Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-14086
Autor(en): Millard, Matthew
Siebert, Tobias
Stutzig, Norman
Fehr, Jörg
Titel: Whiplash simulation: how muscle modelling and movement interact
Erscheinungsdatum: 2022
Dokumentart: Konferenzbeitrag
Konferenz: World Congress on Computational Mechanics (15th, 2022, Online)
Asian Pacific Congress on Computational Mechanics (8th, 2022, Online)
Erschienen in: Book of Abstracts / 15th World Congress on Computational Mechanics, 8th Asian Pacific Congress on Computational Mechanics, Yokohama, Japan, Virtual. Barcelona : CIMNE, 2022. - ISBN: 978-84-123222-8-6, S. 834
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-ds-141056
http://elib.uni-stuttgart.de/handle/11682/14105
http://dx.doi.org/10.18419/opus-14086
ISBN: 978-84-123222-8-6
Bemerkungen: We gratefully acknowledge funding from the DFG under Germany’s Excellence Strategy EXC 2075 390740016 through the Stuttgart Center for Simulation Science (SimTech)
Zusammenfassung: Whiplash injury and associated disorders are costly to society and individuals. Accurate simulations of neck movement during car accidents are needed to assess the risk of whiplash injury. Existing simulations indicate that Hill-type muscle models are too compliant, and as a result, predict more neck movement than is observed during in-vivo experiments. Simulating head and neck movement is challenging because many of the neck muscles operate on the descending limb of the force-length curve, a region that Hill-type models inaccurately capture. Hill-type muscle models have negative stiffness on the descending limb of the force-length curve and so develop less force the more they are lengthened. Biological muscle, in contrast, can develop large transient forces during active lengthening and sustain large forces when aggressively lengthened. Recently, a muscle model has been developed that mimics the active impedance of muscle in the short range and can capture the large forces generated during extreme lengthening. In this work, we will compare the accuracy of simulated neck movements, using both a Hill-type model and the model of Millard et al., to the in-vivo neck movement. If successful, the improved accuracy of our simulations will make it possible to predict and help prevent neck injury.
Enthalten in den Sammlungen:05 Fakultät Informatik, Elektrotechnik und Informationstechnik

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
MillardStutzigFehrSiebert_WCCM2022.pdf52,73 kBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.