und umgekehrt. Diese Polarisationsmischung ist maximal, wenn 

die Einfallsebene unter 45° zu den Gitterlinien verläuft. Zusätzlich zu der Anregung von SPPs, 

werden die optischen Eigenschaften auch durch die geometrische Anisotropie, die RWAs, die 

direkt mit der Periodizität des Gitters zusammenhängen, und zu einem kleineren Teil, durch die 

Au Interbandübergänge beeinflusst. Die Anisotropie, die Interbandübergänge und nichtdispersive 

Näherung für die SPPs können ganz gut in Rahmen eines „effective medium“ Ansatzes 

beschrieben werden, der sich nur durch die Anpassung an die gemessenen Intensitäten ergibt. 

Die dispersiven SPP- und RWA-Moden müssen dann aber diesem einfachen Modell überlagert 

werden. 

Danach werden die Au/Ni/Au-Gitter mit einem ähnlichen Ansatz analysiert. Auch hier lässt sich 

die Rolle der Anisotropie, propagierender SPPs und die materialabhängige Absorption in 

gleicher Weise identifizieren. Beugungseffekte haben bei den Au/Ni/Au-Gittern nur einen 

schwachen Einfluss, vermutlich wegen der hohen Absorption innerhalb des Ni-Films. Am Ende 

des Kapitels wird noch die Möglichkeit, die plasmonischen Eigenschaften durch Strecken 

einzustellen und die Reversibilität dieses Zugangs diskutiert.  
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Abbildung 1: Schematische Darstellung des reinen PDMS-Gitters (a) und des Au-bedampften (b). 

 

 

Abb. 2: Gemessene und simulierte Mueller-Matrix Elemente M12 und M13 zusammen 

mit den dispersiven SPPs und RWAs und den Interbandübergängen in der oberen Hälfte 

der Plots für einen Einfallswinkel von 45°.  

 

Ag-Nanopartikel Arrays 

Manuskript eingereicht: Meng Wang, Bruno Gompf, Martin Dressel, Nathalie Destouches, and 

Audrey Berrier, “Pure circular dichroism by curved rows of plasmonic nanoparticles.” submitted 

to Optical Materials Express 

Arrays aus metallischen Nanopartikeln wurden in den letzten Jahrzehnten intensiv untersucht. 

Ihre optische Antwort hängt nicht nur von der Größe und Form der einzelnen Partikel ab, 

sondern auch von ihrer spezifischen Anordnung.  Das Wechselspiel zwischen den verschiedenen 

Beiträgen kann dann zu einer komplexen optischen Antwort führen, bei der der Einfluss der 

verschiedenen Beiträge nicht mehr leicht voneinander zu trennen ist. Auf der anderen Seite ist es 
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aber wichtig dieses Wechselspiel der Beiträge verstanden zu haben, wenn man gezielt optische 

Antworten für gewünschte Anwendungen entwickeln will. Es gibt zwar zahlreiche Arbeiten die 

das Wechselspiel in spezifischen Anordnungen von Nanopartikeln und ihre optische Antwort 

untersuchen, aber es gibt im Fall von komplexen Proben, wo unterschiedliche optische 

Eigenschaften, photonische und plasmonische, überlappen, keine eindeutigen Verfahren diese 

sauber zu trennen.  

Der zweite Teil der Arbeit beschäftigt sich mit metallischen Nanopartikel-Arrays, die durch 

einen laser-induzierten Selbstorganisationsprozess hergestellt wurden (Abb. 3). Die Ag-

Nanopartikel sind in einen TiO2-Wellenleiter eingebettet und bilden dort eine periodische 

Anordnung entlang gekrümmter Linien. In diesem Teil wird gezeigt, wie die optische Antwort 

dieses komplexen Nanopartikel-Arrays in ihre Details zerlegt und damit verstanden werden 

kann. Bei dieser komplexen Probe tritt ein kompliziertes Wechselspiel von plasmonischen 

Resonanzen, durch Periodizität bedingter Moden, Wellenleitermoden, Interferenzeffekten und 

Kopplungseffekten zwischen nächsten Nachbarn auf. All diese Einflüsse lassen sich im Rahmen 

der Mueller-Matrix Ellipsometrie und mit Hilfe der anschließenden Matrixzerlegung, 

entflechten. Dadurch lassen sich die fundamentalen physikalischen Mechanismen der 

beobachteten optischen Signaturen identifizieren. Zuerst lässt sich aus der azimuthabhängigen 

Transmission auf die Anisotropie, und aus der Einfallswinkel-Abhängigkeit auf die Dispersion 

durch eine periodische Anordnung schließen, woraus sich dann ein erstes einfaches Modell 

entwickeln lässt. Danach werden dann die gemessenen MM mit denen aus dem einfachen Modell 

simulierten verglichen. Die Dekomposition der MM in ihre fundamentalen optischen 

Eigenschaften erlaubt es anschließend die beobachteten optischen Signaturen spezifischen 

Anregungen der Nanopartikel zuzuordnen: einfache lokalisierte Oberflächenplasmonen, 

Doppelbrechung durch eine anisotrope Anordnung in Linien, die Kopplung zwischen den Linien, 

Beugung in Wellenleitermoden oder eine gebrochene Symmetrie die zu echtem zirkularem 

Dichroismus führt (Abb.1.2 (b)).  Vor allen der letzte Aspekt lässt sich nur durch eine 

vollständige Analyse der Mueller-Matrizen erreichen; nur die differenzielle Zerlegung der 

gemessenen Mueller-Matrizen in ihre fundamentalen optischen Eigenschaften erlaubt es 

zwischen einer Polarisationsdrehung hervorgerufen durch Doppelbrechung und echtem 

zirkularem Dichroismus zu unterscheiden. 

 

 

 

Abb. 3: (a) Schematische Darstellung des Ag-Nanopartikel-Arrays (b) Transmission und 

zirkularer Dichroismus über eine volle Rotation der Probe bei einem Einfallswinkel von 0° und 

20°. 
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Abstract 

Micro-and nanostructures are nowadays very important in science and technology as they allow 

for a whole range of functionalities that either does not exist in nature or reproduce existing 

effects with a much smaller footprint and higher efficiency.  
The interaction of complex plasmonic nanostructures, periodic or random, with polarized light 

creates very rich physics where scattering, diffraction and absorbance are linked to a variety of 

dispersive modes and coupling effects. Each of these excitations depends strongly on 

polarization, angle of incidence, azimuthal orientation of the sample and wavelength. The 

presence of these modes and coupling effects results in manifold interaction with polarized light. 

On the one hand the interplay of these interactions cannot be easily understood and on the other 

hand it opens up the possibility to tailor the optical response.  

The complete optical response of complex samples can be measured by Mueller matrices at 

various k-vectors over a broad frequency range independently from any model. Even though 

Mueller matrix spectroscopic ellipsometry (MMSE) is widely used in characterizing the optical 

properties of complex nanostructures, MMSE results in complex data hiding the underlying 

physics, making the physical interpretation of a measured Mueller matrix (MM) a big challenge.  

The goal of this project is to demonstrate on the example of two simple plasmonic 

nanostructures, that the optical response of these samples can be fully understood in the 

framework of MM ellipsometry. It is demonstrated that a systematic correlation of the observed 

polarization mixing in MMs to their underlying physical origin is a versatile analytical method 

suitable to all samples exhibiting both anisotropy and dispersive modes. Further, the applicability 

can be extended to a wide variety of samples whether anisotropic or not, presenting localized or 

propagating plasmonic resonances, photonic modes -whether originating from waveguiding or 

scattering- or other dispersive modes at the only condition that an analytical expression for the 

dispersion of these modes exists. To demonstrate the power of this method and its 

implementation, we apply it to two very simple examples: the one-dimensional plasmonic 

metallic grating and metallic nanoparticle arrays. These two examples are completely analyzed 

and solved in the following topics and the results can in principle be used for new application.   

 

 

Au gratings and Au/Ni/Au gratings 

Manuscript published: M. Wang, A. Löhle, B. Gompf, M. Dressel, and A. Berrier, “Physical 

interpretation of Mueller matrix spectra: a versatile method applied to gold gratings,” Opt. 

Express, vol. 25, no. 6, pp. 6983–6996, 2017. 

 

One-dimensional gratings are very efficient tools to excite SPPs by matching their dispersion to 

that of light. When considering grating-based structures, it is well known that regular periodic 

nanostructures can show abrupt changes in the optical response, referred to as Rayleigh wood´s 

anomalies (RWAs) [11]. RWAs can result in very narrow plasmon resonances in regular 

plasmonic arrays of metallic nanoparticles, originating from the diffraction coupling of localized 

plasmons, or modify the reflectance of non-plasmonic metallic square arrays. Even though SPPs 

on metallic gratings have been studied for a long time and RWA effects have also been well 
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known for decades, a clear understanding of how SPPs and RWAs influence the polarization 

mixing of gratings is still lacking.   

We focus on the one-dimensional plasmonic metallic grating which is fabricated by 

evaporating Au (Figure 1) or Au/Ni/Au thin film on PDMS grating.  

First, for Au grating, we measure the reflectance along the two optic axes of the grating, along 

and perpendicular to the grooves under s- and p-polarization. The reflectance is then modelled by 

a simple anisotropic effective medium approach using Drude-Lorentz oscillators. From this 

anisotropic model, the intensity plots over the whole spectral and angular range are generated. 

Once the agreement between the generated and measured plots is insured, the Mueller-matrix 

plots can be calculated. On top of this calculated MME we superimpose the expected dispersive 

SPP and RWA modes, calculated from the known periodicity of the grating. Comparing this 

composed result with measured MMs gives a deep insight on how the different physical 

contributions originating from periodicity, anisotropy and material properties influence the 

complex polarization mixing (Figure 2). We have seen that SPPs can be excited by both p- or s-

polarized light when the incident plane is perpendicular or parallel to the grating grooves. Both 

SPP modes are dispersive with the AOI and follow the same phase matching condition. P- or s-

polarized light can be converted to s- or p- polarized light via SPP excitation, and maximum 

polarization conversion occurs when the angle between incident plane and grooves is 45°. 

Additionally to the excitation of SPPs, the optical properties are influenced by geometric 

anisotropy, the RWAs related to the periodic grating structure and, to a lesser extent, the Au 

interband transition. The anisotropy, the interband transition and the non-dispersive 

approximation of the SPPs are understood in terms of an effective medium approach, obtained 

from fitting the measured reflectance. However, the dispersion of the SPP modes and the RWAs 

effects should be added on top of this model.  

Then we have demonstrated how the complex optical response of a simple Au/Ni/Au grating 

can be decomposed into its physical ingredients in the same approach with Au grating. The 

optical properties are influenced by the excitation of SPPs, geometric anisotropy and to a lesser 

extent, the Au/Ni/Au interband transition. Due to the high absorption of Ni, the influence of 

RWAs disappears and the plasmonic feature becomes broader as compared with Au grating. 

Finally, we introduced an active way for tuning SPP via mechanical stretching. By actively 

stretching the PDMS grating template, the periodicity of grating increases and SPP peak position 

red shifts. The releasing of a stretched metallic grating gives us a way for tuning the gap size 

between grating bulks with the shape of grating bulks unchanged.  

 

 

 
 

Figure 1: Schematic of Au gratings. 
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Figure. 2: Measured and simulated Mueller matrix elements M12, M13 together with the SPP, 

RWA and interband transitions draws in the upper half space at AOI 45°.  

 

Ag nanoparticle arrays 

Manuscript submitted: Meng Wang, Bruno Gompf, Martin Dressel, Nathalie Destouches, and 

Audrey Berrier, “Pure circular dichroism by curved rows of plasmonic nanoparticles.” submitted 

to Optical Materials Express 

 

Metallic nanoparticle arrays have been widely studied over the last decades. Their optical 

response depends not only on the individual particle, but also on their specific arrangement. The 

interplay of different contributions can lead to a complex optical response, where the influence 

of the different ingredients cannot be easily separated. On the other hand, however, this interplay 

has to be perfectly known, in order to tailor the optical response for any desired application. 

Numerous investigations describe the interplay between specific geometrical arrangements of 

nanoparticles and their optical response in different configurations where nanoparticles are 

ordered or randomly distributed, with different sizes and shapes. However, in the case of 

complex samples, where different optical – photonic or plasmonic – effects overlap and interact 

with each other, hitherto no clear procedure is readily available.  

We have in full detail and completeness investigated the optical properties of a complex 

plasmonic sample where an interplay is found of the contributions from plasmonic resonances, 

periodicity, interference with waveguide modes and nearest-neighbor coupling between adjacent 

particles. To fully characterize this sample, we have used the powerful framework of Mueller 

matrices advanced by the differential decomposition formalism. We show that even in the 

presence of large complexity, the optical response can be easily disentangled by the presented 

method. The investigated sample is easily manufactured in a self-assembly process stirred by the 
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properties of the illuminating laser light during fabrication (Figure 3(a)). It consists of silver 

nanoparticles periodically arranged along curved lines, which are embedded in a TiO2 

waveguide. When light is impinging on the sample surface and reaches the nanoparticle layer, 

several phenomena occur. First the plasmonic resonance of the individual nanoparticles is 

excited, and part of the transmitted light is hence absorbed. The nanoparticles also serve as 

scattering elements for the incident light: part of the light is coupled to the waveguide modes via 

interaction with nanoparticles. On its turn, the waveguide modes are leaky modes and can be 

scattered by the presence of nanoparticles:  this diffracted part of the leaky mode will interfere 

with the directly transmitted light. The result of this interference is the so-called “destructive 

interference mode”. The destructive interference mode has a large influence on the optical 

response of the sample. Its signature is found both in intensity plots as well as in the phase, as 

attested by MM measurements. Moreover, it was discovered that such structures are 

characterized by a particular circular dichroism behavior (Figure 3(b)), which cannot be 

explained by the sole superposition of the linear optical properties. Whereas the linear circular 

dichroism is coming from the anisotropy of the sample, the true circular dichroism is due to the 

coupling between destructive interference mode and plasmonic modes as well as the nearest-

neighbor coupling between plasmonic nanoparticles.  

 

 

 

Figure 3: (a) Schematic of Ag nanoparticle array (b) Transmittance and circular dichroism at 

AOI 0° and 20° over the whole azimuthal angles from 0° to360°. 
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Chapter 1 

Introduction 

Micro-and nanostructures are nowadays very important in science and technology as they allow 

for a whole range of functionalities that either does not exist in nature or reproduce existing 

effects with a much smaller footprint and higher efficiency. Plasmonics which explores how 

electromagnetic fields can be confined to the order of micro-and nanometer is one way to use 

micro-and nanostructures in the field of photonics. Plasmonic modes can be propagating or 

localized. Surface plasmon polaritons (SPPs) are collective electron excitations coupled to the 

electromagnetic radiation propagating along metal-dielectric interfaces, evanescently confined in 

the perpendicular direction as shown in Figure 1. 1 [1]. Owing to their unique dispersion and 

strong field confinement, SPPs have attracted attention during the last decades and have 

promising applications in integrated optics [2], field enhancement [3], [4], sensing [5]–[7] and 

imaging [8]. Localized surface plasmons (LSPs) on the other hand are non-propagating 

excitations of the conduction electrons of metallic nanostructures coupled to the electromagnetic 

field (Figure 1. 1). It is well known that the LSPs depends on the size, shape, and material 

properties of the nanoparticle as well as of the surrounding medium [9].  

 

 
 

Figure 1. 1: (left) Sketch of charges oscillation and fields for a SPPs at a metal/dielectric 

interface; (right) Sketch of charges oscillation for a LSP in a metallic nanoparticle [10].  

The interaction of complex plasmonic nanostructures, periodic or random, with polarized light 

creates very rich physics where scattering, diffraction and absorbance are linked to a variety of 

dispersive modes and coupling effects. Each of these excitations depends strongly on 

polarization, angle of incidence, azimuthal orientation of the sample and wavelength. The 

presence of these modes and coupling effects results in manifold interaction with polarized light. 

On the one hand the interplay of these interactions cannot be easily understood and on the other 

hand it opens up the possibility to tailor the optical response.  

The complete optical response of complex samples can be measured by Mueller matrices at 

various k-vectors over a broad frequency range independently from any model. Mueller matrix 

spectroscopic ellipsometry (MMSE) is therefore a powerful and sensitive tool to fully 
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characterize complex plasmonic nanostructures. Even though MMSE is widely used in 

characterizing the optical properties of complex nanostructures, MMSE results in complex data 

hiding the underlying physics, making the physical interpretation of a measured Mueller matrix 

(MM) a big challenge. In principle it is of course possible to calculate the MMs for different 

angles of incidence, various azimuthal orientations and a broad range of frequencies by solving 

the Maxwell-equations under the specific boundary conditions. But this approach is on the one 

hand time-consuming and computer intensive and on the other hand it does not really promote 

the physical understanding of the origin of the observed optical behavior. 

The goal of this project is to demonstrate on the example of two simple plasmonic 

nanostructures, that the optical response of these samples can be fully understood in the 

framework of MM ellipsometry. It is demonstrated that a systematic correlation of the observed 

polarization mixing in MMs to their underlying physical origin is a versatile analytical method 

suitable to all samples exhibiting both anisotropy and dispersive modes. Further, the applicability 

can be extended to a wide variety of samples whether anisotropic or not, presenting localized or 

propagating plasmonic resonances, photonic modes -whether originating from waveguiding or 

scattering- or other dispersive modes at the only condition that an analytical expression for the 

dispersion of these modes exists. To demonstrate the power of this method and its 

implementation, we apply it to two very simple examples: the one-dimensional plasmonic 

metallic grating and metallic nanoparticle arrays. These two examples are completely analyzed 

and solved and the results can in principle be used for new application. 

One-dimensional gratings are very efficient tools to excite SPPs by matching their dispersion 

to that of light. When considering grating-based structures, it is well known that regular periodic 

nanostructures can show abrupt changes in the optical response, referred to as Rayleigh wood´s 

anomalies (RWAs) [11]. RWAs can result in very narrow plasmon resonances in regular 

plasmonic arrays of metallic nanoparticles, originating from the diffraction coupling of localized 

plasmons, or modify the reflectance of non-plasmonic metallic square arrays. Even though SPPs 

on metallic gratings have been studied for a long time and RWA effects have also been well 

known for decades, a clear understanding of how SPPs and RWAs influence the polarization 

mixing of gratings is still lacking.   

Metallic nanoparticle arrays have been widely studied over the last decades. Their optical 

response depends not only on the individual particle, but also on their specific arrangement. The 

interplay of different contributions can lead to a complex optical response, where the influence 

of the different ingredients cannot be easily separated. On the other hand, however, this interplay 

has to be perfectly known, in order to tailor the optical response for any desired application. 

Numerous investigations describe the interplay between specific geometrical arrangements of 

nanoparticles and their optical response in different configurations where nanoparticles are 

ordered or randomly distributed, with different sizes and shapes. However, in the case of 

complex samples, where different optical – photonic or plasmonic – effects overlap and interact 

with each other, hitherto no clear procedure is readily available.  

This work is organized as follows. For convenience of comparison, we first present a 

thorough characterization of one dimensional pure polydimethylsiloxane (PDMS) grating 

(Figure 1. 2(a)) via MMSE and atomic force microscopy. The comparison of the measured MM 

with calculations based on a Bruggeman biaxial layer model traces back the observed 

polarization mixing to pure anisotropy and RWAs. 
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Figure 1. 2: Schematic of (a) pure PDMS grating and (b) Au gratings. 

Subsequently, we focus on the one-dimensional plasmonic metallic grating which is 

fabricated by evaporating Au (Figure 1. 2(b)) or Au/Ni/Au thin film on PDMS grating. First of 

all, we compare both measured reflectance and full MM data obtained from a one-dimensional 

gold grating in a broad wavelength range, full azimuthal range and varied angles of incidence. 

The role of sample anisotropy, propagating SPPs, diffraction orders and material related 

absorbance is respectively identified by their different dispersion behavior and their interaction 

and coupling are highlighted. The comparison of the measured MM with calculations based on a 

simple biaxial layer traces back the observed polarization mixing to its physical origin. Second 

of all, we analyze the Au/Ni/Au grating in the similar approach with Au grating. The role of 

sample anisotropy, propagating SPPs and material related absorbance is respectively identified. 

Diffraction orders in Au/Ni/Au grating show very weak influence which is probably due to the 

big absorption inside the system by Ni. The ability of tuning plasmonic properties by mechanical 

stretching and the reversibility of this approach is discussed at the end of this section. 

Finally, we focus on a metallic nanoparticle array (Figure 1. 3(a)) which is obtained by laser-

induced self-assembly. We demonstrate how to decompose the optical response of a complex 

nanoparticle array in all details and full completeness. This enables us to identify the basic 

physical mechanisms for the different optical features observed. Starting with the azimuthal 

dependent transmitted intensity giving the anisotropic arrangement and the dependence on the 

angle of incidence (AOI) giving the dispersion due to a periodic arrangement of the nanoparticles 

a first simple model is developed. Comparing the measured Mueller-matrices with the simulated 

ones from the simple model and subsequently decomposing the Mueller-matrices into their basic 

optical properties allows us to explain the observed optical features to the specific excitations of 

the nanoparticles: simple localized surface plasmon resonances, birefringence due to anisotropic 

arrangement in lines, coupling between the lines, diffraction into waveguide modes or a broken 

symmetry leading to true circular dichroism (Figure 1. 3 (b)). 

 

 

Figure 1. 3: (a) Schematic of Ag nanoparticle array (b) Transmittance and circular dichroism at 

AOI 0° and 20° over the whole azimuthal angles from 0° to360°. 
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Chapter 2 

General Theory 

2.1    Ellipsometry 

2.1.1 Maxwell´s equation 

Maxwell´s equations [12] are a set of differential equations that together with Lorentz force law 

are the foundation of classical electromagnetism, classical optics, and electric circuits. They 

describe how electric and magnetic fields are generated by charges, currents, and changes of 

each other, and how they are influenced by objects. The Maxwell´s equations in the free space in 

SI-units are:  

 

                             Gauss´s law for electricity:                                                       (2.1) 

 

                             Gauss´s law for electricity:                                                       (2.2) 

 

                                                  Faraday´s law:               -
  

  
                                  (2.3) 

 

                                  Ampere´s law:                 
  

  
                             (2.4) 

 

where E and H are the electric and magnetic field respectively and D and B are the electric 

displacement field and the magnetic induction. The quantities ρ and J are the volume charge 

density and the electric current density.  

The definitions of the auxiliary fields are: 

 

                                                                 (2.5) 

 

  
 

  
 -                                                           (2.6) 

 

where P is the polarization field and M is the magnetization field which are defined in terms of 

microscopic bound charges and bound currents respectively. ɛ0 and µ0 are the permittivity and 

permeability of free space. The equations specifying the dependence of the polarization P and 

the magnetization M on the applied electric and magnetic field are called constitutive relations. 

More generally, for linear materials the constitutive relations are: 

 

                                                                      (2.7) 

 

https://en.wikipedia.org/wiki/List_of_electromagnetism_equations#Definitions
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                                                                (2.8) 

 

In a homogeneous isotropic medium, ɛ and µ known as relative permittivity and permeability of 

the material are related to the electric and magnetic polarization properties of the medium by the 

electric and magnetic susceptibilities    and    as follows: 

 

                                                                (2.9) 

 

                                                             (2.10) 

 

The relative permittivity is a complex value described as: 

 

                                                               (2.11) 

 

where   shows frequency dependence of the permittivity.  

2.1.2 Polarization states 

Maxwell’s equations for a no charges and no currents region appear as follows: 

 

    ⃗                                                                       (2.12) 

 

                                         ⃗⃗                                                                       (2.13) 

 

                                                             ⃗  
  ⃗⃗ 

  
                                                               (2.14) 

 

                                         ⃗⃗ -
 

  

  ⃗ 

  
                                                               (2.15) 

 

We can obtain the wave equation for the electric field by taking the curl of the curl equations, 

and using the curl of the curl identity               -    

 

   ⃗  -
 

  

   ⃗ 

   
                                                          (2.16) 

 

Electromagnetic plane wave is one of the solutions of the electric field wave equation: 

 

              -                                                  (2.17) 

 

where E0 is a complex vector indicating the amplitude and polarization state of the wave.   is 

the angular frequency, k is wave number and   is the initial phase.  

