Quantum cooling : thermodynamics and information
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The theory of cooling is an important corner of thermodynamics, underlying many modern technological applications. As the field of quantum thermodynamics advances, refrigeration techniques must keep pace to fuel the innovations of quantum technologies. We study quantum cooling from its foundations to laboratory implementations within the specific paradigm of heat bath algorithmic cooling. Our study includes a detail modeling of experimental imperfections and establishes the fundamental cooling limits of the model, consolidating the algorithm as a viable quantum refrigeration method. Next, by developing the notion of virtual qubits, we demonstrate a cooling-boost protocol fueled by quantum coherences which is robust to experimental implementations. Aiming at aiding in the progress of refrigeration technologies, we conclude by studying the zero temperature equilibrium properties of a many-body system that can accommodate an autonomous quantum absorption refrigerator, and calculate its entanglement and critical properties, two features that, like quantum coherences, promise to improve the performance of quantum coolers.