Untersuchungen zum geometrischen Verhalten von Holz mittels optischer Sensoren

Thumbnail Image

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

In Deutschland geht rund ein Drittel des jährlichen CO2-Ausstoßes auf dem Bausektor zurück. Davon ist zwar nur ein Viertel dem Bau von Hochbauten zu zuschreiben. Gerade deshalb müssen im Hochbau Innovationen und alternative Materialien und Bauweisen entwickelt werden, damit Deutschland seine Klimaziele erreicht. Neben dem hohen CO2-Ausstoß hat die Betonbauweise den Nachteil, dass die Rohstoffe von Beton wie zum Beispiel Kies, Sand oder Kalkstein, endliche Ressourcen sind. Eine Alternative zur Betonbauweise ist der jahrtausendealte Holzbau, der in letzten Jahren eine Renaissance erlebt hat. Durch einen nachhaltigen Holzanbau und eine nachhaltige, ressourcenschonende Bauweise kann Holzbau zu einer echten Alternative werden. Jedoch ist Holz ein anisotroper, inhomogener und poröser Werkstoff, dessen Eigenschaften stark richtungsabhängig und abhängig von Umwelteinflüssen sind. Dies macht die Bemessung von Holzbauwerken kompliziert und unattraktiv. Speziell bei Flächentragwerken wie Schalen, die in der Regel sehr filigran sind, haben Umwelteinflüsse wie Feuchte und Temperatur einen Einfluss auf die Standfestigkeit. Daher ist eine regelmäßige Überwachung der Struktur notwendig. Im Bauingenieurwesen werden für solche Aufgaben häufig Dehnmessstreifen eingesetzt. Diese liefern lediglich sehr lokal geltende Messwerte, von denen nur mittels mechanischer Modelle auf das gesamte Objekt geschlossen werden kann. Daher bietet es sich an, für Flächentragwerke optische Sensoren wie zum Beispiel Laserscanner einzusetzen. Im Rahmen dieser Arbeit werden verschiedene Holzobjekte, wie zum Beispiel Platten, Vierkanthölzer und Schalen, unter verschiedenen Umwelteinflüssen, wie Feuchte und Temperatur, untersucht. Ziel ist es dabei, die auftretenden Formänderungen durch Umwelteinflüsse mittels Laserscanner und Lasertracker zu detektieren. Unter anderem werden mehrere Holzplatten in Klimakammern unter definierten Bedingungen untersucht. So wird in einem ersten Versuch der Einfluss von Temperaturänderungen auf eine Holzplatte untersucht. Es zeigt sich, dass dieser zwar sehr gering ist, aber mittels Lasertracker zumindest in radialer Faserrichtung signifikant aufdeckbar ist. In einem weiteren Versuch werden Holzplatten zunächst in einer Klimakammer mit Feuchteregelung bei 95 % Luftfeuchte gelagert und anschließend bei 12 % Luftfeuchte getrocknet. Zwischenzeitlich werden die Platten mittels Lasertracker und Laserscanner vermessen. Hier lassen sich die Verformungen mit dem Lasertracker in allen drei Faserrichtungen signifikant detektieren. Die Messungen mit dem Laserscanner ermöglichen aufgrund des aus der Aufnahmekonfiguration folgenden Registrierungsfehlers keine Aufdeckung der Verformungen, da der Schwellwert für signifikante Verformungen zu hoch ist. In einem weiteren Laborversuch werden die Verformungen durch die Umwelteinflüsse auf belastete Vierkanthölzer untersucht. Auch hierfür kann gezeigt werden, dass der Lasertracker genutzt werden kann. Verifiziert wurden die Ergebnisse hierbei durch eine Finite-Elemente-Simulation, der Materialparameter aus der Literatur zugrunde liegen. Neben den Laborversuchen werden auch Untersuchungen an einem adaptiven Schalentragwerk aus Holz mit dem Laserscanner durchgeführt. Für die Auswertung der Laserscannerdaten wird eine Methode zur Detektion von signifikanten Formänderungen auf Basis von synthetischen Punktfehlern und der Deformationsanalyse implementiert. Alle Ergebnisse der Messungen sind plausibel und mit Literaturangaben vergleichbar, dennoch ist Holz als natürlich wachsender Rohstoff sehr anspruchsvoll und individuell.

Description

Keywords

Citation

Endorsement

Review

Supplemented By

Referenced By