Polarization states are usually only defined in terms of the direction and phase of the vector of 

electric filed. We can describe the polarization state of light traveling along z direction by vector 

sum of electric field components along two orthogonal axes x and y: 
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                                             -                       -                 (2.18)      

                                      

where x and y are unit vectors along x and y directions.  

The polarization state of a light beam refers to the path of electric field traces at a fixed 

position as the light propagates. In the description of the polarization states, only the relative 

phase difference   -   is important and taken into account. Polarization states are classified as 

three types in Figure 2. 1: linear, circular and elliptical states. Linear polarization is defined when 

two component waves in x and y directions are in phase (  -    ). Circular polarization is 

defined when Ex0 and Ey0 are equal in magnitude but are 90° out of phase (  -       ). In 

general cases, the polarization states are elliptical polarizations. 

 

 
 

Figure 2. 1: Representation of linear, right-circular and elliptical polarizations. 

2.1.3 Jones vector 

The Jones vector is defined by superimposing the two electric field vectors in the x and y 

directions. Jones vector can describe all totally polarized states including linear and elliptical 

polarizations. Therefore, the Jones matrix is used to mathematically describe ellipsometry 

measurement. If we use Eq. (2.18), the Jones vector is given by 

 

       [
            -       

            -       
]          -     [

            
            

]                   (2.19) 

 

By omitting the term    {  (  -   )} and using the phase difference (  -  ), we can simplify the 

equation to 

 

       [
  

  
] [

|  |         -    

|  |
]                                     (2.20) 

 

In ellipsometry measurement, only relative changes in amplitude and phase are taken into 

account. So, we express the Jones vector by the normalized light intensity (I=1). The linearly 

polarized light parallel to the x and y directions are expressed by 
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          [
 
 
]                         [

 
 
]                                   (2.21) 

 

The right-circular polarized light and left-circular polarized light are described by 

 

   
 

√ 
[
 
 
]                  

 

√ 
[
 

- 
]                                 (2.22) 

 

Optical elements along the light path in the ellipsometry measurement can be described by Jones 

matrix to analyze the transformation of polarization states. The Jones matrices for a polarizer (P) 

and an analyzer (A) in the case when the transmission axis is parallel to the x axis are expressed 

by 

 

    [
  
  

]                                                       (2.23) 

 

The Jones matrix for a compensator when the fast axis is parallel to the x axis is expressed by 

 

  [
  

      -   
]                                                    (2.24) 

 

In general cases, a polarizer or compensator is not installed with axes along x or y axis. However, 

we can simplify the equations by rotating the coordinate systems. The rotation matrices are: 

 

     [
              

-              
]                    -   [

       -       
              

]             (2.25) 

 

The above R(-α) and R(α) correspond to the matrices when the coordinate system is rotated 

clockwise and anti-clockwise, respectively. 

 

 
 

Figure 2. 2: Representation of an optical instrument by Jones matrices [13]. 
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Figure 2. 2 shows a simple example of using Jones matrices to describe an optical instrument. 

The measured intensity can be easily obtained by multiplying the Jones matrices of every 

element consequently along light path. 

 

[
  

  
] [

  
  

] [    -    
        

] [
  
  

] [
  

 
] [

      

 
]                   (2.26) 

 

So we obtain the measured light intensity: 

 

  |  |
  |  |

 
                                              (2.27) 

 

This above result is known as Malus´s law. 
Jones matrix can also be used to describe a sample (S). If a sample is isotropic and not too rough, 

then off-diagonal elements in the sample Jones matrix are zero: 

 

                                                      [
    

    
]                                                        (2.28) 

 

where     and     are the complex Fresnel reflection coefficients for the p- and s-polarized light, 

respectively. If a sample is anisotropic, then the sample Jones matrix will probably have off-

diagonal elements: 

 

   [
        

        
]                                                      (2.29) 

 

2.1.4 Reflectance and Transmittance 

Figure 2. 3 shows light reflection and transmission of p- and s- polarized light on an interface 

between two media. The plane of incidence is defined as the plane which contains the surface 

normal and the wave vector of the incoming radiation. The oscillatory direction of electric field 

of p-polarized light is in the plane of incidence, while the oscillatory direction of electric field of 

s-polarized light is perpendicular to the plane of incidence. p- and s-polarized lights can interact 

quite differently with the sample. The reflectance is defined as the ratio of reflected light 

intensity Ir to incident light intensity Ii. The reflectance for p- and s-polarized light is expressed 

by 

 

   
   
   

 |
   

   
|

 

 |  |
 
                           

   
   

 |
   

   
|
 

 |  |
                 

 

The transmittances for p- and s-polarized light are given by the following equations: 

 

   (
       

       
) |  |

 
                           (

       

       
) |  |
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where    and    are the complex refractive indexes of the upper and lower medium respectively 

and θ1 and θ2 are AOI and angle of transmission.   ,  ,    and    are Fresnel coefficients and 

obtained by solving Maxwell´s equations under interface boundary conditions. The equations for 

  ,   ,    and    are known as Fresnel equations:  

 

   
               

               
                           

               

               
                   

                                

 

   
   

   
 

        

               
            

   

   
 

        

               
            

 

 
 

Figure 2. 3: Electric field E for p- and s-polarization reflected and transmitted by an interface between two 

media with refractive indexes N1 and N2. The AOI and angle of transmission are θ1 and θ2 [14].  

2.1.5 Ellipsometry 

The amplitude reflection coefficients for p- and s-polarizations differ significantly due to the 

difference in electric dipole radiation. Therefore, after interaction with the sample, the incoming 

linearly polarized light often becomes elliptically polarized light as shown in Figure 2. 4. 

Ellipsometry measures the change in polarization state of light reflected from (or transmitted 

through) the surface of a sample. The change in polarization state is commonly characterized by 

the two ellipsometric angles   and Δ as Eq (2.34).  

 

              
  

  
                                                          

 

where    and    are the Fresnel  reflection coefficients for p- and s-polarized light, respectively. 

     is the magnitude of the reflectivity ratio, and Δ is the phase difference. Ellipsometric 
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measurement has advantages over simple intensity-based reflection or transmission 

measurements in terms of the high accuracy, precision, and sensitivity, making it highly suited 

for applications in thin film metrology [15].  

 

 
 

Figure 2. 4: Measurement principle of spectroscopic ellipsometry. 

 

The measured quantities ( , Δ) are not directly measured parameters of interest (thicknesses, 

optical constants, etc.) rather they are a function of them. It is then necessary to solve the inverse 

problem by modeling. This model should contain both known parameters and unknown physical 

parameters. We can vary the unknown physical parameters in the model, and generate data until 

a set of optimized parameters are found and can yield calculated data that closely match the 

measured optical data. The Levenberg-Marquardt multivariate regression algorithm is employed 

for the fitting process. Overall, the four steps of the whole optical experiment procedure are 

illustrated in Figure 2. 5 below [16]. 

 

 
 

Figure 2. 5: General procedure used in ellipsometry measurements to determine material properties [16]. 
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2.1.6 Dielectric function Models 

There are many dielectric function models available for us to select in the data analysis of 

spectroscopic ellipsometry. The appropriate dielectric function models are chosen according to 

the optical properties of the sample.  

The Lorentz Oscillator Model 

The Lorentz oscillator model is a classical physical model used to describe the dielectric function 

in the visible/UV region arise from the response of bound charges to the applied electric fields. 

The electron and atomic nucleus are bound similar to a mass-spring system and follows Hooke´s 

law. The applied electric field causes the motion of the electrons as oscillating in a viscous fluid. 

According to Newton's second law, the equation of motion can be expressed as [13]: 

 

 
    

   
    

   

  
    

       ⃗⃗                                                       

where   and   are the mass and the charge of the free electron and    is the displacement, 

 ⃗⃗            is the applied electric field,           is the acceleration force,    
   is the 

Hooke´s force, where    is the resonant frequency of the oscillator.    
  

  
 is the viscous force. 

         is the damping factor which describes the damping due to scattering, where   is the 

mean time an electron travels between two collisions. The electron oscillates at the same 

frequency as the applied electric field (i.e.       )). Thus, if we assume the solution can be 

described by the form              ), we can get the description of a as follows: 

 

   
   

 

 

   
         

                                                        

 

The dielectric polarization is expressed as P=-eNex(t), where Ne is the number of electrons per 

unit volume. So we obtain the dielectric function   as follows: 

 

    
    

   

 

   
         

                                                    

 

This dielectric function is the Lorentz oscillator model. We can obtain the real and imaginary 

part of this complex dielectric function as: 

 

     
    

   

   
     

   
           

                                              

 

   
    

   

  

   
           

                                                 

 

In actual ellipsometry data analysis, Lorentz model is expressed using photon energy as follows 

[16]: 
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              ∑
  

  
          

                                           

 

where Ak is the amplitude, Ek is the center energy, and Bk is the broadening of the k
th

 oscillator, E 

is the photon energy in eV. 

The Drude Oscillator Model 

The Drude oscillator model [17] is based on the kinetic theory of electrons in a metal which 

assumes that the material has a mass of motionless positively charged ions detached from an 

electron gas with neglecting electron-electron interaction. It was constructed in order to explain 

the transport behavior of free electrons in metals and free carriers in semiconductors. Drude 

oscillator is a special case of the Lorentz oscillator model having no restoring force and 

resonance frequency. The motion equation is: 

 

 
    

   
    

   

  
    ⃗⃗                                                            

 

By solving the motion equation, we obtain ɛ as: 

 

    
    

   

 

      
   

  
 

      
                                                      

 

where     
    

       
    is the plasma frequency of the material. In the case of semiconductors, 

   is located in the infrared region, while    is in the visible/UV region in metals. The real part 

and imaginary part of dielectric function are: 

 

     
  

 

     
                                                                   

 

    
  

  

        
                                                                

 

The Cauchy Oscillator Model 

The Cauchy model [18] corresponds to the spectral region where k 0 in the Lorentz model. By 

assuming     at      and using         , we obtain 

 

       
    

         

  
   

     
 
                                                     

 

Cauchy oscillator model is then obtained from the series expansion of equation 2.45 and given 

by: 
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Cauchy oscillator model works best when materials are transparent and it may be regarded as an 

approximation of the low-energy tail of oscillators in the UV far away from the energy range of 

the instrument. Different from Lorentz and Drude oscillator models, the relation between n and k 

are not Kramers-Kronig consistent.    

2.2 Mueller Matrix 

Although the Jones vector describes polarized light and Jones matrix provides an elegant method 

to describe the interaction between optical elements and polarized light, unpolarized or partially 

polarized light cannot be expressed by Jones vector. Therefore, Stokes vectors are used in order 

to describe all types of polarized light. The Stokes parameters are defined as [13]: 

 

                                                                            

 

                                                                              

 

                                                                                    
 

                                                                             

 

Here S0 is the total intensity of light, S1 shows the light intensity determined by subtracting the 

light intensity of linear polarization in the y direction from that in x direction, S2 shows the light 

intensity obtained by subtracting the light intensity of linear polarization at -45° from that at 

+45°, S3 represents the light intensity of left-circular polarized light subtracted from that of right-

circular polarized light. Conventionally the x- and y-directions correspond to the directions of s- 

and p- polarized light. In other words parameters S1-3 represent relative intensity difference of 

each state of polarization which can be described by four Stokes parameters or a Stokes vector: 

S= [S0, S1, S2, S3]. 

The Stokes parameters are real quantities and can be measured experimentally. Once light is 

reflected or transmitted by a sample it can generally change its initial polarization state from Sin 

to Sout. The transformation of the Stokes vector is described by a 4x4 matrix called Mueller 

matrix M:  

 

           [

            
            
            
            

]                                              

 

Although the Stokes vector are traditionally numbered from 0 to 3, for sake of convenience, the 

MM elements are numbered from 1 to 4.  

For a non-depolarizing sample, MM is also called Mueller-Jones matrix. In this case, the MM 

elements can be derived from complex 2x2 Jones matrix as follows [19]: 
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All MM elements are conventionally normalized to the M11 element which represents total 

reflected/transmitted intensity. The off-block-diagonal sub-matrices [
      
      

]  and 

[
      
      

]  represent polarization conversion effects. MM of a sample gives complete 

information about polarization properties of a sample under study therefore MM is a powerful 

and sensitive tool to fully characterize anisotropy and depolarization of samples, which cannot be 

achieved by simple intensity measurements. Mueller matrix spectroscopic ellipsometry (MMSE) 

has been applied in different fields for example, depolarization [20], [21], metrology [22], [23], 

plasmonic nanomaterials [24]–[29] as well as magnetic or biological materials [30], [31]. In 
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particular it is a powerful method to characterize optical nanostructures, such as for instance 

plasmonic meanders for polarization control and depolarizers [27], [29], and reveal their optical 

properties.   
 

2.3 Mueller Matrix decomposition 

Even though MM is a powerful tool to fully characterization, the interpretation of the hidden 

physical effects in MM is a challenge. MM is normally reduced to Jones Matrix in order to 

obtain the physical interpretation of the measured MM in terms of optical anisotropy [32]. 

However, not all MM can be deduced to Jones matrix due to depolarization effects. Therefore, 

various decomposition methods are built and used to determine the physics behind the 

depolarizing MM.  

2.3.1 Product decomposition 

 
Figure 2. 6: Schematic of product decomposition. 

 

As shown in Figure 2. 6, an arbitrary depolarizing MM M can be decomposed into the product of 

a diattenuator   , a retarder    and a depolarizer    in sequence as [33] 

 

                                                                           
 

Diattenuator is the optical component only changes the amplitude of the incoming electric field, 

while retarder is the optical component only changes the phase. Polarizer and wave plate are 

simple examples of diattenuator and retarder. The diattenuator MM    is completely constructed 

from the first row of M as 
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where   is the diattenuation vector, I is the 3x3 identity matrix and    is the transmittance for 

unpolarized light.  

The depolarizer is defined as 
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]                                                            

 

with    and    given by 
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where     is the polarizance vector,    is the 3x3 sub-matrix of the matrix       
- 

 and 

           are the eigenvalues of   .Then, finally    is calculated as   
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2.3.2 Cloude decomposition 

 

 

Figure 2. 7: Schematic of Cloude decomposition. 

Cloude pointed out that any depolarizing MM can be represented by a linear combination of up 

to four non-depolarizing matrices [34]   

 

                              ∑  

 

   

                                          

 

The coefficients    are the four real eigenvalues of the so called 4 x 4 Hermitian covariance 

matrix C of M. From convention, these are sorted according to the order              The 

physical image for the Cloude decomposition is that the medium is not homogeneous in the 

direction perpendicular to the light propagation. The sample can be regarded as separated areas 

with different M which are pure Mueller-Jones matrices [35]. Various partial beams of the 

incident light thus have different interactions. This incoherent manner results in depolarized M. 

This is shown schematically in Figure 2. 7.  

The Hermitian covariance matrix C is constructed from M by the following linear operation 

 

  ∑   

   

(     
 )                                                                        

 

where the    are Pauli spin matrices given by  
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   [
  
  

]      [
  
   

]      [
  
  

]      [
  
   

]                               

 

Let     and    be the eigenvalues and normalized eigenvectors of C, respectively. The covariance 

matrices    of the non-depolarizing component    are then found from 

 

       
                                                                                       

where   stands for the Hermitian conjugate. Once    in Eq. (2.61) is found,    are finally 

obtained by inverting Eq. (2.59). 

2.3.3 Differential decomposition 

With a given light path in an optical system, there are eight effects namely, mean absorption k, 

mean refraction  , linear birefringence LB and LB´ (along x-y and ±45° axes, respectively), 

linear dichroism LD and LD´(along x-y and ±45° axes, respectively),  circular birefringence CB 

and circular dichroism CD, can be measured. The definition of these effects are presented in 

Table 2.1 [36], where n is refractive index;   is extinction coefficient;   is the path length through 

the medium;    is vacuum wavelength of light; the polarization of light is specified with 

subscripts x, y, 45° and 135° for linear polarized light and +,- for right circular and left circular 

polarized light. By using differential decomposition formalism as follows, LB and LB´, LD and 

LD´, CB and CD can be retrieved. 

 

Table 2.1: Definition of symbols [36] 

Effect Symbol Definition 

Isotropic phase retardation           
Isotropic amplitude absorption           

(x-y) linear dichroism                  

(x-y) linear birefringence                  

45° linear dichroism                      

45° linear birefringence                      

Circular dichroism                  
Circular birefringence                  
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Figure 2. 8: Schematic of differential decomposition. 

Figure 2. 8 shows the schematic of differential decomposition. The differential MM, m, relates to 

the MM, M, as the following propagation equation [37]–[39]: 

 
  

  
                                                                                 

 

where M and m are the MM and differential MM of the medium at the position z. If m does not 

depend on z, i.e., the sample is uniform in the direction of light propagation, then the solution of 

this differential equation is obtained by taking the logarithm of M. If L=ln M, then L is the 

accumulated differential matrix: L=ml, where l is the sample thickness.  

The matrix L can further decomposed as L=Lm+Lu. Lm and Lu can be written as:  
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G is the Minkowski metric and expressed as G=diag(1,-1,-1,-1). Lm corresponds to a 

nondepolarizing MM. LDP, LDP’ and CDP in Lu describe the selective depolarization of linear 

horizontal, linear 45°, and circular polarized light respectively. These three parameters vanish for 
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a non-depolarizing MM. The inhomogeneity of the sample or time-irreversal events would result 

in the nondiagonal terms     [37]. 

The optical response of anisotropic materials which show circular effects cannot be simulated through 

ellipsometric modeling. Because ellipsometric modeling is based on Fresnel’s equations by a three-

dimensional dielectric tensor in cartesian coordinates. Even though the Euler angle can always specify an 

arbitrarily oriented optical axis for orthorhombic crystals, the ellipsometric modeling can only generate 

the linear effects (birefringence and linear dichroism) rather than circular effects (circular birefringence 

and circular dichroism). 

2.4 Circular dichroism and birefringence  

Circular Birefringence (CB) is the difference in refraction of left and right circularly polarized 

light. CB effect can be observed in liquids and solutions and reflects the dissymmetry of the 

liquid molecules or dissolved chromophores with lack of mirror symmetry. The polarization 

plane of linearly polarized light rotates after traversing a CB medium. The rotation angle is given 

by  

 

   
         

 
                                                             .    

 

where  - and    are the refraction index of the medium for left- and right- circularly polarized 

light.     is the vacuum wavelength of light and   is the optical path length of the medium. 

Circular Dichroism (CD) is the difference in the absorption of left and right circularly polarized 

light. Like CB, the CD effect can be observed in liquids and solutions in which the 

chromophores are randomly oriented in space and reflects the dissymmetry of the liquid 

molecules or dissolved chromophores. CB and CD stem from the same quantum mechanical 

phenomena and are connected with each other by Kramer-Krönig (KK) relation.  

Nowadays CD spectroscopy is a technique used in chemistry and biotechnology for the 

conformational analysis of chiral molecules of all types and sizes. Commercial CD instruments 

measures the difference of transmittance or absorbance of the sample for left- and right- 

circularly polarized light. However, one cannot say a medium is optical active just by sensing the 

differential absorption of circularly polarized light. The propagation of light in a material is a 

continuous process. The polarization of the initial wave progressively changes due to effects 

such as linear effects (retardation, diattenuation or depolarization). Therefore, only in the case of 

an isotropic optically active media, the circular polarization is preserved everywhere in the path 

length and only in this case, commercial CD instrument measures CD [40]. In all other cases, 

MM differential decomposition is advised to determine the CD [41]. In transmission geometry, 

the general MM for a homogeneous non-depolarizing optical media can be written in the 

following matrix [42]:  
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where CD is the true CD corresponding to the intrinsic CD (     ), and CB is the true CB 

corresponding to the intrinsic CB (     ). This MM representation illustrates clearly that each MME 

can be described by combinations of the 6 basic optical properties. In particular, it is worth to mention that 

          
 

 
                    is the apparent CD with 

 

 
                    

the linear part of the CD originating from the combination of the linear optical properties. Similarly, 

         and 
 

 
                   . Moreover, we can see, if       <<       and 

      <<      , then          and        . Commercial CD instruments measure M14 

as the CD. However, we can see M14 is CD only when     has no contribution from linear effects. In 

these cases, MM differential decomposition is required to obtain the intrinsic CD. 

2.5 Plasmonics 

2.5.1 Surface plasmon polaritons 

Surface plasmon polaritons (SPPs) are electromagnetic excitations propagating at the interface 

between a dielectric and a conductor, evanescently confined in the perpendicular direction. As 

already known from previous section, in the absence of external charge and current densities and 

neglect the variation of the dielectric function over distances on the order of one optical 

wavelength, we obtain the central equation of electromagnetic wave theory [43]: 

 

    
 

  

   

   
                                                            

 

First, we assume a harmonic time dependent electric field E(r,t)=E(r)     . Then the known 

Helmholz equation can be obtained: 

 

      
                                                                 

 

Next, we define the wave propagates along x direction and shows no spatial variation in the 

perpendicular, in plane y direction. We can obtain two sets of self-consistent solutions with TM 

modes (p polarization) and TE modes (s polarization) of the propagating waves.  

For TM modes, the governing equations of the system describes as: 

 

     
 

    

   

  
                                                            

 

    
 

    
                                                                   

 

and the wave equation for TM mode is 
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For TE modes, the governing equations are: 

 

    
 

   

   

  
                                                                 

 

   
 

   
                                                                         

and the wave equation for TE mode is 

 

    

   
    

                                                               

 

where      is called the propagating constant [43].  

In the last step, we consider SPPs propagates along a single, flat interface between a dielectric 

(z>0) and conductor (z<0). Then, the equations (2.71 and 2.74) have to be solved separately in 

both regions and the resulted solutions have to be matched using appropriate boundary 

conditions. For instance, if we consider p polarization, then the continuity of    and      at the 

interface should be fulfilled. By applying the boundary condition to the above equations for TM 

mode, the dispersion relation of SPPs propagating along the interface can be obtained [43].  
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where    and    are the dielectric functions of metal and dielectic. 

For TE polarization, the continuity of    and    at the interface induces no possibility of the 

existence of SPPs. So SPPs only exists for TM polarization. 

If we assume that   
   |  

 |, then    is a complex value expressed as [44] 
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In order to have real   
 ,   

    and |  
 |     which can be fulfilled in a metal or doped 

semiconductor materials. The intensity of SPPs propagating along the interface decreases as 

     
   , where   

   determines the internal absorption. Therefore, the propagation length of the 

SPPs can be defined as: 

 

        
                                                                        

 

Since      
      and relations        and   

   , wave vectors    and     are 

imaginary, so the field amplitude of SPPs decreases exponentially as exp(-|   || |), normal to 

the surface. The skin depth is defined as the length where the field amplitude decreases to 1/e, so 

the skin depths in metal and dielectric are [44]: 
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Figure 2. 9(a) shows the charge oscillation and fields for SPPs in the interface between metal and 

dielectric. We can see from Figure 2. 9(b) that the projection of the momentum          

along the interface on the dielectric side is always smaller than the propagation constant of SPPs, 

therefore SPPs cannot be excited directly by light beam.  

 

 
 

Figure 2. 9: (a) Sketch of charges oscillation and fields for a SPPs in a metal/dielectric interface; 

(b) Dispersion relation of SPPs(red line) and light line in dielectric (black line) at AOI θ [10]. 

