Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-10765
Autor(en): Dierichs, Karola
Titel: Granular architectures : granular materials as "designer matter" in architecture
Erscheinungsdatum: 2020
Verlag: Stuttgart : Institute for Computational Design and Construction, University of Stuttgart
Dokumentart: Dissertation
Seiten: xlix, 377
Serie/Report Nr.: Research reports / Institute for Computational Design and Construction;2
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-107821
http://elib.uni-stuttgart.de/handle/11682/10782
http://dx.doi.org/10.18419/opus-10765
ISBN: 978-3-9819457-2-0
Zusammenfassung: The thesis investigates designed granular materials in architecture. Granular materials are defined as high numbers of particles larger than a micrometre, between which mainly short-range repulsive contact forces are acting. In a designed granular material the geometry and material of the individual particle are determined by a designer. Consequently, the overall granular material can have characteristics which are novel in comparison to non-designed granular materials. In architecture, designed granular materials are understood to have new characteristics which fulfil specific architectural performance criteria. The relevance of designed granular materials in architecture is threefold. All granular materials are both fully recyclable and reconfigurable due to the fact that the individual particles are in no way bound to each other. These first two aspects alone make any granular material, whether it is designed or not, a highly pertinent strand of architectural design research. However, designed granular materials, in addition to being recyclable and reconfigurable, bear the potential for the development of entirely novel material behaviours. In the context of architecture, designed granular materials can be considered as a form of "material systems", and more specifically as a sub-group of "aggregate systems". In the wider transdisciplinary context, designed granular materials for architecture can be considered a form of "designer matter (DM)". "Designer matter (DM)" is understood as matter which is designed in its structural characteristics at its mesoscale rather than its macro- or its microscale. The current state of research into designed granular materials is presented for both architecture and granular physics, on a conceptual as well as on a project-based level. In this context the thesis aims to establish and validate a first version of a comprehensive design system for exploring designed granular materials in architecture and for interfacing with granular physics. The research development of this thesis is presented and evaluated with respect to the practical, methodological and conceptual foundations which have been laid during this phase. The methods are introduced in terms of methodological frameworks, tools and techniques and the applied research methodology. The core part of the thesis comprises a design system with a related design system catalogue as well as two case studies. The design system is established for particle systems and for related construction systems. It formulates the basic system categories and corresponding parameters. The design system catalogue is presented in the appendix and summarizes tests which investigate individual aspects of the overall design system for particle and construction systems. Each of the two case studies explores the integration of a different set of design system categories. They were conducted both through full-scale prototypes and a related set of tests with statistical repetition. Case study 1 investigates vertical structures made from a designed granular material consisting of highly non-convex particles. Case study 2 combines two designed granular materials, one consisting of convex particles and the other of highly non-convex particles, in order to form spatial enclosures. The case studies are evaluated with respect to their practical, methodological and conceptual contributions to architectural design research. The thesis is summarized and its contributions are assessed in conclusion both with respect to the field of architecture and for the field of granular physics. Further research in the field of designed granular materials in architecture can be conducted on the practical, methodological and conceptual levels of design. On the practical level, in the area of particle systems the investigation of graded granular materials, of different mechanical properties of the particles' material or of designed granular materials consisting of particles with variable geometry is highly promising. In the area of construction systems, the development of behavioural models of robotic construction is very relevant. Another key direction is for the construction systems to become increasingly simple, while the particles are progressively designed to perform parts of the construction process by themselves. On the methodological level, the integration of "inverse" design methods is the logical next step. This can be done on the basis of the proposed design system. On the conceptual level, the framework of "designer matter (DM)" needs to be further established both as a transdisciplinary model and within the field of architecture. Only then can designed granular materials be fully discussed as one form of "designer matter (DM)" in architecture. Key to any further development of the overall research field is the integration of the two fields of architecture and granular physics.
Enthalten in den Sammlungen:01 Fakultät Architektur und Stadtplanung

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
RR_ICD_2_Dierichs_web.pdf156,48 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.