Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-11348
Langanzeige der Metadaten
DC ElementWertSprache
dc.contributor.authorKo, Won-Seok-
dc.contributor.authorGrabowski, Blazej-
dc.contributor.authorNeugebauer, Jörg-
dc.date.accessioned2021-03-18T10:34:22Z-
dc.date.available2021-03-18T10:34:22Z-
dc.date.issued2015de
dc.identifier.issn2469-9950-
dc.identifier.issn2469-9969-
dc.identifier.other1817198599-
dc.identifier.urihttp://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-113653de
dc.identifier.urihttp://elib.uni-stuttgart.de/handle/11682/11365-
dc.identifier.urihttp://dx.doi.org/10.18419/opus-11348-
dc.description.abstractPhase transitions in nickel-titanium shape-memory alloys are investigated by means of atomistic simulations. A second nearest-neighbor modified embedded-atom method interatomic potential for the binary nickel-titanium system is determined by improving the unary descriptions of pure nickel and pure titanium, especially regarding the physical properties at finite temperatures. The resulting potential reproduces accurately the hexagonal-close-packed to body-centered-cubic phase transition in Ti and the martensitic B2−B19′ transformation in equiatomic NiTi. Subsequent large-scale molecular-dynamics simulations validate that the developed potential can be successfully applied for studies on temperature- and stress-induced martensitic phase transitions related to core applications of shape-memory alloys. A simulation of the temperature-induced phase transition provides insights into the effect of sizes and constraints on the formation of nanotwinned martensite structures with multiple domains. A simulation of the stress-induced phase transition of a nanosized pillar indicates a full recovery of the initial structure after the loading and unloading processes, illustrating a superelastic behavior of the target system.en
dc.language.isoende
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/639211de
dc.relation.uridoi:10.1103/PhysRevB.92.134107de
dc.rightsinfo:eu-repo/semantics/openAccessde
dc.subject.ddc530de
dc.titleDevelopment and application of a Ni-Ti interatomic potential with high predictive accuracy of the martensitic phase transitionen
dc.typearticlede
ubs.fakultaetChemiede
ubs.fakultaetFakultätsübergreifend / Sonstige Einrichtungde
ubs.institutInstitut für Materialwissenschaftde
ubs.institutFakultätsübergreifend / Sonstige Einrichtungde
ubs.publikation.seiten22de
ubs.publikation.sourcePhysical Review, B 92 (2015), 134107de
ubs.publikation.typZeitschriftenartikelde
Enthalten in den Sammlungen:03 Fakultät Chemie

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
PhysRevB.92.134107.pdf4,53 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.