In order to excite SPPs, special phase matching techniques are used. Andreas Otto was the 

first to propose a configuration for optically exciting nonradiative SPPs [45]. In Otto 

configuration (Figure 2. 10(b)), the beam of light is incident upon the prism with high refractive 

index and refracted towards its bottom surface. The prism is spaced by air gap with a small 

distance from the surface of the metal. The light in the prism would undergo total internal 

reflection and an evanescent field would exist within the air gap if the AOI upon the bottom 

surface of the prism is high enough. The tunneling of the evanescent field to the metal/air 

interface can excite the SP if the energy and momentum conservation laws are satisfied. The 

reflectivity drops, sometimes nearly to zero, and thus this coupling scheme is also known as 

attenuated total reflection. Another prism-based configuration which has become the most 

popular configuration for SPPs excitation was proposed by Kretschmann and Raether [46]. In 

Kretschmann configuration (Figure 2. 10(c)), a thin metal film is evaporated on top of a glass 

prism. Similar to Otto configuration, the light beam impinging from the glass side at an AOI 

greater than the critical angle of total internal reflection. The tunneled field into the metal film 

excites SPPs at the metal/air interface. In both Otto and Kretschmann configurations, the incident 

beam must have a component of p polarization to couple to this surface charge oscillation. s 

polarization cannot excite SP because the electric field lies in the direction orthogonal to the 

surface charge oscillation. Besides, the thickness of the metal film in Kretschmann configuration 

and thickness of air gap in Otto configuration are critical for SPPs coupling efficiency [43], [47]. 
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Figure 2. 10: (a) The dispersion relation of the free-space light line and the tilted light line in prism. (b) 

Otto configuration. (c) Kretschmann configuration. The metal layer and prism are indicated as M and P, 

respectively [47]. 
 

 
 

Figure 2. 11: (a) k matching of light to excite SPPs using grating. (b) Schematic of SPPs excitation by 

grating.  

The wave vector mismatch between the in-plane momentum of the incoming photons and that 

of the SPPs     can also be overcome by a grating structure with periodicity P as shown in 

Figure 2. 11. Then the conservation of momentum is obtained by setting     equals to the sum of 

the projected wave vector of the incident light on the sample surface with an integer multiple of 

the grating vector [1]: 
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where    is the in plane momentum of the incoming photons, P is the period of the grating, G is 

the grating vector equal to       ,  x and y are unit length vectors in x and y directions, m is an 

arbitrary integer,  θ is the incident angle, and α is the azimuthal angle.  

Replacing     by equation (2.75), we can obtain the relation: 
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Then the condition for SPPs excitation is obtained by taking the square value of both sides of 

equation (2.81): 

 

                           
   

 
             

  

 
   

    

     
                                  

 

The above relation for SPPs excitation is not related to the incident polarization, which means 

that mixed s- and p -modes can be used to excite SPPs obeying equation (2.82). However, by 

tuning the incident polarization value, optimal coupling with SPPs can be obtained at a given 

incident angle [48]. The optimal coupling condition is given by: 

 

                                                                                                                                  

 

where   is the polarization angle (from -90° to 90°,   =0° and  =±90° correspond respectively 

to p-polarization and s-polarization),   is the AOI and α is the azimuthal angle (α=0° 

corresponds to grating ridges perpendicular to the plane of incidence). 

2.5.2 Metallic nanoparticles: Particle Plasmon 

Resonance 

If the particle size d is much smaller than the wavelength of light in the surrounding medium, the 

interaction of particle with the electromagnetic field can be analyzed using the quasi-static 

approximation. We start with a simple geometry: an isotropic spherical particle with radius a is 

located in an isotropic and non-absorbing medium with dielectric function   . The dielectric 

response of the sphere to the applied static electric field           is described by the dielectric 

function ε. Due to the azimuthal symmetry in this condition, the solution for the potential of the 

Laplace equation        is as follow [43]:  
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where           are the Legendre Polynomials of order l, and θ the angle between the position 

vector   at point   and the z-axis. By applying the boundary conditions of equality of the 

tangential components of the electric field and the equality of the normal components of the 

displacement field and fulfilling requirement that the potentials remain finite at the origin, the 

inside and outside potentials are evaluate to 

 

     
   

     
                                                             

 

              
       

      
   

 
    

  
                                        

 

If we introduce the dipole moment p,      can be expressed as 

 

              
   

        
                                                

 

         
 

    

     
                                                     

 

So, we can see that      describes the potential superposition of the applied field and that from a 

dipole located at the particle center. If we introduce the polarizability  , defined via           , 

we arrive at 

 

      
    

     
                                                             

 

        
     

   is the dielectric function of the metal sphere. A resonant enhancement of 

polarizability occurs when the condition that |       |  is a minimum is fulfilled. So the 

resonance condition is as 

 

                                                                         
 

This is known as the Fröhlich condition [49]. For a Drude metal with a dielectric function given 

in equations (2.43, 2.44), the particle plasmonic resonance frequency becomes 

 

   
  

  
 

     
                                                             

 

where   is the damping constant. For example, a Drude metal with      and   <<    in air, the 

resonance frequency becomes        √  [49].  

Figure 2. 12 shows the spectral plane-wave extinction cross-sections of silver particles of 20, 

60 and 100 nm diameter in glass, calculated using the MiePlot software [50]. We can see 

quasistatic approximation is valid for the 20 nm particle since only one dipolar mode is observed. 

However, at larger diameters, the dipolar mode is redshifted due to retardation and higher multi-
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polar modes start to appear, so quasistatic approximation is not valid any more. Therefore, for 

spheres at higher dimension, a more general theory (Mie theory [51]) is needed. 

 

 
 

Figure 2. 12: Calculated extinction cross section for single silver spheres using the Mie theory [52]. 

The nanoparticles are strongly influenced by the presence of other particles in the near-

neighbor range and the interaction of the neighboring nanoparticles result in a shift in the 

position of the plasmonic resonance compared to the case of an isolated particle. The influence 

of nearby particles can be understood by using the simple approximation of an array of 

interacting point dipoles under in-phase illumination. Transverse mode (longitudinal mode) is 

defined when polarization direction of the exciting light is perpendicular (parallel) to the 

nanoparticle chain. As sketched in Figure 2. 13, the restoring force acting on the oscillating 

electrons of each particle in the chain is either increased or decreased by influenced of 

neighboring particles, resulting in blue-shift for transverse modes, and a red-shift for longitudinal 

modes [43]. 
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Figure 2. 13: Schematic of near-field dipole coupling between metallic nanoparticles for the two different 

polarizations [52].  

2.6 Rayleigh-Wood anomalies 

Grating anomalies were first discovered dates back to 1902 by Robert Wood [53]. He studied the 

spectra of ruled metallic diffraction gratings with p-polarized incident radiation and viewed 

abrupt changes in the reflectivity spectrum at certain condition. Few years later in 1907, Lord 

Rayleigh [11] correctly predicted the positions of the anomalies in the TM spectra as part of his 

dynamical theory of gratings. As shown in Figure 2. 14, Rayleigh explained these anomalies as a 

disappearance of the diffracted beam either in reflection or transmission when it crosses the 

boundary between ambient medium and substrate. So, the condition for RWAs is given by 

 

                                                                                           

 

Here,               is the component of the incident wave vector parallel to the sample 

surface, m is an integer indicating the order of the RWA, and n is the refractive index of the 

medium. Solving this equation (2.92) gives the final condition for RWAs  
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where      is the wavelength for RWAs at m
th

 order, and n2 is the refractive index of medium 

where the diffraction light propagates. The positive sign of the term in brackets corresponds to 

negative diffraction orders, whereas the negative sign corresponds to positive orders.  
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Figure 2. 14: Schematic shows diffraction orders of PDMS grating both in reflection and 

transmission regions. 

2.7 Waveguide mode 

Dielectric slab of high refractive index can support confined electromagnetic propagation. The 

modes of propagation are the so-called guided modes and the structures that support guided 

waves are called waveguides. Optical modes are presented as the solution of the eigenvalue 

equation, which is derived from Maxwell´s equations subject to the boundary conditions 

imposed by waveguide geometry. TE or TM mode can be excited and propagated along the 

waveguide if the conditions are fulfilled. 

 

 
 

Figure 2. 15: Schematic drawing of an asymmetric slab waveguide [54].  

TE mode condition can be expressed as: 
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where t is the thickness of the waveguide layer and  h, q, and p are given by 
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For TM mode, the condition can be expressed as: 
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where   is the thickness of the waveguide layer,   is given in Eq        and  ̅  and  ̅  are 

expressed: 
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The propagation constant   must satisfy the condition for TE and TM. Equations in general yield 

a finite number of solutions for   provided the thickness t is large enough. Figure 2. 16 shows the 

dependence of propagation constants   on the waveguide thickness for an asymmetric 

waveguide. We can see the mode becomes confined above a certain cutoff value, while there is 

no cutoff value in the case of symmetric slab waveguide (   =   ). Besides, the number of modes 

which can be supported by waveguide can be tuned by varing the ratio of thickness and 

wavelength.  

 

 

 

Figure 2. 16: Effective index versus thickness/wavelength for the confined modes of an asymmetric 

waveguide with   =1.0,   =2.0, and   =1.7 [54].  

The modes for TE and TM not only can be solved by the wave equation but also can be 

derived by using geometric optics. The wave propagating in the waveguide experiences total 

internal reflection at both interfaces. However, not all trapped rays by internal reflection 
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constitute a mode, only when the extra transverse phase shift is an integral multiple of   . For 

asymmetric waveguide, the condition can be written as: 

 

                                                                          
 
where f indicates the number of the modes which can propagate in the waveguide layer. 

The phases induced at the two interfaces for TE are expressed as [55], [56]:  
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For TM polarization (p-polarization), the phases induced by the total internal reflection are: 
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where    is the angle of reflection respective to the direction of x axis. 

2.8 Destructive interference mode (DIM) 

After discussing the waveguide eigenmode in section 2.7, now in this section, we will show how 

the waveguide can be excited by the presence of a grating embedded in waveguide layer and how 

DIM is defined and excited when Ag nanoparticle grating is embedded. Figure 2. 17 shows a 

cross section of the system, where we can see a grating with grating vector along x axis is 

embedded in the waveguide layer. The grating diffracts the incident light into various diffraction 

orders (violet open arrows in Figure 2. 17).  
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Figure 2. 17: Schematic of various diffraction orders in reflection in waveguide layer at (a) 

normal incidence and (b) oblique incidence in the case the incident plane is parallel to the grating 

vector at α=0°. 

In the case      (Figure 2. 17a), the diffracted angle    can be calculated from the grating 

equation along x axis as: 

 

                 
  

 
                                             

 

where      is the angle of incidence, n2 is the refractive index of the waveguide layer, P is the 

grating periodicity and m is diffraction orders. 

In the case     (Figure 2. 17b), the projection of the wave vector along the y-axis also 

plays a role. So the grating equation is written along x and y directions as follows: 

 

X axis:                                 
  

 
                                              

 

Y axis:                                                                                                              

 

where   is the azimuthal angle of the sample,      is the angle of incidence,   is the azimuthal 

angle of diffracted light, P is the grating periodicity. Then we can reach Eq.2.104 by combining 

Eqs 2.103(a) and (b) as follows: 
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If the Ag nanoparticle grating is immersed in a homogeneous environment, when the diffracted 

light propagates along the x-y plane, this situation results in an energy redistribution observed in 

reflectance or transmittance, the Rayleigh-Wood anomaly. However, the situation is different 

when waveguide system is formed. As shown in the schematic in Figure 2. 17a, when one of 

these diffracted light fulfills the condition of waveguide mode excitation in Eq. 2.99, the 
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waveguide mode will be excited. In other words, the waveguide mode equation in Eq. 2.99 and 

the grating equation in Eq. 2.104 should be combined to determine the conditions of excitations 

of the waveguide mode.  

In addition to the part of light which is diffracted to various diffraction orders, the other part of 

the incident light directly transmits through the waveguide. This part of light is absorbed and 

reradiated by Ag nanoparticles resulting in the characteristic presence of the localized surface 

plasmon (LSP) resonance spectrum. The plasmonic resonance shape depends on the individual 

particle shape and size distributions, as well as on nanoparticle interactions along the lines or 

between lines.  

As shown in the schematic in Figure 2. 18, the waveguide mode is leaky and the leaky part of 

the wave can interfere either constructively or destructively with the transmitted, non-diffracted, 

part from the incident light that is characterized by the plasmonic absorbance.  

 

 
 

Figure 2. 18: Schematic of leaky waveguide mode. 

From the schematic in Figure 2. 19 which shows ray optics approximation of the light beam in 

the waveguide, the phase difference between transmitted beam and leaky waveguide mode can 

be expressed as     -         , where         
  

 
        approximates the phase of the 

waveguide mode,    is the wave vector along z direction, h is the thickness of waveguide and 

    and     are the two polarization-dependent phase shifts introduced at the two interfaces 

(Goos-Hänchen shifts). In case of DIM, the phase difference    between the leaky waveguide 

mode and the transmitted incident light beam should be equal to a multiple of  which is 

expressed by the following equation:  
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 for TE polarization are expressed as:[55], [56]  
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For TM polarization (p-polarization), the phases induced by the total internal reflection are: 
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Therefore, in order to calculate the DIM between transmitted light and leaky waveguide mode, 

the equations 2.104 and 2.105 should be combined. 

 

 
 

Figure 2. 19: Schematic of the waveguide mode in ray optics approximation at normal incidence. 
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Chapter 3 

Experimental Techniques 

3.1 Atomic force microscopy 
Atomic-force microscopy (AFM) is a very-high-resolution type of scanning probe microscopy to 

examine surface structures at the nanometer-scale which is more than 1000 times better than the 

optical diffraction limit. It was developed in the 1980s by Gerd Binning, Calvin F. Quate and 

Henrich Rohrer [57]. An AFM is a mechanical imaging instrument that measures the three 

dimensional image based on the force interaction between a sharpened tip and the sample surface. 

The tip is mounted on a reflective cantilever. The deflection of the tip both laterally and 

vertically according to the surface morphology is caused by attracted and repulsive forces on the 

surface of the sample. The movements of the cantilever are measured by a laser, reflected off the 

cantilever onto a position sensitive four-quadrant photodiode [58]. Then the deflection of 

cantilever is fed back into the feedback controller (PID) which moves the probe over the sample 

to return the deflection of the cantilever to its original value. The AFM can be operated in a 

number of modes, such as contact modes and a variety of non-contact modes where the 

cantilever is vibrated. The AFM images in our project were measured in air by means of TT-

AFM system (Figure 3. 1) working in vibrating mode using probes purchased from Schaffer 

technology GmbH. The images are analyzed by open-source software called Gwyddion [59]. 

 

 

Figure 3. 1: TT-AFM system [60]. 

https://en.wikipedia.org/wiki/Scanning_probe_microscopy
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3.2 Mueller Matrix ellipsometer 
It is possible to measure MM experimentally by means of a MM ellipsometer which generally 

consists of a light source, a polarizer on the incident side and analyzer and the detector on the 

reflection/transmission side. Recently, MM ellipsometers of various types have been developed. 

Figure 3. 2 shows 4 types of rotating-element MM ellipsometers. Figure 3. 2(a) illustrates the 

simplest ellipsometer which is called the rotating-analyzer ellipsometry (RAE). Other 

ellipsometers shown in Figure 3. 2(b)-(d) are just built with compensators introduced in the RAE 

configuration. Only when the ellipsometer additionally contains two rotating compensators (one 

before and one after the sample) with different rotating frequencies can enable us to measure all 

sixteen MM elements. 

 

 
 

Figure 3. 2: Optical configurations for MM ellipsometry. PR, AR and CR are rotating polarizer, rotating 

analyzer and rotating compensator [13].  

3.2.1 RAE with compensator 
RAE with compensator is popular in recent years because all the Stokes parameters          can 

be measured.  
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Figure 3. 3: Schematic of a RAE with compensator [61].  

The configuration of a RAE with compensator is shown in Figure 3. 3. It can be described as: 

 

                                                                        
 

where Lout represents the Jones vector of the light detected by the detector,     shows the 

normalized Jones vector of incident light. A, S, C and P represents the Jones matrix of analyzer, 

sample, compensator and polarizer, respectively. A is the rotation angle of analyzer and P is the 

rotation angle of polarizer. When the fast axis of the compensator is in the direction of s-

polarization, the Jones matix of compensator C is expressed by: 
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]                                                             

 

When the fast axis of the compensator is not in the direction of p- or s-polarization, the 

compensator is expressed as R(-C)CR(C), where C is the rotation angle of the compensator. 

Jones matrix for sample S is expressed by: 
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]                                                      

 

where   and   are the two ellipsometric angles measured in spectroscopic ellipsometry as shown 

in section 2.1.5. So the matrix representation of above equation is described as [13]: 
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The measured light intensity for an arbitrary angle of the polarizer and analyzer by the detector is 

obtained as: 
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By normalizing the term                , we can describe the intensity as: 
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where       are referred to as normalized Fourier coefficients. We can rewrite the measured 

light intensity as: 

 

                                                                         

 

Then, the equations for describing        are obtained by solving the equations: 
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When P=45°, the detected intensity is expressed: 
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We can see from the above equation,    and               are measured as Fourier 

coefficients. However, in order to obtain    and    separately, at least two measurements with 

different   should be performed.  

Figure 3. 4 shows the VASE from J. A. Woollam company. VASE uses the RAE combined 

with patented AutoRetarder configuration. A xenon lamp light in the wavelength range 230 nm-
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2.3 μm is used as light source. Then the light passes through a scanning monochromator with a 

fiber and separated into individual wavelengths. The scanning monochromator is designed 

specifically for spectroscopic ellipsometry which automatically controls the selection of 

wavelengths and spectral resolution. After reflection or transmission on the sample, light passes 

through a rotating analyzer, which operates at a frequency between 10 Hz and 100 Hz. Finally, 

the intensity of the light is converted into voltage signal. The VASE has two detectors, one of the 

two detectors is made of silicon with a spectral range between 185 nm and 1100 nm and the 

other is made of InGaAs with a spectral range between 800 nm to 1700 nm.  

Broad range of wavelength and AOI (15°-90°) allow a large variety if measurement 

geometries including: reflection, transmission and scattering. Ellipsometry in reflection and 

transmission, reflectance and transmittance intensity, cross-polarized reflectance and 

transmittance, depolarization, scatterometry and MM can be measured [16]. However, for the 

MM measurement, VASE ellipsometer can only measure the first 3 rows of whole 4x4 MM 

elements because only one compensator is included in the configuration. 

 

 

Figure 3. 4: VASE ellipsometer from J.A. Woollam [62]. 
 

3.2.2 RAE with dual rotating compensators 
In order to measure all sixteen MM elements, two rotating compensators (one before and one 

after the sample) are introduced in RAE as shown in Figure 3. 5.  
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Figure 3. 5: Schematic of ellipsometer combined with dual rotating compensators. 

The determination of the MM by an ellipsometer with two rotating compensators is roughly 

explained below. The Stokes vector      of the light after passing through the analyzer can be 

expressed as the MM product [63]:  

 

                 
             

   

                                                   
             

                                   
 

where               represent the MM of analyzer, polarizer and sample respectively.  

          
     

   are the rotation angles of analyzer, polarizer and compensator before and after the 

sample.          are the phase introduced by the compensator before and after the sample. The 

Mueller matrices of all these components are expressed as: 
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Multiplication of the matrices leads to the expression of the first Stokes parameter: 
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and                                                                         

 

               

 

The two compensators have the rotation frequencies   , with numbers   still to be determined. 

Their phase difference CS1-CS2 must be determined by calibration. Together with the sample in 

the middle, the structure corresponds to the four indicated Müller matrices. After selecting an 

exact ratio between the rotational frequencies of the compensators, for example of 3: 5, and 

substituting of   
   ( -   ) and    

   ( -   ) into above equation, we obtain: 
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where     depends on the phases    . The intensity signal is thus modulated in time by the 

rotation of the compensators. The equations (3.15-3.17) show that the Muller matrix elements mij 

are explicitly contained in the coefficients (   ,    ) of the sine and cosine terms. They can 

therefore be obtained by Fourier transformation of the signal from the Fourier coefficients. The 

detailed procedure for inverting the obtained coefficients is described, for example, in [63]. 

Figure 3. 6 shows variable angle dual rotating compensator spectroscopic ellipsometer (RC2) 

from J. A. Woollam company. Synchronous rotation of two compensators provides high 

accuracy, high speed, and complete Mueller-matrix measurements. RC2 is a CCD-based 

ellipsometry, therefore it is fast and allows advanced measurement capabilities with the best 

accuracy. RC2 collects wavelengths from 210 nm to 1690 nm simultaneously.  

 

 

Figure 3. 6: RC2 ellipsometer from J.A. Woollam [64]. 
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Chapter 4 

Results and Discussion 

4.1 Pure PDMS gratings 
We start the results and discussion chapter with pure PDMS gratings. In this section, I will first 

introduce the fabrication method for PDMS gratings. Then I will show some MM measurements 

and how we decompose MM into physical effects by anisotropic modeling. The pure gratings are 

not interesting themselves, but this section lays a foundation for the analysis of metallic gratings 

in the following sections 4.2 and 4.3. 

4.1.1 Sample fabrication method 
The pure PDMS grating is fabricated in the following two steps: PDMS fabrication and PDMS 

grating fabrication.  

PDMS fabrication 

PDMS is a silicon- based polymer consisting of repeating [Si(CH3)2O] units and is the simplest 

silicone oil among the siloxanes. PDMS has high hydrophobicity, contamination resistance, and 

long-term endurance, making it a very useful polymer for insulation, anticorrosion, and 

antifouling coatings [65]. PDMS are fabricated from Sylgard 184, which consists two 

commercially available components (silicone elastomer base and curing agent in Figure 4. 1) 

manufactured by Dow Corning [66]. 

 

The PDMS can be fabricated by the following procedure [61]: 

1. Mix Silicone elastomer base and curing agent inside a beaker in a mass ratio of 10: 1 with 

the help of a conventional digital scale (Silicone elastomer base and curing agent are 

taken out and poured inside the beaker with plastic syringe) 

2. Stir the mixture immediately after the components are mixed in a beaker with a glass 

pipette  

3. Place the beaker in an ultrasonic bath for 10 minutes to remove unwanted air bubbles 

brought in the PDMS after stirring (It is important to ensure that the water is in the same 

level as the PDMS, so that all air bubbles are eliminated)  

4. Place the beaker in a desiccator for a total of 15 minutes to continue eliminate the bubbles 

by means of a vacuum 

5. Pour the liquid PDMS mixture in the prepared petri dish (procedure for preparation is 

shown below) slowly and try to make the layer have homogeneous thickness 

6. Place the petri dish in an oven at 100 °C for 60 minutes 

 

The petri dish should be prepared before the above procedure in order to remove the cured 

PDMS from petri dish freely. The procedure for preparation of petri dish: 

https://de.wikipedia.org/wiki/Silicium
https://de.wikipedia.org/wiki/Polymer
https://de.wikipedia.org/wiki/Siloxane
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1. Clean the petri dish with acetone to remove all the oily and water residuals on the surface 

and let it dry in the air 

2. Mix 20 mL acetone with 0.4 mL 3-Aminopropyltriethoxysilan and then give the solution 

for around 3 minutes in the petri dish 

3. Remove the solution and clean the petri dish three times with distilled water 

4. Remove the last water inside the petri dish by evaporating in the oven at 120  

 

 
 

Figure 4. 1: Two components of PDMS (Sylgard 184). On the left is the silicone elastomer and 

on the right is the curing agent.  

