On the load limits of the muscle-tendon unit and their applications in musculoskeletal human body models
Date
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
The human skeletal muscle fulfils many movement-related functions, simultaneously acting as the main motor, spring, strut and brake of the body. Equally important for human motion generation are the tendons, which provide passive joint stabilisation and transfer the muscle’s contraction forces to the skeletal structure. Together, muscle and tendon form the muscle-tendon unit (MTU). Despite its ability to withstand many different loading scenarios, the MTU is susceptible to numerous kinds of injury, the most prevalent being the muscle strain injury. The retrospective evaluation of observed injury scenarios and the prediction of injury outcomes and risks has been increasingly important in sports biomechanics, automotive safety and forensic traumatology. For this purpose, numerous injury criteria have been defined for the use with both physical and virtual representations of the human body. While significant efforts in the field of injury severity classification have been made, strain injuries of the MTU have not yet been taken into consideration. This might be because conventional methods of defining injury criteria are not applicable to MTU strain injuries as the properties of the MTU and the nature of MTU strain injuries pose numerous unresolved challenges so far. The primary objective of this dissertation is to overcome these challenges and to define and substantiate MTU strain injury criteria for the use in musculoskeletal human body model simulations. The overarching research question which the presented thesis aims to answer is how injury criteria for strain injuries of the MTU can be defined and which information can be derived from their application. Throughout, the following sub-questions are addressed:
- How can a strain injury criterion for the muscle be defined and substantiated based on literature data?
- How can a strain injury criterion for the tendon be defined and applied to the recreation of an injury load case?
- Which other applications besides injury severity assessment exist for the proposed injury criteria? These questions were tackled consecutively in three journal publications which comprise this dissertation. Sub-question 1 was answered in Contribution 1, where a muscle strain injury criterion (MSIC) was defined based on experimental data from the literature. The resulting injury criterion can differentiate between three levels of injury severity and is easily applicable to the computational representation of any muscle. The injury thresholds were substantiated by comparison to the calculated maximum ultimate tensile strength of mammalian skeletal muscle and through the application of the MSIC in a sprinting gait cycle simulation. The MSIC was also used for a simulation study on the aetiology of muscle strain injuries in which it was shown that material inhomogeneities might cause localised strain injuries within a muscle. To tackle sub-question 2, Contribution 2 built on the findings of Contribution 1 by formulating the tendon strain injury criterion TSIC. This criterion was used to investigate the forces and strains acting on finger flexor tendons during jersey finger injury scenarios. For this purpose, a finite element neuromusculoskeletal hand model was created through the combination of two preexisting models. Additionally, new Hill-type muscle elements were inserted whose parameters were calibrated to fit experimental data. The newly created hand model was used to recreate a simplified jersey finger injury load case under varying muscle activity levels. This simulations study showed that a correlation between muscle activity and sustained injury severity exists. Finally, Contribution 3 set out to answer sub-question 3 and to demonstrate the usefulness of the MSIC and TSIC for applications other than injury severity assessment. For this, common modelling issues present in musculoskeletal human body models were first recreated and then detected using the proposed criteria. First, the deformation of a finite element model’s skeletal structure during model repositioning was identified through an MSIC assessment of muscles spanning a displaced joint. Second, an ill-tuned muscle parameter within an otherwise physiological model was found through applying the TSIC to a multibody gait cycle simulation. Additionally, a new method for determining minor TSIC thresholds for arbitrarily parameterised tendons was developed, thus improving the usability of the TSIC. The cumulative result of this thesis is a strain injury criterion for the MTU which, to the author’s knowledge, is the first of its kind. Additionally, a new method for evaluating the quality of musculoskeletal human body models was provided. Future studies should focus on the experimental validation of the proposed injury criteria and on expanding them by statistical metrics. Potential application scenarios of the MSIC and TSIC, besides injury evaluation, are as model assessment tools or in ergonomics.