PDMS grating fabrication 

The surface property of fabricated PDMS can be changed from strong hydrophobicity to 

hydrophilicity by oxygen plasma treatment. Plasma etching equipment includes a reaction 

chamber, a power supply, and a vacuum part. The plasma etching process is actually a reactive 

plasma process [67]. The stretched PDMS slab is fed into the reaction chamber evacuated by the 

vacuum pump. The oxygen plasma initiates the oxidization at the surface of PDMS and 

generates a thin surface film of silica-like material. Then, by slowly releasing the pre-strain on 

the PDMS, thin silica-like film supported by PDMS substrates spontaneously buckles and 

sinusoidal grating is obtained. The physical mechanism is that the stiff silica-like film tends to 

buckle to release the total energy of the whole system by introducing the bending energy due to 

the out-of-plane deformation of the thin films [68]–[70]. We used this physical principle to 

produce our grating sample. The fabrication procedure of pure PDMS grating can be detailed in 

Figure 4. 2 and described here:  

 



 
 

61 
 

 
 

Figure 4. 2: The fabrication process of pure PDMS grating. 

1. The PDMS slab with size 1 mm thick, 13 mm wide and 27 mm long was glued (Figure 4. 

3(a)) on a home-made stretching stage (Figure 4. 3(b)) with the un-glued area 1 mm thick, 

13 mm wide and 8 mm long.  

2. PDMS slab was put in the oven with 85°C for 1h. 

 

 
 

Figure 4. 3: (a) Glue and (b) home-made stretching stage. 

3. PDMS slab was linearly stretched up to a percentage X less than 60%.  

4. The stretched PDMS slab was treated by an O2 plasma (90 W) for Y min inside a plasma 

etcher chamber at a pressure of 1.4 mbar in order to modify the nature of the surface of 

the elastomer.  

5. One dimensional periodic grating was formed by slowly releasing the pre-strain.  

During the fabrication process, only the parameters X and Y were changed to tune the 

periodicity and amplitude of the grating. A repetitive experiment was performed in order to 

investigate the dependence of stretching percentage on the stretching length. A drop of black ink 

was put on the center of the PDMS slab surface and formed a circular shape. The lengths of the 

elongated ellipse along the stretching direction were measured as shown in Figure 4. 4(a) and (b). 

The percentage of stretching was then calculated as ( -  )          , where    is the 

diameter of the circular drop without stretching and   is the length after stretching. Figure 4. 4(c) 

shows the relation between stretching percentage and stretching length. We can see the stretching 

percentage is linearly dependent on the stretching length when stretching length is less than 3 

mm, while non-linear behavior appears at stretching length more than 3 mm.  
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Figure 4. 4: Images of PDMS slab under the condition (a) without stretching and (b) after 

stretching with 7 mm. (c) The relation between stretching percentage and stretching length. 

Figure 4. 5 shows the plasma system used in our method. It is a Pico low-pressure plasma 

system from Diener electronic company. The detailed procedure for oxygen plasma treatment in 

the 4
th

 step of the fabrication process is as follows:  

 

1. Main power on, ventilation on and open the chamber 

2. Put the sample in a glass petri dish and place the petri dish below the black rod in the 

chamber. In order to get reproducible results, the sample should be always placed at same 

position. 

3. Close the chamber, ventilation off and pump on 

4. Adjust the generator power button to wanted power 4.3 (equals 90 W) 

5. Set timer and wait pressure 0.1<P<0.2 

6. Press GAS 1 to use oxygen gas. Adjust the oxygen valve just a little smaller than 1.4 

mbar. 

7. When the pressure is OK, press generator to start the plasma. When time is over, plasma 

switches off automatically. 

8. Oxygen valve off and GAS 1 off 

9. Pump off and ventilation on. 

10. Remove the sample from the chamber, close the chamber 

11. Ventilation off and Pump on.  

12. Pump off when pressure below 0.6 mbar 

13. Main power off 

 

For the whole oxygen plasma treatment procedure above, only the value of timer Y is varied to 

investigate the dependence of stretching percentage on the stretching length. 
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Figure 4. 5: Pico low-pressure plasma system from Diener electronic company. 

The periodicity and amplitude of fabricated grating only depend on the percentage of prestrain 

X and O2 plasma treatment time Y if the rest parameters are fixed. All the grating samples (not 

only pure PDMS grating in this section, but also Au, Au/Ni/Au grating in the next sections) in 

the thesis were fabricated with different X and Y values by keeping other parameters unchanged. 

The dependence on O2 plasma time (keeping the prestrain constant at 30%) is shown in Figure 4. 

6. We can see, both period and amplitude increase as the treatment time. By treating the PDMS 

surface with different time less than 9 min, we can have big tuning range of the period (300 nm-

550 nm) and amplitude (40 nm-140 nm).  

 

 

Figure 4. 6: Dependence of grating periodicity and amplitude on O2 plasma treated time with fixed 

prestrain at 30% 
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Figure 4. 7: Schematic shows the parameters of the system after O2 plasma treatment before releasing the 

pre-strain. 

Mechanics models have been developed to calculate the periodicity P and amplitude A of 

PDMS grating based on energy method [69]: 
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where as shown in Figure 4. 7,     and   are the Young’s modulus of treated stiff thin film and 

PDMS substrate;    and    are the corresponding Poisson’s ratio.    is the thickness of the stiff 

thin film.   
 

  
             represents the large deformation and geometrical nonlinearity in 

the substrate under prestrain,      and    
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  denote the pre-strain and minimum 

strain needed to achieve buckling, respectively. The thickness of stiff thin film increases as 

increasing the oxygen plasma treatment time. So both periodicity and amplitude increase as we 

can see from Equations (4.1) and (4.2). Besides, the prestrain X also influences the period and 

amplitude. Amplitude increases and periodicity decreases with the increase of the prestrain [54, 

56]. Therefore, by tuning both X and Y, we have a big freedom to tune the periodicity and 

amplitude of gratings. One of our pure PDMS grating samples is fabricated with 25% prestrain 

and 8 min O2 plasma treatment. Figure 4. 8 shows three photographs taken at different angles 

from a fixed light source. The homogeneous colors of the patterned areas (8x13 mm) indicate the 

high quality and excellent homogeneity of the grating made by our method.  
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Figure 4. 8: Three photographs taken from different reflection angles with sunlight coming from 

the incident side with fixed incident angle. 

In order to obtain the precise periodicity and amplitude of fabricated grating, AFM was 

measured. Figure 4. 9 (a) and (b) show the top view and 3 dimensional view of measured AFM 

image over an area of 5 µmx5 µm, respectively. The fabricated grating had a sinusoidal shape 

and is quite homogeneous. The periodicity and amplitude of this grating were analyzed from the 

Gwyddion software to be 670 nm and 140 nm.  

 

 
 

Figure 4. 9: AFM image over an area of 5 µmx5 µm of the grating fabricated with 25% prestrain 

and 8 min O2 plasma treatment in (a) top view and (b) 3D view. 

4.1.2 Ellipsometry of pure PDMS  
Spectroscopic ellipsometric measurements were performed on flat PDMS at AOI35° and 65° 

over the spectral range from 210 nm to 1690 nm. The complex refractive index of PDMS was 

extracted from a general oscillator layer model with 1mm thickness. We can see from Figure 4. 

10(c) that refractive index n increases towards the ultraviolet region and keeps constant at 1.4 in 

the visible and infrared range. The extinction coefficient k is zero over the spectral range from 

210 nm to 1690 nm which means our PDMS sample is a very good transparent material without 

absorption. 

 



66 
 

 

 

Figure 4. 10: Ellipsometric angles (a)   and (b)   measured at two different angles of incidence 

35° and 65° fitted with a general oscillator model. (c) Refractive index   and   of PDMS 

extracted from this model. 

4.1.3 Mueller Matrix in reflection  
To get an insight in the influence of different physical origins on the optical behavior of the 

PDMS grating, MME measurements were carried out in reflection in the spectral range between 

400 nm and 1500 nm at AOI30° and 60° over a complete azimuthal rotation (Figure 4. 11). All 

the MM elements were normalized to M11 element which represents the total reflectance of the 

sample. To visualize the huge amount of data accumulated in this kind of measurement, the 

elements of the MM are presented at a given incident angle as polar contour plots, where the 

azimuthal angle α is the polar angle and the radial axis represents the wavelength. In general, as 

we can see from Figure 4. 11, all 16 elements exhibit complex patterns and depend on the 

azimuthal angle and the wavelength. In reflection, the MMEs show the expected symmetry with 

identical element pairs M12/M21, M14/M41, M24/M42 and opposite element pairs M13/M31, 

M23/M32 and M34/M43. All the patterns reflect the symmetry of the grating with optical axes 

along α=0° and 90°. From the off-block-diagonal elements which are the upper right and the 

lower left 2x2 sub-matrices and represent the anisotropy and cross-polarization information of 

the sample, one can see that our simple PDMS grating is strongly anisotropic and therefore 

mixes polarization states.  
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Figure 4. 11: MM measured in reflection at AOI (a) 30° and (b) 60° in the spectral range 

between 400 nm and 1500 nm as a function of whole azimuthal rotation.  
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4.1.4 Modelling and interpretation 
After viewing the measured MM, we discuss in this section how we decompose the MM into 

different physical origins via an effective model. From the schematic of diffraction orders in 

reflection and transmission shown in Figure 2. 14, it is intuitive to see only the negative 

diffraction orders in reflection and transmission can fulfill the condition of RWAs. RWAs_air(-1) 

and RWAs_PDMS(-1) which were calculated with Equation 2.93 represent the first negative order 

RWA in reflection and transmission, respectively. As shown in Figure 4. 12, RWAs_air(-1) and 

RWAs_PDMS(-1) were superimposed in the MM elements. Along the 180°-0° azimuthal line, we 

can see from Figure 4. 12(a) that the anisotropy lobe in M12, M33 and M44 is modulated by the 

presence of the RWAs_air(-1). For other MM elements, we can see lobes at higher wavelength 

follow RWAs lines. So we can attribute these lobes to the influence of the presence of 

RWAs_air(-1) and RWAs_PDMS(-1). It is interesting to see all MM at AOI30° and 60° show 

anisotropy at wavelength near 400 nm. The second order RWAs (not shown) which are supposed 

to appear at lower wavelength show no clear effect on the MM.  
 

 
 

Figure 4. 12: MM measured in reflection at AOI (a) 30° and (b) 60° in the spectral range 

between 400 nm and 1500 nm as a function of whole azimuthal rotation together with RWAs 

lines.  

In order to understand the hidden physical effects of the anisotropic lobe at lower wavelength, 

modeling was made. In the first step, we generated the MM of pure flat PDMS layer at AOI 60° 

in the wavelength range 400 nm to 1500 nm. PDMS layer with optical constants from 

ellipsometry library was used. The thickness of PDMS layer was defined to be 1mm. As 

expected from an isotropic material, the values of off-block-diagonal elements are all zero as 

shown in Figure 4. 13. In addition, the lobes in M12, M21, M33 and M44 are isotropic. 
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Figure 4. 13: MM generated from ellipsometric model with flat PDMS layer in reflection at AOI 

60° in the spectral range 400 nm to 1500 nm as a function of whole azimuthal rotation.  

In the second step, according to the geometry of the grating structure, we built an anisotropic 

model to see the influence of the anisotropy from geometry on the MM elements. As shown in 

Figure 4. 14, we simulated the grating sample as a biaxial Bruggeman effective medium 

approximation layer with thickness 110 nm on top of 1 mm substrate of PDMS. The 

Bruggemann effective medium approximation (BEMA) is a homogeneous system composed by 

two materials. The equation describes the BEMA is as follows [71]: 

 

  
       

               
       

       

      (       )
                                  

 

Where    and   are the dielectric constant and filling fraction for one material,    and      
   are the dielectric constant and filling fraction for the other material. L is the depolarization 

factor and has values in the range (0:1). L is a descriptor of the extent to which the inclusion 

polarization is diminished according to the particle's shape and orientation with respect to the 

applied electrical field [72]. In our model, we used a biaxial BEMA layer model, where 3-

dimensional shape of the inclusions is defined by L in x, y and z directions (Lx, Ly and Lz). We 

considered PDMS as the inclusions inside the air environment.  

Now I will introduce how we define the parameters in this Biaxial Bruggeman layer. First of 

all, due to the symmetric geometry of sinusoidal structure, the filling fraction of PDMS   is 50%. 

From the results of AFM, the periodicity of the grating is about 5 times bigger than the 

amplitude. So, we defined PDMS inclusions as elliptical shape with long axis along x direction 
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as shown in the cross-section in Figure 4. 14. In the 3-dimensional space, the inclusions are 

cylinders with infinite length along y direction. So, we defined depolarization factors in x, y and 

z directions as Lx=0.25, Ly=0 and Lz=0.75.  

 

 
 

Figure 4. 14: Biaxial Bruggeman effective medium approximation model for PDMS grating. 

Then, MM in reflection at AOI 30° and 60° were calculated from this effective model. Figure 

4. 15 shows the measured and simulated MM at AOI 30° in the spectral range from 400 nm to 

1500 nm as a function of whole azimuthal rotation. Figure 4. 16 shows the measured and 

simulated MM at AOI 60°. In order to obtain a better visualization due to weak values in some 

MM elements, we scale some elements with multiplication factors. For convenience of 

comparison, measured and simulated MM have same multiplication factors. We can see all the 

MM element at AOI 30° and 60° reproduce the anisotropy at wavelength close to 400 nm, while 

the lobes at higher wavelength cannot be reproduced. Our effective model only considers the 

geometry of the grating which is described by the depolarisation factor (Lx, Ly, Lz) of PDMS 

inclusions but neglects the effects from periodicity. Therefore we can say the anisotropic lobe at 

wavelength near 400 nm is coming from the pure geometry of the grating. Since the periodicity 

is neglected in the model, our RWAs effects cannot be generated. However, by adding the lobes 

manually which following the RWAs lines on the simulated MM elements, we can reproduce the 

measured MM.  

To conclude, the physical origin shown by measured MM can be decomposed into two parts, 

one at lower wavelength coming from the pure anisotropy from geometry and the other one at 

higher wavelength from RWAs.  
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Figure 4. 15: MM measured and simulated in reflection at AOI 30° as a function of whole 

azimuthal rotation together with RWAs lines.  

 

 
 

Figure 4. 16: MM measured and simulated in reflection at AOI 60° as a function of whole 

azimuthal rotation together with RWAs lines. 
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4.1.5 Conclusion 
In summary, we have demonstrated how the complex optical response of a simple sinusoidal 

PDMS grating can be decomposed into its physical ingredients. First, we measured the MM in 

refection at different AOI over a complete azimuthal rotation. The MM was then modelled by a 

simple anisotropic effective medium approach called Biaxial Bruggeman effective 

approximation. From this simple anisotropic model, the MM plots over the whole spectral and 

angular range were generated. On top of this calculated MME we superimposed the expected 

dispersive RWA modes, calculated from the known periodicity of the grating. Comparing this 

composed result with measured MMs gives a deep insight on how the different physical 

contributions originating from periodicity and geometry influence the complex polarization 

mixing.  
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4.2 Au gratings 
After showing PDMS gratings in the previous section, we turn out attention to metallic gratings 

formed by evaporating a thin Au layer on top of PDMS gratings. The presence of propagating 

surface plasmon modes makes the optical response more complex than the PDMS gratings. 

Mode coupling or hybridization can take place and results in complex interactions with polarized 

light which is very interesting to be unraveled by MM characterization. Similar to PDMS 

gratings, our goal is to correlate the observed polarization mixing in MMs to their underlying 

physical origins via effective media approximation model.  

4.2.1 Introduction 
One-dimensional metallic gratings are very efficient tools to excite SPPs by matching their 

dispersion to that of light. Figure 4. 17 shows the measurement configurations. α=0° is defined as 

the classical mounting which means that the grating ridges are perpendicular to the plane of 

incidence of the incoming light, while α≠0° is defined as conical mounting. The excitation of 

SPPs in one-dimensional gratings follows either the classical mounting or the conical mounting.  

For classical mounting, where α=0° as shown in Figure 4. 17 (a), p-polarized light instead of 

s-polarized light is used to excite the SPPs. In this configuration, the propagation direction of 

SPPs is along the grating vector. Contrary to the case α=0°, as shown in Figure 4. 17(c), s-

polarized light rather than p-polarized light can excite the SPPs at α=90°. In this case, in plane 

wave vector of incident light Kx, grating vector G and wave vector of SPP Kspp form a right 

triangular relation. For all other azimuthal rotations, the symmetry is broken and both p- and s-

polarized light can be used to excite SPPs [73], [74] as shown in Figure 4. 17(b). The 

propagating direction of SPPs can be determined from the triangle relation between Kx, G and 

Kspp regardless of any azimuthal rotations. 

 

 
 

Figure 4. 17: Schematic drawing of the measurement configuration at (a) α=0° (b) α=45° and (c) 

α=90°. α is the azimuthal angle with α=0° for classical mounting and α≠0° for conical mounting.  

Similar to PDMS gratings, RWAs is expected to induce abrupt changes in the optical response 

of Au gratings. RWAs can result in very narrow plasmon resonances in regular plasmonic arrays 

of metallic nanoparticles, originating from the diffraction coupling of localized plasmons [75]–

[79], or modify the reflectance of non-plasmonic metallic square arrays [80].  

Even though SPPs have been studied for a long time and RWA effects have also been well 

known for decades [48], [81]–[84], a clear understanding of how SPPs and RWAs influence the 

polarization mixing of gratings is still lacking. Moreover, so far, only few reports discuss the 
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azimuthal angle dependence of the optical response of gratings in terms of MMs or the influence 

of diffraction orders in MM elements (MMEs) [28], [85].  

Here we present a simple but versatile method to identify the physical properties present in 

the Mueller matrices. We present a very general procedure to analyze the MM data of a one-

dimensional gold grating using simple analytical tools. The calculated MM contour plots 

obtained from an effective anisotropic layer model which is different from the effective 

anisotropic model in section 4.1 are completed by the presence of plasmonic modes, Rayleigh-

Woods anomalies and the interband transition absorbance. A comparison of the so-constructed 

contour plots with the measured ones satisfactorily connects the optical properties of the grating 

to their physical origin.  

4.2.2 Sample Fabrication 
For our study we use Au gratings produced by the same self-assembly technique as described in 

section 4.1. First of all, the PDMS grating template was fabricated with 30% prestrain and 10 

min O2 plasma treatment. Then, the PDMS grating template was treated again by O2 plasma for 1 

minute to increase the surface hydrophilicity and enable the deposition of a homogeneous 

metallic thin film. A 35 nm thin gold film was finally evaporated (Univex 300) on the sample 

surface while keeping the time after plasma treatment as short as possible to avoid degradation of 

the surface treatment (less than 1 h). An AFM image over an area of 5 µmx5 µm is shown in 

Figure 4. 18(b). The AFM analysis reveals that the fabricated gratings have a regular grating 

period equal to p=570 nm. The depth of the grating is estimated to H=100 nm. Figure 4. 18(c) 

shows five photographs taken at different angles from a fixed light source. The homogeneous 

colors of the patterned areas change from blue to red with increasing viewing angle indicating 

the high quality and excellent homogeneity of the grating.  

 

 
 

Figure 4. 18: (a) Schematic drawing and (b) 3D AFM image of the sinusoidal Au grating with 

period p=570 nm, amplitude H=100 nm and Au thickness h = 35 nm. (c) Five photographs taken 

from different reflection angles with sunlight coming from the incident side with fixed incident 

angle. The numbers of the photographs are related to the angles in the schematics in the right 

inset. 
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4.2.3 Reflectance dispersion  
In order to visualize the dispersion of the excited modes, the measured reflectance for p and s-

polarized light at AOI from 25° to 65° are shown together with the expected positions (dashed 

lines) of the SPPs and RWAs in Figure 4. 19(a) and (b). Figure 4. 19(a) shows the reflectance 

measured with p-polarized light at an azimuthal angle α=0°. The dispersion from 822 nm at AOI 

25° to 1052 nm at AOI 65° indicates the excitation of SPPs propagation along the sample 

surface. The line cut on the left side represents the values at AOI 45° along the vertical dotted 

lines. SPP dispersion relation is calculated and shown by a black dashed line and it follows the 

measured SPPs mode dispersion. The air (-1 order) RWA indicated by the red dashed curve is 

slightly shifted to lower wavelength from SPPs positions. Figure 4. 19(b) shows the reflectance 

measured with s-polarized light at α=90°. Interestingly, s-polarization also excites  a  surface 

plasmon resonance at α=90° indicated by an  resonance around 570 nm for AOI 25° and around 

515 nm for AOI 65° and it also fits quite well with the calculated SPP line. The reflectance at 

AOI 45° with SPP excited around 540 nm is shown in the line cut. However, instead of the large 

red shift as for p-polarization, the SPP excited by s-polarization blue shifts slightly with 

increasing AOI. Besides, the RWAs_air(-1) at α=90° does not follow the SPP anymore and 

strongly influences reflectance away from the SPP resonance.  

 

 
 

Figure 4. 19: (a) Contour plot of the reflectance with p-polarized light between AOI 25° and 65° 

in steps of 5° at α=0° in the spectral range between 210 and 1200 nm.  (b) Contour plot of the 

reflectance with s-polarized light between AOI 25° and 65° in steps of 5° at α=90° in the spectral 

range between 210 and 1000 nm. The dashed lines in the contour plots correspond to SPPs and 

RWAs. The line cuts in the left side of (a) and (b) are reflectance measured at AOI 45°, along the 

dotted lines, with p-polarized light at α=0° and with s-polarized light at α=90°, respectively. 

4.2.4 Reflectance angular dependence 
In order to visualize the azimuthal dependence of the excited modes, the measured reflectance 

for p and s-polarized light at AOI from 25° to 65° by 10° over a complete azimuthal rotation in 
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steps of 5° in the spectral range between 210 nm and 1200 nm together with SPPs is shown in 

Figure 4. 20. To illustrate the influence of RWAs at higher angle of incidence, the expected 

position of RWAs_air(-1) is only superimposed in Rss at AOI 65°. As expected, the reflectance 

shows a simple C2-symmetric behavior due to the symmetry of the grating. According to 

Equation (2.83), the optimal azimuthal angles for SPP excitation with p- and s- polarized light is 

at α=0° and α=90°, respectively. The positions of the excited resonances (i.e., reflectance dips) in 

Figure 4. 20 follow the calculated SPPs lines very well confirming their plasmonic origin. We 

can see that the SPP mode excited by s-polarized light becomes weaker, while the influence from 

RWAs_air(-1) becomes stronger with increasing the AOI. This is in accordance with the 

dispersion plot shown in Figure 4. 19(b).  
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Figure 4. 20: Measured Rpp and Rss at θ from 25º to 65º by 10º are plotted with full azimuthal 

rotation in the spectral range from 210 nm to 1200 nm. The black and magenta lines indicate the 

calculated position of the SPP mode and RWAs_air(-1), respectively.  

 
 

Figure 4. 21: Contour plots of experimental reflectance with p-polarized (a) and s-polarized light 

(b) together with the SPPs, different order RWAs and the interband transition lines. The 

excitations are only plotted in the upper half-space to avoid masking of the raw data in the other 

half space. (c), (d) experimental polarization conversion Rps and Rsp with SPP lines. All the 

contour plots are at AOI 45° over a complete azimuthal rotation in step of 5° in the spectral 

range between 210 nm and 1200 nm. The polar axis represents the wavelength  and the polar 

angle represents the azimuthal angle α. 



78 
 

Figure 4. 21(a) and (b) show the measured reflectance for p- and s-polarized light at AOI 45° 

together with SPPs, RWAs and interband transition lines. The interband transition of Au at 480 

nm [86] exhibits no dispersion and therefore corresponds to a circle in the polar plot, while the 

azimuthal dependent RWAs form arched curves. In Figure 4. 21(a) and (b) the influence of the 

RWAs is in general rather weak. In Figure 4. 21(c) and (d), the polarization conversion Rps 

(incoming p-into reflected s-polarized light) and Rsp (vice versa) are shown. As expected for a 

C2-anisotropic sample Rps and Rsp are identical with maximum values at α=45° and two optical 

axes at α=0° and 90°. The polarization conversions Rps and Rsp basically trace the calculated 

SPPs curve, indicating that polarization conversion is mainly caused by surface plasmons and 

that the contribution of the RWAs is small. The isotropic interband transition exhibits no 

polarization conversion.  

In the previous section, we already know the wavelength position of SPPs. From phase 

matching relation described by Equation (2.80), we can also obtain the propagating direction of 

SPPs. In Equation (2.80), the wave vector of SPPs can be described as the sum of the in-plane 

incident wave vector    and an integer multiple of the grating vector G. Experimental 

reflectance in Figure 4. 21(a) and (b) are expressed in contour plot with Cartesian coordinate 

system in Figure 4. 22(a) and (b). The insets show the phase matching relations at different 

azimuthal angles. We can see from Figure 4. 22(a), by using p-polarized light, SPPs propagates 

perpendicular to the grating grooves only when the in-plane component of incident wave vector 

is perpendicular to the grating grooves. At α=90°, SPPs cannot be excited with p-polarized light. 

However, we can see from Figure 4. 22(b), s-polarized light can excite SPPs at α=90°. Besides, 

  , G and Kspp form a right angular relation at α=90°. 
 

 
 

Figure 4. 22: Contour plots of experimental reflectance with (a) p-polarized and (b) s-polarized 

light over a complete azimuthal rotation in Cartesian coordinate together with phase matching 

relation in the insets. 

4.2.5 Mueller matrix in reflection 
To get a deeper insight in the influence of SPPs and RWAs on the complex optical behavior of 

the Au grating, MME measurements were carried out in reflection geometry in the spectral range 

between 210 nm and 1200 nm at AOI from 25° to 65° by 10° over a complete azimuthal rotation 

(Figure 4. 23). All the MM elements are normalized to M11 element which represents the total 
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reflectance of the sample. MM are presented at a given AOI as polar contour plots, same as MM 

plotted for PDMS gratings in section 4.1. Also, some elements are scaled with multiplication 

factors to improve visualization. In general, we can see all 16 MM elements exhibit complex 

patterns and show the expected symmetry in reflection. All the patterns reflect the symmetry of 

the grating with optical axes at α=0° and 90°. From the off-block-diagonal elements, one can see 

that the Au grating is strongly anisotropic and therefore mixes polarization states. Moreover, the 

off-block-diagonal elements show curved lobes with maxima around α=45° and 135° at the 

excitation wavelengths of the dispersive SPP and RWA modes. The element M12 represents 

linear dichroism and reflects Rps and Rsp, which are equal. The diagonal elements resemble the 

reflectance plots of Figure 4. 20. We can see the anisotropy at lower wavelength becomes 

weaker at higher angle of incidence. The lobes near azimuthal angle 90° in M12, M33 and M43 

become weaker as increasing AOI. These lobes come from the SPPs excited by s-polarized light. 

SPPs become weaker as increasing AOI which are shown in the reflectance plots (Figure 4. 

19(b)). Moreover, we can see the lobes near azimuthal angle 90° which follow the SPP lines in 

M23 at AOI 35° disappear at AOI 55°. By multiplying the MM by an input Stokes vector 

corresponding to p-polarized light Sin=(1 1 0 0) or s-polarized light Sin=(1 -1 0 0) we obtain a 

contour plot equal to measured Rpp or Rss (not shown). 
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Figure 4. 23: MMEs measured in reflection at AOI from 25° to 65° by 10° over the complete 

azimuthal rotation in the spectral range between 210 nm and 1200 nm. All MMEs are normalized 

to M11.  
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4.2.6 Biaxial Model 
In principle it is of course possible to calculate the MMs for different angles of incidence, 

various azimuthal orientations and a broad range of frequencies by solving the Maxwell-

equations under the boundary conditions given by the 3-dimensional geometry of the grating. 

But this approach is on the one hand time-consuming and computer intensive and on the other 

hand it does not really promote the physical understanding of the origin of the observed optical 

behavior. In order to correlate the observed MM pattern to the known properties of the grating, 

i.e., its periodicity, the material parameters and the SPP and RWA modes, we present here a 

much simpler 2-dimensional approach based on a cumulative method, starting with a simple 

anisotropic effective medium model based on the Fresnel equations to which we add the 

dispersive modes described above. To begin with a simple anisotropic effective medium model, 

the dielectric function of PDMS and 35 nm Au is required.  

Dielectric function of Au layer  

In order to obtain the dielectric function of the Au layer, spectroscopic ellipsometry 

measurement was performed on a 35 nm thin gold film which is evaporated on an O2 plasma 

treated flat PDMS slab under the same evaporation conditions as the Au grating sample at AOI 

from 20° to 60°. Then an Au_nk1 layer with 35 nm from the CompleteEase software was used. 

Figure 4. 24 show the measured and modeled ellipsometric angles   and   as a function of broad 

range of wavelength from 210 nm to 1690 nm. Both measured   and   fit the modeled ones. So, 

we can say 35 nm Au thin layer is already a flat film and has the similar dielectric function with 

Au_nk1. In the next sections, dielectric function of Au_nk1 as shown in Figure 4. 25 is used in 

simulations to represent the dielectric function of the 35 nm Au. 

 

 
 

Figure 4. 24: Spectroscopic ellipsometric angles   and   at AOI from 20° to 60° in the spectral 

range from 210 nm to 1690 nm.  
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Figure 4. 25: Dielectric function of 35 nm Au. 

After obtaining the dielectric function of PDMS and Au layer, we start to prepare an optical 

model able to reproduce the measured intensity taking into account the anisotropy of the sample. 

According to the symmetry of the grating, the sample has two optical axes along X and Y. 

Therefore, we model the reflectance along α=0° and α=90° using Gaussian oscillators with the 

ellipsometry software [18]. The extracted permittivity of PDMS with 1 mm thickness is used as 

substrate of for all models. A 35 nm thick biaxial layer is placed on top of the substrate. Along Z 

direction normal to the layer interface, a Cauchy oscillator is used, while in X and Y directions 

we use general oscillator models. The parameters of the oscillators in X and Y direction are 

obtained by fitting the measured reflectance Rpp and Rss, along the azimuthal angles 0° and 90°. 

The model generated by fitting the measured Rpp (Rss) along its optical axis is called in this work 

“p-model” and “s-model” respectively. 

P-model 

In a first step, Rpp at α=0° is modeled with a 35 nm general oscillator layer (genoscx) on 

measured PDMS layer using nine Gaussian oscillators. Then Rpp at α=90° is modeled with 35 nm 

general oscillator layer (genoscy) on measured PDMS layer using seven Gaussian oscillators and 

one Drude oscillator. A perfect fit was obtained in both directions as shown in Figure 4. 26(a) 

and (b). Then, as shown in Figure 4. 26(c), a biaxial model is built with a Cauchy oscillator along 

Z direction and genoscx and genoscy in X and Y directions, respectively. The thickness of the 

biaxial layer is also 35 nm and the measured PDMS is used as substrate of thickness 1mm.  
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Figure 4. 26: (a) Genoscx and (b) Genoscy layer model with the Rpp fit at α=0° and 90° 

respectively. (c) Biaxial layer model. 

S-model 

The reflectance Rss at both angles α=0° and α=90° were fitted in the S-model. Rss at α=90° is 

modeled with a 35 nm general oscillator layer (genoscx) on the measured PDMS layer by eight 

Gaussian oscillators. Rss at α=0° is modeled with 35 nm general oscillator layer (genoscy) on the 

measured PDMS layer by twelve Gaussian oscillators and one Drude oscillator. A perfect fit was 

obtained by genoscy layer model at α=0° shown in Figure 4. 27(b), the fit at α=90° (Figure 4. 

27(a)) is not perfect but still works well. Then as shown in Figure 4. 27(c), a biaxial model is 

used with a Cauchy oscillator along Z direction and genoscx and genoscy in X and Y directions, 

respectively. Similarly to the p-model, the biaxial layer is 35 nm thick and again PDMS is used 

as a substrate.          
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Figure 4. 27: (a) Genoscx and (b) Genoscy layer model with Rss fit at α=90°and 0° respectively. 

(c) Biaxial layer model. 

4.2.7 Modelling results and interpretation 

Modelled reflectance 

Using P- and S- models, we start by calculating both the p- and s-reflectance at AOI 45° over the 

whole azimuthal range and compare the result with the experimentally obtained reflectance plots 

in Figure 4. 28. The expected anisotropy of the reflectance is visible in both, the experimental 

and the modelled plots. The calculated and measured Rpp and Rss are very similar.  
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Figure 4. 28: Rpp (a) and Rss (b) measured at AOI 45° over a complete azimuthal rotation in the 

spectral range between 210 nm and 1200 nm. Rpp (c) and Rss (d) generated from the p- and s-

biaxial models, respectively. All the plots are shown together with the calculated SPP lines in the 

top half space.  

The second step of the method is to add the analytically calculated positions of the excited 

SPPs from Equation (2.82), which is also shown in all graphs of Figure 4. 28. Since no 

dispersion effects are included in our biaxial models, the dispersive SPP modes are not 

accurately reproduced. In particular, in our simple model the plasmonic resonances are 

independent of the azimuthal orientation and therefore appear as part of a circle due to the 

simplification of the model. This is visible when one compares Figure 4. 28(c) with (a). 

However, this method allows us to determine what comes from the plasmonic mode from what is 

due to anisotropy. The outer feature of the measured reflectance is attributed to the plasmonic 

resonance, which follows very well the analytical curve in Figure 4. 28(a). The signal at lower 

wavelengths is mostly determined by anisotropy and non-dispersive effects, therefore both 

modelled and measured graphs are very similar in this wavelength range. We now turn our 

attention to Rss (Figure 4. 28(b) and (d)). Similarly to Rpp, the polar plots of Rss are reproduced 

by the biaxial model at shorter wavelengths while deviations are observed at the SPP 

wavelength. In particular the “V-shape” of the SPP around α=90° is not reproduced by the pure 

biaxial model and can be identified only when the analytical mode dispersions are superimposed.  

Modelled MM 

Once the models obtained for p- and s-polarized light reproduce reasonably well the intensity 

data, we use them to calculate the MMs at AOI 45° as shown in Figure 4. 29(a) and (b), 

respectively. In general, we can see that both p and s-models can reproduce the measured signal 

in the shorter wavelength region (210-690 nm). However, in the longer wavelength region (890-

990 nm), which is mainly influenced by SPPs, the generated MME show deviations to the 

measurements. Here also the effects of dispersion are not included and all the features at longer 
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wavelengths corresponding to SPPs follow circles instead of arcs. For example, the measured 

M12 shows SPP curved features near α=0° and another SPP feature at lower wavelength near 

α=90°. This can be understood by recalling that the p-model (s-model) considers as a 

simplification only the p-polarization (s-polarization respectively). However, the measured 

MME exhibit the full optical response and there s-polarization also plays an important role. 

Therefore, Figure 4. 29(a) and (b) need to be combined to explain the full measurements. We can 

see that the features near α=90° are reproducing the measured features, which also prove that the 

SPPs near α=90° are excited by s-polarization. However, the calculated M24, M23 and M34 at 

higher wavelength have opposite phase compared to the measurements, a feature obviously not 

captured by the simplifying model. From this preliminary result we can see that we obviously 

need both the pure anisotropy modelled by an effective medium approach for both s- and p-

excitation, including the plasmonic effects, and the dispersion originating from the periodicity of 

the sample. In the next section, we will give more details on the physical interpretation of all the 

features as well as their interplay. 

 

 
 

Figure 4. 29:  Simulated MM at AOI 45° in the spectral range between 210 nm and 1200 nm 

with full azimuthal rotation generated from P biaxial model (a) and S biaxial model (b). 

Multiplication factors are used to scale the data to [-1;1].  

Identification of the optical features 

For sake of simplicity, we now choose only the four MME (M12, M13, M24 and M34) for a 

more detailed analysis shown in Figure 4. 30. Our aim here is to illustrate the method of 

superposition of the separated physical effects through their respective analytical models. This 

superposition, taking into account the assumptions of each model, is helpful in comparison with 

the measured data in order to reveal the origin of the optical properties. The detailed comparison 

of all the elements of this figure gives us a complete description and interpretation of the 
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complex pattern of the measured MM. Each row of Figure 4. 30 corresponds to one of the four 

chosen MME, all measured or generated at AOI 45°. The first column displays the measured 

data superposed with the analytical dispersion of the SPP modes. The second column compares 

the measured data with the expected positions of some RWA lines as well as the interband 

transition of gold. The last two columns illustrate the MME calculated by the anisotropic p- 

(resp. s-) models, together with the analytical positions of the SPPs, RWAs and the interband 

transition of gold.  

The first column, comparing the measured data with the expected position of the propagating 

SPP mode, reveals that the outer feature of the MMEs is strongly influenced by the plasmonic 

mode. However we can see that the measured signal follows the SPP lines only over a certain 

azimuthal angle range. Indeed, the excitation angle range is determined by the sample anisotropy 

and can be calculated by our anisotropic layer model (last two columns): the simulated MMEs, 

dependent on anisotropy, indicate the azimuthal range where the excitation of the features is 

allowed and its respective strength. Moreover the comparison of the p-model and s-model allows 

us to determine which measured feature is linked with which polarization. However, since the 

anisotropic layer model does not take dispersion into account, it is expected that the curvature of 

the SPP mode is not reproduced. As a result of a dispersionless model, the simulated elements 

M12 and M13 predict the SPP mode position correctly only at α=0° (for p-model) and α=90° (for 

s-model). For all azimuthal angles in between these values, the spectral position of the SPP 

modes deviates following the SPP analytical line. In other words, intentionally curving the 

simulated features with respect to the azimuthal angle following the SPP mode dispersion leads 

to similar patterns as those measured. Therefore the interpretation of the comparison shown in 

Figure 4. 30 is as follows: the simulated MMEs – last two columns – display the range of 

azimuthal angles α where spectral features due to anisotropy appear (in the respective MMEs), 

while the position of the dispersive modes interact with the anisotropy related features by either 

curving the branches or modifying their shape and width.  

When we turn our attention to the features at the center (shorter wavelengths between 210 nm 

and 690 nm), we can see that the superposition works similarly to the case of the SPP modes. In 

this spectral region, the optical properties are influenced by anisotropy, diffraction orders 

(RWAs) and interband transitions. In particular, the direct visual comparison between the 

anisotropy related lobes, the position of the RWAs and the measured MMEs indicate clearly that 

the shape of the MMEs is produced by a modification of the anisotropic signal by all the physical 

phenomena present in this spectral range. If we first consider M12, along the 180°-0° azimuthal 

line, we can clearly see that the anisotropy lobe is modulated by the presence of the RWA AIR (-

2) (green) and RWA PDMS (-2) (black) orders. The same is valid for M13 along the 235°-45° 

line, and for M34 at most azimuthal angles. The latter is, in addition to the influence of the 

RWAs, also influenced by the Au interband transition. Quite interestingly, if we compare M13 

with Figure 4. 21, we can see that M13 is really similar to the cross-polarized reflectance Rps or 

Rsp over the whole measurement range, because M13 reflects the anisotropy effect of the sample, 

which strongly influences the polarization conversion.  

The method presented here is based on the direct comparison of simple analytical models, 

each describing one distinct physical aspect: in our particular case, these are linked to anisotropy, 

SPP, dispersion, diffraction and interband transition. The influence of these four main aspects is 

easily identified. The interplay between modes can be found at the intersection between their 

expected positions.  
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Figure 4. 30: Measured and simulated MM elements M12, M13, M24 and M34 together with the 

SPP, RWA and interband transitions draws in the upper half space at AOI 45°. Simulated p- and 

s-model means, that the Mueller matrices are calculated only from the anisotropic effective 

medium approach obtained from the s- and p-reflectance measurements. The multiplication 

factors give the enhancement factor in respect to the scale bar. 
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4.2.8 Conclusion 
In summary, we have demonstrated how the complex optical response of a simple Au grating can 

be decomposed into its physical ingredients. First, we measure the reflectance along the two 

optic axes of the grating, along and perpendicular to the grooves under s- and p-polarization. The 

reflectance is then modelled by a simple anisotropic effective medium approach using Drude-

Lorentz oscillators. From this anisotropic model, the intensity plots (reflectance in our case) over 

the whole spectral and angular range are generated. Once the agreement between the generated 

and measured plots is insured, the Mueller-matrix plots can be calculated. On top of this 

calculated MME we superimpose the expected dispersive SPP and RWA modes, calculated from 

the known periodicity of the grating. Comparing this composed result with measured MMs gives 

a deep insight on how the different physical contributions originating from periodicity, 

anisotropy and material properties influence the complex polarization mixing. We have seen that 

SPPs can be excited by both p- or s-polarized light when the incident plane is perpendicular or 

parallel to the grating grooves. Both SPP modes are dispersive with the AOI and follow the same 

phase matching condition. P- or s-polarized light can be converted to s- or p- polarized light via 

SPP excitation, and maximum polarization conversion occurs when the angle between incident 

plane and grooves is 45°. Additionally to the excitation of SPPs, the optical properties are 

influenced by geometric anisotropy, the RWAs related to the periodic grating structure and, to a 

lesser extent, the Au interband transition. The anisotropy, the interband transition and the non-

dispersive approximation of the SPPs are understood in terms of an effective medium approach, 

obtained from fitting the measured reflectance. However, the dispersion of the SPP modes and 

the RWAs effects should be added (directly from their analytical expressions) on top of this 

model.  
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4.3 Au/Ni/Au gratings 
After demonstrating how the complex optical response of a simple Au grating can be 

decomposed into its physical ingredients in section 4.2, we now turn out attention to another 

metallic gratings formed by evaporating a thin Au/Ni/Au multiple layers on top of PDMS 

grating. In this section, first of all, we apply the same analytical method used for Au grating in 

section 4.2 to decompose the complex optical response into its physical ingredients. Second of 

all, we compare the results of Au/Ni/Au grating with Au grating to see the influence of Ni layer 

on the optical response. Finally, we discuss the ability to tune SPP by mechanical stretching.  

4.3.1 Sample Fabrication 
Au/Ni/Au grating was produced by the same self-assembly technique as Au gratings. The PDMS 

grating was fabricated under the condition 40% prestrain and 10 min O2 plasma treatment. Then 

15 nm Au, 10 nm Ni and 10 nm Au layers were evaporated on top of the PDMS grating after a 

second time O2 plasma treatment for 1min. The sample is shown in Figure 4. 31(a). The 

patterned grating structure is in the center with size 8 mmx13 mm. Figure 4. 31(b) and (c) 

respectively show the top view image over an area of 20 µmx20 µm and 3D view image over an 

area of 5 µmx5 µm measured by AFM. The AFM analysis reveals that the Au/Ni/Au grating has 

a period p equals to 530 nm and depth H equals to 95 nm.  

 

 
 

Figure 4. 31: (a) A photograph of the sample glued on an aluminum plate. (b) Top view of AFM 

image over an area of 20 µmx20 µm and (c) 3D view of AFM image over an area of 5 µmx5 µm.  

4.3.2 Dielectric function of Au/Ni/Au  
In order to get the dielectric function of the multiple Au/Ni/Au layers on the PDMS grating, 

spectroscopic ellipsometry measurement was performed on a sample with 15 nm Au/10 nm 

Ni/10 nm Au layers on a flat PDMS at AOI from 40° to 60° by 10°. The 15 nm Au/10 nm Ni/10 

nm Au films were evaporated (Univex 300) on an O2 plasma treated flat PDMS slab under the 

same evaporation conditions as the Au/Ni/Au grating sample. Then the General oscillator layer 

with 35 nm from the WVASE software was used. Figure 4. 32 shows the measured and modeled 

ellipsometric angles   and   in the spectral range from 300 nm to 1800 nm. Both measured   

and   fit very well the modeled ones except deviations in the range near ultraviolet range. The 

real part   
 and imaginary part   

  of effective dielectric constant of the multiple Au/Ni/Au layers 
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was then extracted and showed by the blue lines in Figure 4. 33. This dielectric constant was 

then used in the next sections to calculate the SPP dispersion lines. 

 

 
 

Figure 4. 32: Spectroscopic ellipsometric angles   and   at AOI from 40° to 60° by 10° in the 

spectral range from 300 nm to 1800 nm.  

Figure 4. 33 also shows the dielectric constants of Ni (from Palik [86]) and Au (from Johnson 

and Christy [87]). As we expected, both the real and imaginary parts of the dielectric constants of 

Au/Ni/Au locate in between that of Ni and Au.  

 

 
 

Figure 4. 33: (a) Real part    
  and (b) imaginary part   

   of dielectric constants of Au/Ni/Au, Au 

and Ni. 

4.3.3 Reflectance dispersion  
Figure 4. 34(a) and (c) respectively show the reflectance dispersion plots measured with p-

polarized light at α=0° and with s-polarized light at α=90° at AOI from 20° to 60° in a broad 

spectral range 200 nm-1600 nm together with calculated SPP line. Figure 4. 34(b) and (d) 

respectively show the reflectance at θ=20°, 30° and 40° in accordance to the left contour plots. 

We can see both p and s polarized light excite SPPs, which is the same with Au gratings. 

Besides, both SPP excited by p- and s- polarized light are dispersive modes. For p-polarization, 

the SPP resonance shifts to higher wavelength from 740 nm at θ=20° to 990 nm at θ=60°, while 

for s-polarization, the SPP resonance slightly shifts to lower wavelength from 550 nm at θ=20° 
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to 470 nm at θ=60°. We can see from Figure 4. 34(c) that the influence of RWAs_air(-1) on the 

reflectance is very weak, while for Au grating as shown in Figure 4. 19(b), RWAs_air(-1) shows 

strong influence. 

 

 
 

Figure 4. 34: Reflectance dispersion plots measured with (a) p-polarized light at α=0° and (c) s-

polarized light at α=90° at AOI from 20° to 60° in spectral range from 200 nm to 1600 nm. (b) 

and (d) respectively show the reflectance at θ=20°, 30° and 40° in accordance to the (a) and (c) 

contour plots, respectively. 

 

 
 

Figure 4. 35: SPP dispersion lines as a function of whole azimuthal angles and wavelength range 

(400-1200 nm) at AOI 20°, 40° and 60°. 
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We already know the condition for SPP excitation in Equation 2.82. By obeying equation 

2.82, mixed s- and p- polarization can be used to excite SPPs. Therefore, we calculate the SPP 

lines from Equation 2.82 as a function of α (complete azimuth angles) and   (400-1200 nm) at 

θ=20°, 40° and 60° in Figure 4. 35. We can see SPP lines appear as constricted circles and show 

strong dispersion as both AOI and azimuthal rotation. For instance, we can see the SPP position 

red shift along α=0° and blue shift along α=90° as AOI. The redshift and blueshift features 

shown in Figure 4. 34 (b) and (d) confirm the SPP origin. 

Figure 4. 36 shows the comparison of reflectance of Au/Ni/Au grating and Au grating 

measured with p-and s-polarized light at AOI 30° and 40° in spectral range from 200 nm to 1600 

nm. The total thickness of Au/Ni/Au layer is 35 nm which is the same with Au layer of Au 

grating. Besides, Au/Ni/Au and Au grating were fabricated with same method and have similar 

periodicity and amplitude. So even though SPPs for Au grating and Au/Ni/Au grating are excited 

at different wavelengths, we can still compare these two grating samples. We can see in general 

that reflectance for Au grating is higher than Au/Ni/Au grating. This is because Au has smaller 

extinction coefficient than Au/Ni/Au, resulting in small absorption. Besides, due to the large 

absorption of Ni, as expected from Equation (2.76), the full width at half maximum of the 

plasmonic peak for Au/Ni/Au grating is much broader than Au grating.  

 

 
 

Figure 4. 36: Reflectance measured with (a) p-polarized light along α=0° and (c) s-polarized 

light along α=90° at AOI 30° and 40° in spectral range from 200 nm to1600 nm for Au grating 

and Au/Ni/Au grating.  

4.3.4 Reflectance angular dependence 
In order to visualize the azimuthal dependence of the excited modes, measured reflectance for p 

and s-polarized light at AOI from 20° to 60° by 20° over a complete azimuthal rotation in steps 

of 5° in the spectral range between 200 nm and 1600 nm together with calculated SPP, RWAs 

and interband transition lines is shown in Figure 4. 37. In general, same with Au grating, the 

reflectance shows a simple C2-symmetry. The positions of the excited resonances in Figure 4. 37 

follow the calculated SPPs lines very well confirming their plasmonic origin. It is necessary for 

the incident light to have a component of polarization that is perpendicular to the grooves [1]. 

Therefore, only p-polarized light can excite SPP at α=0° and only s-polarized light can excite the 

SPP the positions at α=90°. Besides, we can see, the positions of the excited SPP resonances is in 
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the azimuthal range α=-45° to 45° for p-polarized light and is in the azimuthal range α=45° to 

135° for s-polarized light.  

If we compare the reflectance with Au grating, we can see the resonances are much more 

blurred and broader than that of Au gratings shown in Figure 4. 20. Also, the “V” shape lobe in 

Rss due to SPP at around α=90° are broader than Au grating. The broad resonance at lower 

wavelength range 200 nm-700 nm is coming from the anisotropy and non-dispersive effects. 

Similar to the Au interband transition feature which is clearly visible and represented as a circle 

at 480 nm in Figure 4. 20, the reflectance for Au/Ni/Au grating also shows a weak circular 

intensity drop at around 510 nm as indicated with red dotted line which can be explained by the 

effective interband transition of the whole Au/Ni/Au layers. Moreover, same with Au grating, the 

influence of RWAs is rather weak as shown in these angular dependent reflectance plots. 

 

 
 

Figure 4. 37: Measured Rpp and Rss at θ=20º, 40º and 60º are plotted with full azimuthal rotation 

in the spectral range from 200 nm to 1600 nm. The black and dotted red lines indicate the 

calculated position of the SPP mode and interband transition, respectively.  
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4.3.5 Mueller Matrix in reflection 
To get a deeper insight in the influence of SPPs, interband transition and probably RWAs on the 

complex optical behavior of the Au/Ni/Au grating, MME measurements were carried out in 

reflection in the spectral range between 200 nm and 1600 nm at θ=20º, 40º and 60º over 

azimuthal rotation (0-180°). In order to display the completeness of whole azimuthal rotation, we 

duplicate the data in the range 180-360º based on the data in the range (0-180°) due to the 

symmetry of the grating (Figure 4. 38). All the MM elements are normalized to M11 element and 

some elements were scaled with multiplication factors in order to obtain a better visualization. In 

general, we can see all the lobes in MM elements can be explained by SPP line. The broad 

anisotropy lobe at lower wavelength range as shown in reflectance plots has no contribution to 

the MM patterns, therefore RWA_air(2), RWA_PDMS(2) and interband transition lines which 

locate at this lower wavelength range as shown in Figure 4. 39 also have no contribution to the 

MM lobes. Same with MM measured for Au grating, the MMEs for Au/Ni/Au grating show the 

expected symmetry and the off-block-diagonal elements present the strong anisotropy. In detail, 

the off-block-diagonal elements show curved lobes with maxima around α=45° and 135° at the 

excitation wavelengths of the dispersive SPP modes. The lobes near azimuthal angle 90° in M12, 

M33 and M43 become weaker as increasing AOI. These lobes come from the SPPs excited by s-

polarized light. Moreover, we can see the lobes near azimuthal angle 70° in M23 which follow 

the SPP lines at AOI 20° and AOI 40° disappears at AOI 60° due to the dispersion of SPP 

excited by s polarized light.  
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Figure 4. 38: MMEs measured in reflection at (a) θ=20º, (b) θ=40º and (c) θ=60º over the 

azimuthal rotation (0-180°) in the spectral range between 200 nm and 1600 nm. The data in the 

range (180-360°) are duplicated from measured data in the range (0-180°). All MMEs are 

normalized to M11.  
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Figure 4. 39: MMEs measured in reflection at θ=40º over the azimuthal rotation (0-180°) in the 

spectral range between 200 nm and 1600 nm together with RWA_air(2), RWA_PDMS(2) and 

interband transition. The data in the range (180-360°) are duplicated from measured data in the 

range (0-180°). All MMEs are normalized to M11.  

In general, we can see different from Au grating (Figure 4. 23) where SPP, interband 

transition and RWAs play important roles in the MM, here in Au/Ni/Au grating, only SPP line 

could explain all the lobes in MM elements. For a more detailed analysis, we compare MM12, 

MM13 between Au/Ni/Au grating at θ=40º and Au grating at θ=45º together with RWAs, SPP 

and interband transition as shown in Figure 4. 40. It reveals that the feature at longer wavelength 

in the MMEs is strongly influenced by the plasmonic mode. Different from M12 for Au grating, 

where along the 180°-0° azimuthal line, the anisotropy lobe is modulated by the presence of the 

RWA_air(-2), RWA_PDMS(-2) orders and interband transition, M12 for Au/Ni/Au grating shows 

no modulations from RWAs. It is the same for M13 along the 235°-45° line where Au/Ni/Au 

grating show only the lobe coming from SPP, while Au grating shows clear modulations from 

RWA_air(-2), RWA_PDMS(-2)  and interband transition.  

RWA_air(-2) appears in the interface between air and metallic layer (Au or Au/Ni/Au). Since 

Ni layer introduce more absorption of the incident light than Au layer, the reflected light has less 

intensity than Au grating which is as also confirmed from reflectance measurement in Figure 4. 

36. Therefore, the less reflectance leads to the non-contribution of RWA_air(-2). Similarly, due to 

the large absorption, the incident light will not pass through the Au/Ni/Au layer as easy as 

passing through Au layer. So RWA_PDMD(-2) which appears in the interface between PDMS and 

Au/Ni/Au layer also has no contributions to the optical response. 
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Figure 4. 40: (a) M12 and (c) M13 for Au/Ni/Au grating measured in reflection at θ=40º over the 

azimuthal rotation (0-180°) in the spectral range between 200 nm and 1200 nm. The data in the 

range (180-360°) are duplicated. (b) M12 and (d) M13 for Au grating measured in reflection at 

θ=45º over the complete azimuthal rotation in the spectral range between 200 nm and 1200 nm. 

4.3.6 Modelling results and interpretation 
In order to correlate the observed MM pattern to the polarization, we present here a similar P and 

S-modes as Au grating.  

P-model  

In a first step, Rpp at α=0° and 90° were respectively modeled with 35 nm general oscillator 

layers (genoscx layer and genoscy layer) on PDMS layer with a thickness of 1mm. In order to 

obtain a good fit as shown in Figure 4. 41(a) and (b), six Gaussian oscillators and one Drude 

oscillator were used in both directions. Then, as shown in Figure 4. 41(c), a biaxial model was 

built with a Cauchy oscillator along Z direction and genoscx and genoscy in X and Y directions. 

The thickness of the biaxial layer is 35 nm and the PDMS was used as substrate of thickness 

1mm.  
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Figure 4. 41: (a) Genoscx and (b) Genoscy layer model with the Rpp fit at α=0° and 90° 

respectively. (c) Biaxial layer model. 

S-model 

Similar to P-model, the reflectance Rss at angles α=0° and α=90° were fitted in the S-model. Rss 

at α=90° was modeled with a 35nm general oscillator layer (genoscx) on the PDMS layer by 

three Gaussian oscillators and one Drude oscillator. Rss at α=0° was modeled with 35nm general 

oscillator layer (genoscy) on the PDMS layer by five Gaussian oscillators and one Drude 

oscillator. A nice fit was obtained in the range 300 nm-1600 nm for Rss at angle α=90° and 200 

nm-1600 nm for Rss at angle α=0° as shown in Figure 4. 42(a) and (b). Then a biaxial model 

(Figure 4. 42(c)) was used with a Cauchy oscillator along Z direction and genoscx and genoscy 

in X and Y directions. Same with p-model, the biaxial layer is 35 nm thick and again PDMS is 

used as a substrate.          
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Figure 4. 42: (a) Genoscx and (b) Genoscy layer model with Rss fit at α=90°and 0° respectively. 

(c) Biaxial layer model. 

Modelled reflectance 

Using P- and S- models, we start by calculating both the p- and s-reflectance at AOI 40° over the 

whole azimuthal range and compare the result with the experimentally obtained reflectance plots 

in Figure 4. 43. The expected anisotropy of the reflectance is visible in both, the experimental 

and the modelled plots. Then, the analytically calculated positions of the excited SPPs are added 

in all graphs of Figure 4. 43. As already discussed in section 4.2, no dispersion effects are 

included in our biaxial models, so the dispersive SPP modes are not accurately reproduced. This 

is visible when one compares Figure 4. 43(c) with (a). However, this method allows us to 

determine the feature at higher wavelength of the measured reflectance is attributed to the 

plasmonic resonance, which follows very well the analytical curve in Figure 4. 43(a) and the 

signal at lower wavelengths is mostly determined by anisotropy and non-dispersive effects. Both 

modelled and measured graphs are very similar in this lower wavelength range. We now turn our 

attention to Rss (Figure 4. 43(b) and d). Similarly to Au grating, the polar plots of Rss are 
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reproduced by the biaxial model at shorter wavelengths while deviations are observed at the SPP 

wavelength range. In particular the broad “V” shape of the SPP around α=90° is not reproduced 

by the pure biaxial model.  

 

 
 

Figure 4. 43: Rpp (a) and Rss (b) measured at AOI 40° over a complete azimuthal rotation in the 

spectral range between 200 nm and 1600 nm. Rpp (c) and Rss (d) generated from the p- and s-

biaxial models, respectively. All the plots are shown together with the calculated SPP lines in the 

top half space.  

Modelled MM 

Once the models obtained for p- and s-polarized light reproduce reasonably well the intensity 

data, we use them to calculate the MMs at AOI 40° as shown in Figure 4. 44(a) and (b) 

respectively. In general, we can see that both p and s-models can reproduce the correct symmetry 

as measured MM. However, in the longer wavelength region (750-1050 nm), which is mainly 

influenced by SPPs, the generated MME show deviations to the measurements. Here also the 

effects of dispersion are not included and all the features at longer wavelengths corresponding to 

SPPs follow circles. For example, the measured M12, M34 shows SPP curved features near α=0° 

(Figure 4. 44(a)) and another SPP feature at lower wavelength near α=90° (Figure 4. 44(b)). So 

we obviously need both s- and p-excitation, including the plasmonic effects to understand the 

whole optical response of Au/Ni/Au grating.  
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Figure 4. 44:  Simulated MM at AOI 40° in the spectral range between 200 nm and 1600 nm 

with full azimuthal rotation generated from (a) P biaxial model and (b) S biaxial model. 

Multiplication factors are used to scale the data to [-1; 1].  
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4.3.7 Active tuning of surface plasmon polaritons 
It is a dream of optics and material science to actively control the optical properties of materials. 

Currently, the booming field of plasmonics opens for the control of light-matter interactions in 

real time. This understanding of the behaviour of these novel materials is also crucial for the 

development of novel technologies and emerging applications. As we can see from the relation 

equation for SPP excitation by grating technique in Equation (2.82), SPP excitation dependent on 

AOI  , azimuthal rotation α and grating periodicity P. As confirmed from Figure 4. 35, the 

dispersion line of SPP forms constricted circles and strongly dependent on   and α. Besides, 

even though the grating amplitude A does not contribute to relation equation, it has influence on 

the intensity of resonance peak of SPP [84]. So, SPP can be tuned with these parameters ( , α, P, 

A). On the other hand, recently nanosystems with combined magnetic and plasmonic 

functionalities become an active topic of research. The magnetic functionality permits the control 

of the SPP properties by an external magnetic field, which allows the development of active 

plasmonic devices [10]. In this section, I introduce an approach for SPP tuning by mechanically 

controlling the periodicity and amplitude of grating.  

A 15 nm Au/10 nm Ni/10 nm Au layer was evaporated on one minute O2 plasma treated 

PDMS grating fabricated with 20% prestrain and 10 min O2 plasma treatment. Then, the 

fabricated Au/Ni/Au grating was glued on a home-made linear stretching stage (Figure 4. 45(a)) 

and put inside an oven with 85  for 1h to accelerate the curing process. After the glue is cured, 

the linear stretching stage together with Au/Ni/Au grating was mounted on the VASE 

ellipsometer (Figure 4. 45(b)). The sample was mounted in the condition the grating grooves are 

perpendicular to the plane of incidence where p-polarized light has maximum efficiency to excite 

SPP. 

 

 
 

Figure 4. 45: (a) Home-made linear stretching stage. (b) Sample is mounted on the VASE 

ellipsometer in the condition the grating grooves are perpendicular to the plane of incidence. 

Rpp was measured at AOI 30°. Every rotated circle of the screw shown in Figure 4. 45(a) 

makes 0.5 mm stretching of the sample. The sample broke after stretching length of 4 mm (8 

turns). Figure 4. 46 shows the measured p-reflectance as a function of stretching turns. The SPP 

resonance position without stretching is at 1170 nm with full width at half maximum (FWHM) 

about 89 nm. After one turn stretching, the SPP resonance shifts to higher wavelength at 1250 

nm and becomes broader with FWHM about 98nm. After the first turn stretching, the resonance 
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continuously becomes broader with FWHM increasing from 109 nm at 2 turns to 132 nm at 4 

turns. Even though the resonance becomes broader, we can see the resonance position stays at 

around 1250 nm. In order to explain the feature shown in measured p-reflectance, microscopic 

images were taken at each stretching step (Figure 4. 47). By calculating the periodicity from the 

microscopic images, we obtain the periodicity without stretching is 735 nm and the periodicities 

after stretching with 1, 2, 3, 4 and 8 turns have similar value about 833 nm. The similar 

periodicity after 1 turn stretching is the reason why they have the similar resonance position of 

SPP. According to the relation between stretching percentage and stretching length shown in 

Figure 4. 4, we know that one turn rotation of the screw brings 4.2% stretching. So the 

periodicity can be predicted and calculated as P=735*(1+4.2%)=766 nm. In reality, the bigger 

period (833 nm>766 nm) measured from microscopic image after one turn stretching is because 

Au layer on PDMS grating template has much bigger Poisson ratio and leads to bigger stretching 

percentage than pure PDMS grating. Instead of periodicity, we can see few cracks occur in the 

sample after the first turn of stretching. Afterwards, more and more cracks appear as increasing 

the stretching turns, resulting in shorter and shorter distance between the cracks.  

 

 
 

Figure 4. 46: Reflectance measured with p-polarized light at AOI 30° as a function of stretching 

turns. 

The length of the SPPs propagating along the interface of air and Au/Ni/Au layer can be 

defined as: 
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The real and imaginary value of dielectric function at incident wavelength 1170 nm are obtained 

from Figure 4. 33 to be   
              

  = 14.5;     is the permittivity of air which is 1. Then, 

the propagating length of SPP without stretching can be calculated to be Lsp=20.5 µm. We can 

see from Figure 4. 47(c) that the distance between the cracks in the case with 2 turns stretching is 

already smaller than 20.5 µm. Therefore the shorter distance between the cracks decreases the 

propagating length of SPP, leading to the broadening of the resonance. 
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Figure 4. 47: Microscopic images at different stretching step for Au/Ni/Au grating sample 

fabricated with 20% prestrain and 10 min O2 plasma treatment. 

After analyzing the tuning ability of SPP via mechanical stretching, we are interested in the 

reversibility of this approach. However, since the sample broke after 8 turns stretching, a new 15 

nm Au/10 nm Ni/10 nm Au grating sample was fabricated with 20% prestrain and 12.5 min O2 

plasma treatment. The sample was stretched until 4 turns and then was slowly released to the 

beginning stage without prestrain. After the sample was stretched or released at each step, Rpp at 

AOI 30° (Figure 4. 48) and microscopic images were measured (Figure 4. 49).  
 

 
 

Figure 4. 48: Reflectance measured with p-polarized light at AOI 30° as a function of stretching 

turns during (a) stretching and (b) releasing process. 
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Figure 4. 49: Microscopic images at different stretching step for Au/Ni/Au grating sample 

fabricated with 20% prestrain and 12.5 min O2 plasma treatment. 

Same with the sample fabricated with 20% prestrain and 10 min O2 plasma treatment, more 

and more cracks appear as increasing the stretching turns, resulting in shorter and shorter 

distance between the cracks. Figure 4. 48 (a) shows the peak position red shift as increasing the 

stretching. When the grating is released until only one turn prestrain is retained, the grating bulks 

between the cracks keep the shape and only the size of the cracks decrease. The microscopic 

images in Figure 4. 49 show the size of the cracks decrease to zero and the grating become 

continuous again when there is still 1 turn prestrain remained. Figure 4. 48 (b) shows the 

plasmonic peak become prominent when releasing back to the stage with 1 turn prestrain, 

confirming the continuous grating seen in Figure 4. 49. It is very interesting to see from Figure 4. 

48 the position of plasmonic peak reverse exactly to the original stage without any stretching at 

867 nm, indicating our approach for tuning SPPs is reversible. 

4.3.8 Conclusion 
In summary, first of all, following the approach with Au grating in Section 4.2, we have 

demonstrated how the complex optical response of a simple Au/Ni/Au grating can be 

decomposed into its physical ingredients. The optical properties are influenced by the excitation 

of SPPs, geometric anisotropy and to a lesser extent, the Au/Ni/Au interband transition. There is 

no influence of RWAs which comes from periodicity. The anisotropy, the interband transition 

and the non-dispersive approximation of the SPPs are understood in terms of an effective 

medium approach, obtained from fitting the measured reflectance. However, the dispersion of 

the SPP modes effects should be added on top of this model. Second of all, we compared the 

optical response of Au/Ni/Au grating and Au grating. Due to the absorption of Ni layer, 

plasmonic feature becomes broader and the influence of RWAs is disappears. Finally, we 

introduced an active way for tuning SPP via mechanical stretching. By actively stretching the 

PDMS grating template, the periodicity of grating increases and SPP peak position red shifts. 

The releasing of a stretched metallic grating gives us a way for tuning the crack size between 

grating bulks with the shape of grating bulks unchanged.  

The cracks between the grating bulks can become hot spots with very high field enhancement. 

It will be very interesting to investigate the influence of the crack size on the polarization mixing 

by MM method.   
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4.4 Ag nanoparticle arrays 
After discussing the PDMS based metallic gratings in section 4.2 and 4.3, we now turn our 

attention to another periodic plasmonic nanostructure which is metallic nanoparticle arrays. LSP 

instead of SPP plays a role in the optical response and inter-particle coupling introduce new 

excitations. Besides, the RWAs and waveguide excitation in the sample make the optical 

response even more complex. So it is very interesting for us to separate the influence of 

individual ingredient by using the similar approach in the previous sections.  

4.4.1 Introduction 
Metallic nanoparticle arrays have been widely studied over the last decades [75], [76], [88]–[93]. 

The optical response of nanoparticle array depends not only on the shape and environment of the 

individual particle [9], [94], but also on their specific arrangement, which not only modify their 

excitation but also can create new excitations via inter-particle coupling [95]–[97]. All these 

excitations depend on the wavelength, the polarization, the azimuthal orientation of the sample in 

case of an anisotropic arrangement and on the angle of incidence, when dispersion coming from 

periodicities or coupling to the neighbors is important. The interplay of all these different 

contributions can lead to a complex optical response, where the influence of the different 

ingredients cannot be easily separated.  

In this section, we demonstrate how the intricate optical response of an elaborate nanoparticle 

array can systematically be disentangled by spectroscopic MM ellipsometry. The investigated 

nanoparticle array is produced by a self-organized growth process of Ag nanoparticles in a TiO2 

thin film loaded with metallic precursors by continuous laser light excitation. This type of 

sample is known to produce bright and robust colors [98]–[100]. The optical characterization 

starts with the AOI dependent transmission measurements revealing the dispersion coming from 

waveguide excitations due to the periodic arrangement of the Ag nanoparticles embedded into 

the thin TiO2-film as well as the azimuthal dependent transmission showing the anisotropy of the 

sample. From these intensity measurements, a first simple effective medium model is developed. 

Comparing the full MM measurements with the simulated MMs calculated form this simple 

model and subsequently decomposing the obtained MMs allows us to decouple the different 

contributions to the optical response and learn about the special properties of this sample design.  

4.4.2 Experimental  
We consider an Ag nanoparticle ensemble embedded in a TiO2 film produced by a single 

homogeneous continuous-wave laser beam according to a reported procedure [98], [99]: A 

mesoporous film of amorphous Titania loaded with silver salt and small silver nanoparticles was 

deposited on a glass substrate. The laser beam was slightly focused on the sample by a 10x 

microscope objective (Olympus MPlan N, N.A. 0.25) under normal incidence, the diameter of 

the circular spot in the focal plane can be varied by changing the focus. The incident power on 

the sample is 300 mW at laser wavelength 488 nm. During exposure, the samples are translated 

at a constant speed of 0.6 mm/s to draw 4 mm long lines with the laser beam. Under such 

illumination conditions, silver nanoparticles spontaneously grow along periodically spaced 

chains parallel to the laser polarization that form periodic Ag nanoparticle ensemble with 
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periodicity 270 nm measured from diffraction measurements in a back-scattering configuration 

[98]. Here the laser polarization is set perpendicularly to the laser path.  

Spectroscopic ellipsometry was performed on the mesoporosity non-illuminated TiO2 area in 

order to investigate the thickness and permittivity of TiO2 film. Ellipsometric angles   and   

were measured in the spectral range between 370 nm and 1690 nm at AOI from 35° to 65° by 

10°. Then a general oscillator layer on glass substrate was used to fit the measured ellipsometric 

angles. In the general oscillator layer, 5 Gaussian and 2 Lorentz oscillators were used. By fitting 

both the thickness and all oscillators, a nice fit with mean-squared error (MSE) less than 1 was 

obtained (Figure 4. 50(a) and (b)). So the thickness of TiO2 is 160 nm and the refractive index   

is around 1.9 with little dispersion in the spectral range between 370 nm and 700 nm as shown in 

Figure 4. 50(c).  

 

 
 

Figure 4. 50: Ellispsometric angles (a)   and (b)   measured and modeled in the spectral range 

between 370 nm and 1690 nm. (c) obtained dielectric constant of TiO2 layer. 

Figure 4. 51(a) displays a schematic of the fabricated sample. The nanoparticles are located at 

the TiO2/glass interface. The size of silver nanoparticles ranges from 20 to 100 nm and the 

interparticle distance along a chain varies. The sample topography was measured with 

profilometer (Dektak). It is found that the thickness of the laser exposed area is 85   35 nm 

thinner (the surface roughness induces the error bar) than the non-illuminated TiO2 area, which is 

expected due to the collapse of the mesoporosity of the initial TiO2 layer during the laser-

induced heating. The thickness of the non-illuminated TiO2 area is 160 nm as determined by 

ellipsometry measurement. Figure 4. 51(b) shows a SEM image of the Ag nanoparticle region of 

the sample. We can see that the Ag nanoparticle chains are not straight but arc-shaped lines that 

mainly follow the shape of the laser spot in the front edge of the translating elliptical beam. The 

radius of curvature of the nanoparticle lines is around 15 µm by analyzing the arc in SEM images. 

This value is confirmed by the optical microscopy pictures shown in Figure 4. 51(c) that shows 
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the starting area of the laser beam exposure. Figure 4. 51(d) illustrates the sample geometry. The 

angle α=0° is defined when the plane of incidence is perpendicular to the particle lines. 
 

 
 

Figure 4. 51: (a) Schematic of the fabricated sample. The period between the NP chains is 270 nm. The 

thicknesses of the initial TiO2 area and laser-processed area are estimated at 160 nm and 100 nm 

respectively. (b) SEM image of the Ag nanoparticle region. (c) Optical microscope image with 

magnification x100 of the starting area of laser beam exposure. The red dashed circle indicates the size of 

the focal spot of the laser beam. (d) Definition of azimuthal angle α as well as orientations x and y with 

respect to the NP lines.   

4.4.3 Physical description of the sample 
Before presenting the experimental data, we describe the behavior of the sample in transmission 

configuration emphasizing the possible excited modes. Similar samples have been produced and 

described in previous work [98]. Figure 4. 52(a) illustrates schematically the possible 

interactions inside the sample, while Figure 4. 52(b) presents a schematic of the cross-section of 

the processed part of the TiO2 layer only. The incident light beam on its way through the sample 

interacts with the embedded Ag nanoparticles and it is be partly diffracted by the presence of the 

Ag nanoparticle grating (violet open arrows in Figure 4. 52(b) and (c). The directly transmitted 

light is be absorbed and reradiated by Ag nanoparticles resulting in the characteristic presence of 

the localized surface plasmon (LSP) resonance spectrum. The plasmonic resonance shape 

depends on the individual particle shape and size distributions, as well as on nanoparticle 

interactions along the lines or between lines. In the inset of Figure 4. 52(a), the electric field lines 

drawn between adjacent particles along a line evoke the possibility of a near field coupling 

between particles along a line. This kind of coupling, which differs depending on the incident 

polarization may change the overall behavior of individual particles. In the framework of the 
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dipolar approximation, we could say that for a polarization perpendicular to the lines Coulomb 

forces add up and strengthen the internal field. This leads to increase the resonance frequency 

and therefore a blue-shift of the resonance. For a polarization parallel to the lines, Coulomb 

forces subtract, the internal field decreases and leads to a red shift of the resonance. This can 

explain the broadening of the overall resonance observed when the polarization is parallel to the 

grating lines. On the other hand, the excitation of the guided mode (through the first diffraction 

order) leads to a far field coupling between the different nanoparticle lines. The diffracted light 

can in turn be coupled to the waveguide eigenmodes supported by the TiO2 layer and propagate 

either to the right or to the left.[100] The waveguide mode is a leaky mode and part of the 

coupled light will be secondarily diffracted by the particle grating following the position of the 

Rayleigh-Woods anomalies (RWA). The diffracted part of the leaky waveguide mode interferes 

with the directly transmitted light and gives rise to a splitting of the LSP resonance. This 

splitting, or modulation of the transmittance minima, is due to the strong interaction of two 

absorbance modes: the plasmonic modes and the destructive interference mode. We name the 

result of the interference of the diffracted waveguide mode “destructive interference mode”, or 

DIM, in the following. Details about the analytical analysis and the expressions for the DIM are 

to be found in the section 2.8. The effect of these physical phenomena will be investigated in 

terms of intensity signatures, dispersions and more importantly, using MM measurements, 

modelling and appropriate decomposition methods, the disentanglement of all the effects will be 

possible. 

 

 
 

Figure 4. 52: (a) Schematic of the structure showing the principle of the DIM at  α 0° for 

oblique incidence, illustrating the different excitations in the sample. (b) Schematic of the 

structure showing the principle of the DIM at α=0° at normal incidence, inspired from Ref. [98] 

and (c) oblique incidence.  
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4.4.4 Procedure to calculate DIM 
After describing the possible physical effects of our sample, the next step is to obtain the 

parameters for the calculations.     =1 and       =1.52 are known parameters. In this section, 

we first show how we obtain the thickness and refractive index of the waveguide TiO2 layer in 

steps 1-3 and then we show how we calculate the dispersion of the DIM in step 4. 

 

Step 1: The refractive index and thickness of pure mesoporous TiO2 film on the edge 

Due to the presence of the Ag nanoparticles, the permittivity of the TiO2 matrix in the Ag 

nanoparticles region cannot be directly measured, so we measured the pure mesoporous TiO2 

film on the side with ellipsometer instead. The measured ellipsometric angles   and   were 

fitted very well with a General oscillator model with MSE<1. Finally the refractive index and 

thickness of mesoporous TiO2 film can be precisely extracted from this model. The thickness of 

the TiO2 outside the Ag nanoparticle region is 160 nm and the refractive index   is about 1.9 in 

the measurement range (370-700 nm) as shown in Figure 4. 53(b).  

 

Figure 4. 53: (a) Schematic of the fabricated sample. (b) Refractive index of the initial TiO2 area. 

The thicknesses and refractive index of the initial TiO2 area are precisely extracted from 

ellipsometric modeling. 

Step 2: Evaluation of the refractive index and the thickness of TiO2 waveguide layer 

The refractive index of bulk TiO2 can be found in our ellipsometry library and shown in Figure 4. 

54. Irrespective of the type of TiO2, the refractive index is always higher than 2.33 over the 

whole interesting spectral range. Due to the collapse of the mesoporous TiO2 after laser exposure, 

we expect that the refractive index of TiO2 waveguide layer should be higher than that of the 

pure mesoporous TiO2 film on the edge and smaller than the dense TiO2 bulk from ellipsometry 

library. Therefore we consider that the refractive index of the TiO2 matrix should be comprised 

in the range [1.9:2.33]. 
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Figure 4. 54: The refractive index of bulk TiO2 as found in our ellipsometry library. 

The step height between initial and illuminated areas was measured by profilometer scan to be 

around 75-100 nm in average. The surface roughness induces an error bar in the range (+/-20 

nm). From this, we estimate that the thickness of waveguide is in the range 40-105 nm.  

 

Step 3: The effective values for the refractive index and the thickness of TiO2 waveguide layer 

(h=100 nm,      =2.21) are obtained based on the measured wavelength λ=492 nm of the 

DIM mode at θ=0°, α=0°. 

 

In this step, we reduce the uncertainty on the values of refractive index nTiO2 of the TiO2 matrix  

and thickness   of the TiO2 waveguide comprising the Ag nanoparticles. As we can see from 

Figure 4. 55, experimentally the position of the DIM at  =0°,  =0° is found to be  =492 nm 

Then for each a given value of  , we can obtain a specific value for       fulfilling this condition. 

We can obtain various pairs of   and      . For instance we obtain the possible pairs of values: 

   =71 nm,      =2.53 

   =100 nm,      =2.21 

   =158 nm,      =1.99 

 

 
 
Figure 4. 55: (a) contour plot and (b) line cuts of measured Tss as a function of angle of incidence. 
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For simplicity, we obtain the following equations by only considering the case  =0 in 

Equation (2.105) and first order of diffraction in Equation (2.104): 
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where the positive sign corresponds to +1 order and the negative sign corresponds to -1 order.   

By using the conditioned values for the pairs of parameters with Equations 4.6 and 4.7, we 

can obtain the dispersion lines as a function of θ at α=0°. We now compare the slopes of the 

dispersion lines with the experimental slopes on both sides of the plasmonic resonance. The pair 

of values providing the best fitting slopes (i.e., fitting all the experimental dispersions) will be 

chosen. As we can see from Figure 4. 56, the slope of the dispersion line for the pair (  =100 nm, 

     =2.21) fits the measured intensity modulation the best. Besides,   =100 nm,      =2.21 are 

both inside the range deduced in step 2. Therefore we fixed the values   =100 nm,      =2.21 to 

calculate the DIM lines.  

 
 

Figure 4. 56: (a) Contour plot of measured Tss as a function of AOI together with calculated DIM 

lines in three different cases. (b) measured Tss together with calculated position of DIM at θ=0°, 

6°, 10°, 16° and 20° in the case   =100 nm,      =2.21. 

Step 4: Using h=100 nm, nTiO2=2.21 to calculate the DIM lines as a function of θ and α. 

 

At given values of the incidence angle      and of the azimuthal orientation  , Equation 4.6 only 

has two related and unknown parameters the diffraction angle    and the excitation wavelength 

  . By applying Equation 4.6, we sweep the value of    from 0-90° by steps of 0.1° and we 

obtain the corresponding    for each value of   . Subsequently, we plug each     ,     pairs in 

Equation 4.7 to calculate which pair fulfills Equation 4.7. As a consequence, the obtained value 

of    which fulfills Equation 4.7 is the incident wavelength to excite DIM at this given 
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measurement geometry (     and  ). Finally, sweeping for      from 0-20° by steps of 2° and   

from 0-90° by steps 10° we obtain all the data points for DIM positions.  

4.4.5 Dispersion and angular dependence of the 

transmittance 
The transmittance spectra depend strongly on the polarization of the incident light, its AOI and 

on the orientation of the sample. Figure 4. 57(a) and (b) display the transmittance spectra for p- 

and s-polarization, for two perpendicular sample orientations, at normal incidence. For both 

polarizations, the spectra are influenced by the absorbance due to the plasmonic modes as well as 

a modulation of the transmittance within the absorption band. The sharp increase in 

transmittance inside the plasmonic absorption band originates from the destructive interference 

between the transmitted beam and the diffracted quasi-guided mode and is linked to the RWA 

position. It can be experimentally observed in the transmission spectra displayed on Figure 4. 57. 

These transmittance spectra are similar to earlier publications [98]. We note the important 

difference between light purely diffracted by a simple one-dimensional surface metallic grating 

for which the RWAs appear when surface plasmon polaritons are excited for a TM polarization, 

i.e., a polarization vector perpendicular to the grating lines [101], and the present case where the 

RWAs are indirectly excited via the propagating waveguide modes. The latter case results in an 

effective coupling polarization parallel to the grating lines. Therefore in the present case, the 

DIM, linked but not exactly equal to the RWAs, will be active for the s-polarized light when the 

sample is oriented at α=0° and for p-polarized light at α=90°, which corresponds to the inverted 

situation compared to the case of direct interaction with a simple grating. Let us now turn our 

attention to the dispersion and angular dependence of the transmittance. 

Figure 4. 57 shows the transmittance measured with s- and p- polarized light at α=0° and 90°. 

Figure 4. 57(c), (d) and (e), (f) show the dispersion plots of Tss (incoming s- into transmitted s-

polarized light) and Tpp respectively. Tss and Tpp at α=0° for θ =[0°,6°,10°,16°,20°] are shown in 

the insets of the respective plots, the colored arrows representing the calculated position of the 

DIM. The dispersion color plots underline the complexity of the optical response. The calculated 

dispersion of the DIM mode is added to the contour plots as dotted lines. For both polarizations 

and samples orientations, the position of the DIM explains the modulation of the transmittance of 

the sample very well. It is to be noted that the arc shape of the grating lines gives rise to an 

apparent widening of the position of the DIM line as well as some uncertainties at larger angles 

of incidence. Therefore the apparent difference between the DIM line and the experimental plots 

in Figure 4. 57 (e) is to be interpreted in this sense. The Ag nanoparticle ensemble gives rise to a 

broad plasmonic mode of about 130 nm FWHM, modified by the presence of the DIM. The large 

distribution of the size of nanoparticles as well as the radiative losses contributes to the 

resonance width. 
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Figure 4. 57: Measured transmittance Tss and Tpp (a) α=90° θ=0°and (b) α=0° θ=0°. The Lorentz 

oscillators used in general oscillator model for fitting the transmittance are found in inset; (c) 

Dispersion plots of the measured transmittance between θ=0° and 20° in steps of 2° in the 

spectral range between 370 and 700 nm with s-polarized light at α=90° and (d) at α=0°, (e) with 

p-polarized light at α=90° and (f) α=0°. All contour plots are shown together with dashed lines 

indicating DIM (±1). The insets represent Tss and Tpp at α=0° at selected angles of incidence, the 

arrows indicating the calculated positions of DIM (±1).  

Further, the azimuthal dependence of the transmittance allows us to discuss the induced 

anisotropy and the polarization mixing of the sample. Figure 4. 58 shows the measured 

transmittance for p-polarized light Tpp, for s-polarized light Tss as well as the polarization 

conversion Tps (incoming p- into transmitted s-polarized light) at angles of incidence 0°, 10° and 
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20° over the complete azimuthal rotation of the sample in steps of 5° over the spectral range 

400 nm-700 nm together with the predicted position of the DIM (±1) lines in the top half-space 

as black (DIM-1) or red (DIM+1) lines. The azimuthal transmittance plots are characterized by a 

strong anisotropy between the directions along α=0° and 90°.This anisotropy is strongly linked to 

the sample geometry, and in particular to that of the nanoparticle grating. Similarly to the 

dispersion plots from Figure 4. 57, the locus of the DIM fits with the observed intensity 

modulations seen in the experiment. However the coupling strength of the DIM is anisotropic 

and depends on the light polarization. At normal incident s-polarized light, the interaction of the 

DIM mode is stronger at azimuthal orientation 0°. Indeed, in this case, the light coupled to the 

waveguide mode “sees” the particle grating at most. Correspondingly, in the case of p-

polarization the larger split is along 90°. More interesting is the case at larger angles of incidence 

10° and 20°. The complex intensity pattern for both p- and s-polarized light can be fully 

understood by the position of the DIM lines. At angles of incidence away from the normal, the 

modes DIM (+1) and DIM (-1) are non-degenerate and contribute both to the modification of the 

transmitted intensity.  

The conversion of polarization Tps in Figure 4. 58(i) to (k) show maximum values at 

azimuthal angle 45° as expected for a sample with two optical axes, similarly to the case of a 

simple quarter wave plate [102], which in our case are the axes perpendicular to the grating lines 

(X-axis) and along the lines (Y-axis). The areas of maximum polarization conversion follow the 

position of the DIM (+1) line, as a function of the incident angle. Indeed it is interesting to note 

that as the incident angle increases, these areas are stretched correspondingly to the elongation of 

the DIM (+1) lines.  

Not only does the DIM influence the plasmonic resonance, the coupling between adjacent Ag 

nanoparticles will also play a role [103]. In order to make clear the physical origins of the 

resonance seen in the transmittance, we present here a simple anisotropic layer model based on 

Fresnel’s equations. This model allows us to further understand the anisotropy and other 

underlying physical features of the observed optical behavior at normal incidence. A 100 nm 

thick biaxial layer, representing effectively the active TiO2 layer with the embedded Ag NPs, is 

modelled on top of a glass substrate named bk7_g in ellipsometric software. The biaxial layer is 

defined by the oscillators along the three directions X, Y and Z. In the Z direction, which is 

normal to the layer interface, a Cauchy oscillator representing the TiO2 matrix is used. We find 

the parameters of the oscillators along the two main optical axes in the X-direction 

(perpendicular to the grating lines) and Y-direction (parallel to the grating lines) by fitting the 

experimental transmittance measured at normal incidence along X and Y using two different 

general oscillator (Genosc) layer models as shown in Figure 4. 59(a) and (b) [18]. We note here 

that the created model is a purely biaxial model only valid at normal incidence since it is not able 

to reproduce dispersion as described extensively in a previous work [101]. Four Lorentz 

oscillators are used in both X and Y directions in order to obtain a perfect fit of the transmittance 

spectra and are represented in the inset of Figure 4. 57(b). The three Lorentz oscillators, L1 to 

L3, fully located inside the measured range 400-700 nm correspond to plasmonic excitations 

within the sample.  

The nanoparticles are very close to spheres and the small deviation due to the arrangement of 

the NP into lines cannot explain the split of the resonances. Due to the size variation of the NP, 

the resulting plasmonic resonance is inhomogeneously broadened. When the incident 

polarization is along X the particles do not couple strongly in the near-field. However, then the 

incident polarization is exciting the resonances along the grating lines, the near-field coupling 
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between particles along the line is stronger and broadens the overall plasmonic resonance of the 

particle ensemble. The presence of the DIM mode induces a split into the plasmonic resonance 

by inducing an extra absorption feature inside the plasmonic absorbance. Therefore this results in 

an enhanced transmittance at the position of the DIM mode. Since our model does not take the 

destructive interference mode into account, the coupling strength between the DIM mode and the 

plasmonic absorbance results in the two modelled resonances L1 and L2, which do not represent 

independent resonances within the sample. In the case of Figure 4. 57(a), the E-field from the 

waveguide mode cannot excite the 1D grating and instead excites the particles along the lines. A 

slight sensing of the presence of the gratings is felt owing to the curvature of the particle lines. 

When the field from the waveguide mode is perpendicular to the grating lines, the influence of 

the grating, hence of the DIM, is much greater, as seen in the Tss case at α=0°. There we can see 

that the diffraction mode, which lies at 492 nm at normal incidence, splits the broader plasmonic 

resonance into two well separated L1 and L2. Even though strictly speaking L1 and L2 are only 

defined at normal incidence in our model, we could imagine creating a similar model at θ≠0°. In 

this case, when the AOI increases, the DIM lines split (dashed lines) and their relative position 

with respect to the plasmonic resonances change: L2 is still strongly red-shifted while L1, after 

being blue-shifted at low angles of incidence, becomes also red-shifted for θ>12° and results in 

the strong transmittance dip in between the two DIM lines (Figure 4. 57(d)). The origin of the 

third resonance, L3, is not completely clear. When the direction of polarization rotates, the 

contribution of L3, strong along the particle line, is decreasing when the excitation is mostly 

perpendicular to the lines. One hypothesis is to speculate that it could correspond to the coupled 

particle resonance of a part of the nanoparticle ensemble strongly affected by the nearest-

neighbor interaction between adjacent particles. Therefore the amplitude of L3 is lower in Figure 

4. 57(b) than in Figure 4. 57(a). In order to lift this ambiguity, the investigation of samples with 

different geometrical parameters would be necessary. Finally, L4 is located outside the measured 

range, contributing only by a tail, and originates from the TiO2 matrix. By using this model, both 

the Tss and Tpp over the whole azimuthal range at θ=0° can be calculated (Figure 4. 58(d) and 

(h)) and reproduce well the measured transmittance shown in Figure 4. 57(a) and (b).  
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Figure 4. 58: Measured transmission at full azimuthal rotation in steps of 5° in the spectral range 

between 400 nm and 700 nm with s-polarized light at θ equals (a) 0°, (b) 10° and (c) 20° and 

with p-polarized light at θ equals (e) 0°, (f) 10° and (g) 20°. Experimental polarization 

conversion Tps at θ=0°, 10° and 20° are shown in (i), (j) and (k) respectively. DIM(+1) and 

DIM(-1) are identical at θ =0°. At other θ, red and black lines represent DIM (+1) and DIM (-1) 

respectively. DIM (±1) lines are shown only in the half space not to mask the raw data in the 

other half space. (d) and (h) show simulated Tss and Tpp at normal incidence. The polar axis is 

wavelength and the polar angle is the azimuthal angle.  
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Figure 4. 59: Modeled and measured Tss at normal incidence together with oscillators plots along 

(a) α=90° and (b) 0°. (c) Biaxial layer model with genoscx in X direction, genoscy in Y direction 

and Cauchy in Z direction. 

4.4.6 Mueller Matrix in transmission 
To gain deeper insight in the anisotropy and polarization mixing of this complex sample, pure 

intensity measurements are not sufficient, and MM measurements should be performed. Figure 

4. 60(a) shows the normalized MM measured at normal incidence. The MMs at oblique 

incidence 10° and 20° are shown in Figure 4. 61(a) and Figure 4. 62(a). All the MM elements are 

normalized to the element M11 and are presented as polar contour plots, where the azimuthal 

angle α is the polar angle and the radial axis represents the wavelength, to visualize the large 

amount of available data. First of all, we notice the symmetry in the MM contour plots. As 

expected from a MM measured in transmission, we have identical pairs M12/M21, M13/M31 
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and inverted pairs M24/M42, M34/M43. The identical pairs M12/M21 and M13/M31 are a first 

hint that depolarization effects can be neglected in our sample [33]. This means that the MM can 

be considered as a Mueller-Jones matrix and therefore only describes polarization conversion 

[104]. Besides, the symmetry of the patterns in each single MM element (MME) reflects the 

sample optical axes at α=0° and 90°. An interesting signal is observed in the elements M14, M41 

and M44, related to the circular polarization. The question is here to identify the origin of this 

signal: is the signal a trivial signature of the combination of the linear effects, or is it intrinsically 

created by the nanostructure of the sample? In other words, what is the origin of the symmetry 

breaking? And what is the role of interparticle interactions? In transmission geometry, the 

general MM for a homogeneous non-depolarizing optical media can be written in the following 

matrix [42]:  
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where LB and LB´ are linear birefringence along the x/y and ±45° axes, LD and LD´ are linear 

dichroism along the x/y and ±45° axes. CD is the true circular dichroism corresponding to the 

intrinsic CD (CDint), and CB is the true circular birefringence corresponding to the intrinsic CB 

(CBint). This MM representation illustrates clearly that each MME can be described by 

combinations of the 6 basic optical properties. In particular, it is worth to mention that     

      
 

 
(             )        is the apparent circular dichroism with 

 

 
        

              the linear part of the circular dichroism originating from the combination of the 

linear optical properties. Similarly,           and  
 

 
                     . Moreover, 

we can see from the formula (2) that, if CBint << CBlin and CDint<<CDlin, then          and 

        , which is not the case in the as-measured MM. In order to separate the effects, a 

decomposition of the MM needs to be applied. 
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Figure 4. 60: (a) Mueller matrix elements measured in transmission at normal incidence with full 

azimuthal rotation in the spectral range between 400 nm and 700 nm. All the MM elements are 

normalized to M11. M22, M33, M44, M14 and M41 elements have original scale, while the rest 

elements have multiplication factors to have the same scale bar (-1.1) which is placed on the 

right. The diagonal elements are shown as 1-M22, 1-M33 and 1-M44 in order to enhance the 

color contrast because M22, M33 and M44 have values close to 1. M12, M13, M14, M24 and 

M34 elements are shown together with RWAs (±1) lines only in the half space to enable the 

visualization of the raw data in the other half space. (b) Differential decomposition matrix Lm of 

the MM. Lm14, Lm23, Lm32 and Lm41 have their original scale, while all the rest elements have 

the same scale bar [-1:1]. 
 

 
 

Figure 4. 61: (a) MM elements measured in transmission at AOI 10° with full azimuthal rotation 

in the spectral range between 400 nm and 700 nm (b) The differential decomposition matrix Lm 

at AOI 10°.   
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Figure 4. 62: (a) MM elements measured in transmission at AOI 20° with full azimuthal rotation 

in the spectral range between 400 nm and 700 nm (b) The differential decomposition matrix Lm 

at AOI 20°.   

First of all, we applied cloude decomposition of the MM at normal incidence. The coefficients    at 

different azimuthal angles α=0°, 45° and 90° are shown in Figure 4. 63(a), (b) and (c), respectively. We 

can see    is 1 and    to    are zero. The physical image for the Cloude decomposition is that the 

medium is not homogeneous in the direction perpendicular to the light propagation and the sample can be 

regarded as separated areas with different M which are pure Mueller-Jones matrices [35]. So again, 

Cloude decomposition also shows our sample has negligible depolarization effects.  
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Figure 4. 63: Coefficients    from Cloude decomposition of MM measured at normal incidence 

at (a) α=0°, (b) α=45°, and (c) α=90°. 

Then, we explicitly extract all birefringent and dichroic properties, as well as the depolarization 

characteristics of the sample by using the differential decomposition formalism described in Eq. (2.63) 

and (2.64). From the ellipsometric model created in the previous section, which reproduces very well the 

intensity data, we now calculate the MM in transmission at normal incidence as shown in Figure 4. 64(a). 

In general, one can see that 14 elements of the simulated MM look very similar to the measured MM 

(Figure 4. 60(a)) in terms of not only the positions but also the intensity of the features. Only M14 and 

M41 differ from measured MM. However, a detailed comparison between the measured and simulated 

MM show other differences. Our anisotropic layer model includes only linear properties based on two 

orthogonal optical axes; therefore, there should be no difference for the optical response of left and right 

circular polarized light and, hence, no circular dichroism and circular birefringence can be generated. As a 

consequence, the simulated M23 and M32 can be described by a combination of linear birefringence and 

linear dichroism as 1/2(LB LB´-LD LD´) while M14 and M41 can be described as the equations with 

opposite values 1/2(LB LD´-LB  ́LD) and -1/2(LB LD´-LB  ́LD), respectively. Overall, our simple 

anisotropic model can reproduce the majority of the MM elements, so we can say that most of the optical 

response of Ag nanoparticle ensemble at normal incidence can be explained by the effects related to 

linear polarization. When the differential decomposition is applied to the simulated MM data, Lm and Lu 

matrices are obtained. In Lm matrix (Figure 4. 64(b)), the difference along the second diagonal where CB 
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and CD data are represented between measured and simulated MM is striking. As expected, these MME 

are equal to zero in the simulation, while the measured data indicates that the sample creates the 

conditions for the appearance of pure circular dichroism and birefringence. The next section will 

investigate the origin of this surprising signal in more details. Figure 4. 65 shows the differential matrix Lu 

of measured MM at normal incidence. We can see the diagonal elements in the Lu matrix which are A, 

A-LDP, A-LDP' and A-CDP have similar values. In order to analyze the linear and circular polarization 

effects, A, LDP, LDP' and CDP were extracted and shown in Figure 4. 66. The very small values of LDP, 

LDP' and CDP confirms that the depolarization effect of the sample is very small and the measured MM 

at normal incidence is a non-depolarizing MM.  
 

 
 

Figure 4. 64: (a) Simulated transmission MM at normal incidence in the spectral range between 

400 nm and 700 nm with full azimuthal rotation. All the MM elements are normalized to M11 

which is set to 1. The diagonal elements are 1-M22, 1-M33 and 1-M44 to enhance the contrast 

due to the values of M22, (b) Differential decomposed matrix Lm obtained from the simulated 

MM. 
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Figure 4. 65: Differential decomposition matrix Lu of measured MM elements in transmission at 

normal incidence with full azimuthal rotation in the spectral range between 400 nm and 700 nm. 
 

 
 

Figure 4. 66: (a) Absorption A, (b) depolarization of linear horizontal polarized light LDP, (c) 

depolarization of linear 45° polarized light LDP’ and (d) depolarization of circular polarized 

light CDP extracted from differential decomposition matrix Lu of measured MM at normal 

incidence with full azimuthal rotation in the spectral range between 400 nm and 700 nm. 
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4.4.7 Circular dichroism 
After speculating our sample has CD feature from the MM measurement in the previous section, we will 

discuss the CD in detail in this section.  

From Equation 2.66, we already know that in transmission geometry, the general MM elements for a 

homogeneous non-depolarizing optical media can be extracted as the combinations of basic optical 

properties LD, LD’, LB, LB’, CD and CB. Figure 4. 67 shows comparison between either measured or 

extracted MM elements M14, M23, M32 and M41. The extracted MM elements are calculated from 

differential decomposition matrix Lm. We can see the measured MM and extracted MM elements are 

identical. This confirms that the optical response of our sample can be discussed by the combinations of 

six basic optical properties LD, LD’, LB, LB’, CD and CB.  

 

 
 

Figure 4. 67: Comparison between either measured or simulated MM elements M14, M23, M32 

and M41 with calculated MM elements from differential decomposition matrix Lm. Elements are 

plotted with full azimuthal rotation in the spectral range between 400 nm and 700 nm. 

We turn our attention to the different representations of the circular dichroism effects in more details. 

CDint and CBint are directly obtained from differential matrix as Lm14 and Lm23. Alternatively, CDint and 

CBint can also be easily calculated directly from the measured MM from Equation 2.66 as:  
 

          
 

 
                    

 

 
                                       

 

and  
 

          
 

 
                    

 

 
                                     

 

Figure 4. 68 compares the different ways to represent the circular dichroism. While Figure 4. 68(a) 

shows CDapp (i.e., the sum of CDint and CDlin) of the measured sample, we find that CDint obtained as 

equal to Lm14 from the differential decomposition (Figure 4. 68(b)) or by applying the Equation 2.66  

(Figure 4. 68(d)) are identical. Figure 4. 68(c) shows CDlin which is calculated from Lm as 1/2(LB LD´-

LB  ́LD). All CDapp, CDint and CDlin have similar shape and CDapp is indeed the sum of CDlin and CDint, 

as it can be confirmed by the comparison of the linecuts in Figure 4. 68(e) and (f). We recall that, at the 
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molecular level, intrinsic circular dichroism comes from the geometrical arrangement of the molecule 

itself. In this case, the optical response is determined by locality and causality, and Kramers-Kronig 

relationships are directly applicable. In the present case, of course none of the materials is optically active, 

there is no circular dichroism at the molecular level; instead the observed effect is created at the 

mesoscopic level, arising from the geometrical arrangement of the dipoles. In particular, the curvature of 

the nanoparticle lines plays here a crucial role: by breaking the symmetry of the one-dimensional particle 

grating, the possibility for a different response when the electromagnetic field rotates clock-wise or 

counter-clockwise is opened. In particular, the interactions of the nanoparticles in the nearest-neighbor 

range are suspected to play a crucial role that can be tailored by the precise arrangement of the metallic 

nanoparticles. Although we are not dealing with a local optical response here, we can observe a 

“Kramers-Kronig”-like relation between the CBint and the CDint spectra, similarly to the ideal case of 

active molecules, as illustrated in Figure 4. 68(f) where the maxima/minima of one corresponds to the 

inflection points of the other.  
 

 
 

Figure 4. 68: Azimuthal dependent spectra (400-700 nm) obtained from the measured MM in 

transmission at normal incidence (a) CDapp=M14 (b) CDint1=Lm14 (c) CDlin =1/2(LBLD´-LB´LD) 

from Lm (d) CDint2= CDapp-CDlin=M14-1/2(M13M34+M12M24) calculated from Equation 2.66   

(e) CDapp (M14) and CBapp(M23) along α=0°. (f) CDint and CBint, CDlin and CBlin along α=0°. 

The contour plots (a), (b), (c) and (d) are shown with full azimuthal rotation.  

We will now detail the characteristics of the CD signal and evaluate the role of the DIM lines. To this 

purpose, we plot the comparison of the transmittance intensities Tpp and Tss next to the above-discussed 

CDapp, CDint and CDlin in a cartesian frame (α,  ). The calculated position of the DIM is superposed onto 

the data at normal incidence in the first row of  Figure 4. 69- the black dashed line is the DIM (±1) line at 

492 nm -, and at θ=20° in the second row of Figure 4. 69. While the splitting of the plasmonic mode by 

the DIM is clearly visible in the transmittance plots, the CD signals are also strongly linked to the DIM. 

At first glance, all three CD representations show similarly alternating signal, mostly around lines at 

490 nm and 570 nm. At wavelengths higher than the DIM wavelengths (dashed black line), the position 

of the maxima of CD correspond to the lowest transmittance points for Tss while the minima of CD 

correspond to the lowest transmittance points of Tpp. This description gets confirmed with the data at 

θ=20°. In this case, the CD signal does not only concentrate around two main azimuth independent 

spectral lines, but rather spread over a larger spectral range with strong azimuth dependence, as 

determined by the position of the DIM lines. Specifically, the CD signal is linked to the intensity 
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modifications due to the presence of the DIMs. Independently on the angle of incidence, the intrinsic part 

of CD is at least as strong as the result of the linear combinations, and becomes stronger than CDlin as the 

incidence angle increases. Indeed at higher θ, the intrinsic part becomes stronger and the azimuthal as 

well as spectral symmetry is broken: the complexity of the CD signal increases. In particular, CDint is zero 

at the degeneracy point of the DIM lines (see Figure 4. 69(i)), and there is a phase change across the DIM 

lines. In opposition, CDlin is less influenced by the DIM lines and the signal keeps its value at the 

degeneracy point while being elongated along the DIM line (see Figure 4. 69(j)). These observations 

underline the fact that the studied structures do present mesoscopic circular dichroism and that its origin is 

strongly linked to the interplay between the DIM and the plasmonic resonances.  
 

 
 

Figure 4. 69: (a) Tpp (b) Tss (c) CDapp (d) CDint and (e) CDlin at normal incidence; (f) Tpp (g) Tss (h) 

CDapp (i) CDint and (j) CDlin at θ=20°. All contour plots are shown together with RWAs lines in 

the spectral range between 400 nm and 700 nm with full azimuthal rotation.  

A second check can be performed with the investigation of the wavelength dependence of the 

angularly dependent patterns. In order to compare the azimuthal width of the CD signal as well 

as its shift when the AOI varies, we plot CDint and CDlin in Cartesian coordinates in the α/θ plane 

at five relevant wavelengths in Figure 4. 70: 492 nm the position of the DIM at normal incidence, 

which is also the minimum of CDint at α=0° and θ=0°, 510 nm and 530 nm in the region of the 

minimum of CBint strongly influenced by the DIM, 575 nm around the maximum of CDint and 

630 nm outside the CD relevant spectral area as shown in Figure 4. 68(f). Several observations 

can be made: as it was already observed in Figure 4. 69, CDint is always of similar or larger 

intensity than CDlin in such a way that the apparent CD is dominated by the variations of CDint. 

CDint is already non-zero at normal incidence and another contribution is superposed to it at 

larger θ. The azimuthal width of the CDlin keeps mostly constant, whereas it gets wider for CDint. 

Finally, even though CDint keeps the same 4-fold symmetry as CDlin at θ constant, the signal of 

CDint is always azimuthally shifted at large angles of incidence, except at  =630 nm outside the 

influence of the main modes (plasmonic and DIM).  
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Figure 4. 70: Comparison of CDint (Lm14) and CDlin in the α/θ plane for five different 

wavelengths: Lm14 in the left-handside column (a) 492 nm; (b) 510 nm; (c) 530 nm; (d) 575 nm ; 

(e) 630 nm ;  and CDlin in the right-handside column (f) 492 nm; (g) 510 nm; (h) 530 nm; (i)575 

nm and (j) 630 nm. The light gray lines at 492 nm, 510 nm and 530 nm correspond to the 

calculated DIM(+1) line.  

While searching for the origin of the CDint signal, several hypotheses need to be evaluated. A first 

hypothesis could be that the optical axes are not perfectly normal to each other. Non-perpendicular optical 

axes can break the symmetry of left and right circular polarized light and therefore generate some CDint. 

Two 50 nm thick biaxial layers shown in Figure 4. 71(c), is placed on top of the glass substrate named 

bk7_g in ellipsometric software. Here we define two main optical axes along α=0° and 88°. So as shown 

in Figure 4. 71(d), biaxial layer has euler angles (0°, 0°, 0°) and biaxial2 layer has euler angles (88°, 0°, 
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0°). Along the Z direction which is perpendicular to the layer interface, a Cauchy oscillator representing 

the TiO2 matrix is used. As shown in Figure 4. 71(a) and (b), we create the model by fitting the 

experimental transmittance measured at normal incidence along α=0° and 90° using two different general 

oscillator (Genosc) layer models [18].  

 

 
 

Figure 4. 71: Modeled and measured Tss at normal incidence along (a) α=90° and (b) 0°. (c) 

Biaxial layer model with genoscx in X direction, genoscy in Y direction and Cauchy in Z 

direction. 

As shown in Figure 4. 72 (a) and (b), Tpp and Tss over the whole azimuthal range at θ=0° were 

calculated by using this model with non-perpendicular optical axes. As expected, we see a tilt of 

the optical features towards α=88°. 
 

 
 

Figure 4. 72: Calculated (a)Tpp and (b)Tss over the whole azimuthal range at normal incidence by 

non-perpendicular optical axes model. 
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In the next step, MM was calculated from this model and differential decomposition was performed. 

CDlin and CDint were extracted and shown in Figure 4. 73. We can see, the deviation of the direction of the 

optical axis by a few degrees away from the normal direction would result in a non-zero CD signal but 

this signal would be azimuthal independent, which is in contradiction with the measured data shown in 

Figure 4. 73(a)-(c). Therefore, the hypothesis of non-orthogonal axes is not valid here.  
 

 
 

Figure 4. 73: Comparison between measured M14, CDlin and CDint and calculated ones by non-

perpendicular optical axes model. 

The second hypothesis concerns the nanoparticle arrangement itself. As already mentioned earlier, the 

Ag nanoparticles are not periodically arranged as straight lines but are curved with radius of curvature 

around 15µm. These arc-shaped nanoparticle chains can, not only break the symmetry of left and right 

circular polarized light as the non-orthogonal optical axes does, but also generate an azimuth dependent 

optical response due to the varying environment that neighboring particles see as a function of the rotation 

of the electric field along the arc. In other words, a part of the true (intrinsic) CD originates from a broken 

symmetry on a mesoscopic level (here: curvature of the lines). We are now in state of fully determining 

the origin of the apparent CD signal, composed of three parts. The first part, CDlin comes from the 

anisotropy of the sample and the presence of a nanoparticle grating. The “intrinsic” part of the CD is itself 

composed of two parts: the first part originate from the curvature of the grating lines (mediated by the 

interparticle interactions) and it is present already at normal incidence, and the second part of CDint 

originates from the DIM lines, and in particular the lift of degeneracy of the DIM (+1) and DIM (-1) 

modes. This second part of CDint follows the DIM lines and appears at non-zero angles of incidence.  It is 

seen in Figure 4. 70 that the intrinsic signal is indeed composed of two parts which slowly “diffuse” into 

each other, the part linked to the curvature of the grating lines and that due to the degeneracy of the DIMs, 

as θ increases. It is interesting to see that at all wavelengths both CDlin and CDint are shaped by the 

presence of the DIM line. At 492, 510 and 530 nm, the DIM lines are visible inside the plotted area, and 

CDlin deviates azimuthally in the vicinity of the DIM line. The intrinsic part is strongly reshaped by the 

DIM mode: a stronger contribution appears at larger θ and as the wavelength varies it follows the θ 
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dependence of the DIM line. Therefore we conclude that not only the plasmonic modes play an important 

role but also the DIM mode is a crucial tailoring parameter for the CDint signal of the sample. Finally we 

conclude that the nature and size of the particles, their density, their periodic arrangement (grating 

periodicity as well as curvature of the lines) as well as the thickness of the waveguide are important 

design parameters that will act upon the intrinsic part of the CD of the nanoplasmonic structure. Therefore 

we can conclude that the strength and position of the intrinsic circular dichroism signal can be actively 

tailored to specific needs by design of the plasmonic arrangement. 

4.4.8 Conclusion 
We have in full detail and completeness investigated the optical properties of a complex 

plasmonic sample where an interplay is found of the contributions from plasmonic resonances, 

periodicity, interference with waveguide modes and nearest-neighbor coupling between adjacent 

particles. To fully characterize this sample, we have used the powerful framework of Mueller 

matrices advanced by the differential decomposition formalism. We show that even in the 

presence of large complexity, the optical response can be easily disentangled by the presented 

method. The investigated sample is easily manufactured in a self-assembly process stirred by the 

properties of the illuminating laser light during fabrication. It consists of silver nanoparticles 

periodically arranged along curved lines, which are embedded in a TiO2 waveguide. When light 

is impinging on the sample surface and reaches the nanoparticle layer, several phenomena occur. 

First the plasmonic resonance of the individual nanoparticles is excited, and part of the 

transmitted light is hence absorbed. The nanoparticles also serve as scattering elements for the 

incident light: part of the light is coupled to the waveguide modes via interaction with 

nanoparticles. On its turn, the waveguide modes are leaky modes and can be scattered by the 

presence of nanoparticles:  this diffracted part of the leaky mode will interfere with the directly 

transmitted light. The result of this interference is the so-called “destructive interference mode”. 

The destructive interference mode has a large influence on the optical response of the sample. Its 

signature is found both in intensity plots as well as in the phase, as attested by MM 

measurements. Moreover, it was discovered that such structures are characterized by a particular 

circular dichroism behavior, which cannot be explained by the sole superposition of the linear 

optical properties. Whereas the linear circular dichroism is coming from the anisotropy of the 

sample, the true circular dichroism is due to the coupling between destructive interference mode 

and plasmonic modes as well as the nearest-neighbor coupling between plasmonic nanoparticles.  
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Chapter 5 

Conclusions and Outlook 

5.1 Conclusions 

On the example of two simple prepared plasmonic nanostructures, we have demonstrated in the 

thesis, how the optical response of complex plasmonic nanstructures can be understood in the 

framework of a full MM analysis. The developed procedure is very general and can in principle 

be applied to all complex samples exhibiting anisotropy, circular dichroism and dispersion. The 

procedure especially links the optical properties to their physical origin. This on the other hand 

opens up the possibility to tailor the optical response of plasmonic nanostructures in a desired 

way.   

Mueller matrix (MM) describes the interaction of polarized light and matter in either 

reflection or transmission configurations, which connects the incoming to the outgoing Stokes 

vectors, independently from any assumed model. Since Stokes vectors are able to represent any 

polarization state of light, Mueller matrix spectroscopic ellipsometry (MMSE) gives complete 

optical response about polarization properties even in the case of complex samples under study, 

which cannot be achieved by simple intensity measurements. However, MMSE results in 

complex data hiding the underlying physics making the physical interpretation of a measured 

MM a big challenge. 

We have shown in the thesis, by applying the simple analytical model we made to the MM, 

we can fully characterize all the physical origins hidden in the measured MM of our two 

examples: one-dimensional plasmonic gratings and Ag nanoparticle array.  

One-dimensional plasmonic grating  

For convenience of comparison, we first demonstrated how the complex optical response of a 

pure PDMS grating can be decomposed into its physical ingredients. First, we measure the MM 

in refection at different AOI over a complete azimuthal rotation. The MM is then modeled by a 

simple anisotropic effective medium approach called Biaxial Bruggeman effective 

approximation. From this simple anisotropic model, MM plots over the whole spectral and 

angular range are generated. On top of this modeled MME we superimpose the expected 

dispersive RWA modes, calculated from the known periodicity of the grating. Comparing this 

composed result with measured MMs gives a deep insight on how the different physical 

contributions originating from periodicity and geometry influence the complex polarization 

mixing.  

Then, we have demonstrated how the complex optical response of a simple Au grating can be 

decomposed into its physical ingredients. First, we measure the reflectance along the two optic 

axes of the grating, along and perpendicular to the grooves under s- and p-polarization. The 

reflectance is then modeled by a simple anisotropic effective medium approach using Drude-

Lorentz oscillators. From this anisotropic model, reflectance plots over the whole spectral and 

angular range are generated. Once the agreement between the generated and measured plots is 
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insured, the Mueller-matrix plots can be calculated. On top of this calculated MME we 

superimpose the expected dispersive SPP and RWA modes, calculated from the known 

periodicity of the grating. Comparing this composed result with measured MMs gives a deep 

insight on how the different physical contributions originating from periodicity, anisotropy and 

material properties influence the complex polarization mixing. We have seen that SPPs can be 

excited by both p- or s-polarized light when the incident plane is perpendicular or parallel to the 

grating grooves. Both SPP modes are dispersive with the AOI and follow the same phase 

matching condition. P- or s-polarized light can be converted to s- or p- polarized light via SPP 

excitation, and maximum polarization conversion occurs when the angle between incident plane 

and grooves is 45°. Additionally to the excitation of SPPs, the optical properties are influenced 

by geometric anisotropy, by the RWAs related to the periodic grating structure and, to a lesser 

extent, by the Au interband transition. The anisotropy, the interband transition and the non-

dispersive approximation of the SPPs are understood in terms of an effective medium approach, 

obtained from fitting the measured reflectance. However, the dispersion of the SPP modes and 

the RWAs effects should be added on top of this model.  

In order to tailor the plasmonic property with external magnetic field, Au/Ni/Au grating is 

fabricated with Ni layer placed in between two Au layers by the same fabrication method as the 

Au grating. The optical properties of Au/Ni/Au grating are influenced by the excitation of SPPs, 

geometric anisotropy and to a lesser extent, the Au/Ni/Au interband transition. There is no 

influence of RWAs which comes from periodicity. The anisotropy, the interband transition and 

the non-dispersive approximation of the SPPs are understood in terms of the effective medium 

approach similar to the Au grating section. We attribute the broad plasmonic resonance and no 

RWA effects to the large absorption of the Ni layer. Finally, we introduced an active way for 

tuning SPP via mechanical stretching. By actively stretching the PDMS grating template, the 

periodicity of the grating increases and SPP peak position red shifts. This method has very good 

reversibility. The plasmonic peak position is reversed by releasing the whole original strain. 

Ag nanoparticle array 

The optical properties of a complex plasmonic Ag nanoparticle array, where an interplay is 

found between contributions from plasmonic resonances, periodicity, interference with 

waveguide modes and nearest-neighbor coupling between adjacent particles was also fully  

characterized in this thesis. We have used the powerful framework of Mueller matrices advanced 

by the differential decomposition formalism. We show that even in the presence of large 

complexity, the optical response can be easily disentangled by the presented method. The 

investigated sample is easily manufactured in a self-assembly process stirred by the properties of 

the illuminating laser light during fabrication. It consists of silver nanoparticles periodically 

arranged along curved lines, which are embedded in a TiO2 waveguide. When light is impinging 

on the sample surface and reaches the nanoparticle layer, several phenomena occur. First the 

plasmonic resonance of the individual nanoparticles is excited, and part of the transmitted light is 

hence absorbed. The nanoparticles also serve as scattering elements for the incident light: part of 

the light is coupled to the waveguide modes via interaction with nanoparticles. On its turn, the 

waveguide modes are leaky modes and can be scattered by the presence of nanoparticles:  this 

diffracted part of the leaky mode will interfere with the directly transmitted light. The result of 

this interference is the so-called “destructive interference mode”. The destructive interference 

mode has a large influence on the optical response of the sample. Its signature is found both in 

intensity plots as well as in the phase, as tested by Mueller matrix measurements. Moreover, it 

was discovered that such structures are characterized by a particular circular dichroism behavior, 
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which cannot be explained by the sole superposition of the linear optical properties. Whereas the 

linear circular dichroism is coming from the anisotropy of the sample, the true circular dichroism 

is due to some curvature in the aligned nanoparticles, which in the end breaks the symmetry. 

5.2 Outlook 

New Experiments  

 Since the limit of time, investigation of the influence of external magnetic fields on the 

SPPs of Au/Ni/Au grating with the MM approach were not finished and needed to be 

done in the future. 

 

 The mechanical stretching of metallic layers on PDMS polymer could easily tune the 

periodicity and amplitude of the grating and induce cracks after certain percentage of 

stretching. The cracks become more and more when stretching into a higher and higher 

percentage. This gives the possibility and freedom to tune the SPP resonance position and 

intensity and also decrease the propagating length between the cracks in proximity. It is 

interesting to perform the measurement on the fine tuning of SPPs with mechanical 

stretching, in particular with the MM approach. 

 

 By releasing the stretched metallic grating further, the size of cracks decrease by keeping 

the shape unchanged. Besides, the plasmonic effect completely reverses to the stage 

without stretching when all the original strain is released. So it will be very interesting to 

investigate the dependence of plasmonic effect on the crack size with releasing with MM. 

 

New photonic materials 

Our MM based approach is a more powerful and straightforward method than the use of full 

Maxwell solvers: it needs much less computer power, it is very fast and it is directly linked to the 

physical interpretation. It is very general and can be applied to various nanostructures in order to 

predict and interpret the Mueller matrix contour plots. The separate role of anisotropies and 

photonic/plasmonic modes is at first distinguished: once the isotropic or anisotropic optical 

model is made, it is extended with the analytical expressions of the identified additional modes. 

These could be, for instance, localized plasmonic modes, photonic passive modes originating 

from waveguides or scattering, active modes related to emissive nanostructures, etc, under the 

condition that an analytical dependence of the optical dispersion can be given as a function of , 

θ and α. Beyond the simple interpretation, the exact attribution of every spectral feature (both in 

amplitude and in phase) together with its azimuthal dependence opens up the path to a possible 

tailoring of specific functionalities of nanostructures and therefore paves the way for a very 

precise control of the design and metrology of plasmonic nanostructures. Therefore the presented 

method is not only powerful in identifying the optical features of a given sample, but also for 

optimization of the design of novel structures and for characterization or metrology. The 

optimization of the structure design will be facilitated by the decomposition of complex patterns 

into its basic modes, which can be tailored individually.  
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