Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen: http://dx.doi.org/10.18419/opus-311
Autor(en): Ebigbo, Anozie
Titel: Modelling of biofilm growth and its influence on CO2 and water (two-phase) flow in porous media
Sonstige Titel: Modellierung der Entwicklung von Biofilmen und deren Einfluss auf den CO2- und Wasserfluss in porösen Medien
Erscheinungsdatum: 2009
Dokumentart: Dissertation
Serie/Report Nr.: Mitteilungen / Institut für Wasser- und Umweltsystemmodellierung, Universität Stuttgart;183
URI: http://nbn-resolving.de/urn:nbn:de:bsz:93-opus-44894
http://elib.uni-stuttgart.de/handle/11682/328
http://dx.doi.org/10.18419/opus-311
ISBN: 978-3-933761-87-3
Zusammenfassung: Bacterial biofilms are groups of microbial cells attached to surfaces and to each other. Cells in a biofilm are protected from adverse external conditions. In natural environments, this attached mode of growth is more successful than the suspended mode, and a major portion of microbial activity takes place at surfaces. In porous media, biofilms are used as bioreactors (e.g, in wastewater treatment) and as biobarriers (e.g., in enhanced oil recovery). They are also used in the containment and degradation of contaminants in groundwater aquifers. It has been proposed that biofilms be used as biobarriers for the mitigation of carbon dioxide (CO2) leakage from a geological storage reservoir. The concentration of greenhouse gases -- particularly carbon dioxide (CO2) -- in the atmosphere has been on the rise in the past decades. One of the methods which have been proposed to help reduce anthropogenic CO2 emissions is the capture of CO2 from large, stationary point sources and storage in deep geological formations. The caprock is an impermeable geological layer which prevents the leakage of stored CO2, and its integrity is of utmost importance for storage security. As mentioned above, biofilms could be used as biobarriers which help prevent the leakage of CO2 through the caprock in injection well vicinity. Due to the high pressure build-up during injection, the caprock in the vicinity of the well is particularly at risk of fracturing. The biofilm could also protect well cement from corrosion by CO2-rich brine. The goal of this work is to develop and test a numerical model which is capable of simulating the development of a biofilm in a CO2 storage reservoir. This involves the description of the growth of the biofilm, flow and transport in the geological formation, and the interaction between the biofilm and the flow processes. Important processes which are accounted for in the model include the effect of biofilm growth on the permeability of the formation, the hazardous effect of supercritical CO2 on suspended and attached bacteria, attachment and detachment of biomass, and two-phase fluid flow processes. The partial differential equations which describe the system are discretised in space with a vertex-centered finite volume method, and an implicit Euler scheme is used for time discretisation. The model is tested by comparing simulation results to experimental data. In a test case simulation, the model predicts the extent of biomass accumulation near an injection well and its effect on the permeability of the formation. The simulations show that the biobarrier is only effective for a limited amount of time. Regular injection of nutrients would be necessary to sustain the biofilm. In future work, the model could be extended to account for the active precipitation of minerals by the biofilm which would lead to a more enduring barrier. The model also needs to be extended to account for more than one growth-limiting factor. This would allow for the simulation of injection strategies which aim at growing a biofilm at some distance from the injection well.
Biofilme, die in einem porösen Medium wachsen, blockieren Poren und verändern dabei die Eigenschaften des porösen Mediums. Diese veränderten Eigenschaften werden bei der biologischen Filtration (z. B. bei der Abwasserbehandlung), bei der biologischen Altlastensanierung (z. B. für die Erstellung hydraulischer Barrieren) und bei anderen Fragestellungen auf diesem Gebiet genutzt. Eine hydraulische Barriere biologischen Ursprungs könnte z. B. auch in einer geologischen Kohlendioxid-Lagerstätte eingesetzt werden, um das Entweichen von CO2 zu verhindern. CO2 ist das derzeit für am Wichtigsten erachtete anthropogene Treibhausgas. Die globale Erderwärmung wird demnach sehr stark durch die in den letzten Jahrzehnten stattfindende Anreicherung von anthropogenen Treibhausgasen in der Atmosphäre mitverursacht. Die Freisetzung von CO2 kann mit Hilfe effizienterer Technologien und alternativer Energiequellen reduziert werden. CO2-Emissionen können aber auch reduziert werden, indem man CO2 aus Kraftwerksabgasen abscheidet und in tiefen geologischen Formationen speichert. Bei den physikalischen Bedingungen, die in diesen unterirdischen Lagerstätten herrschen, liegt CO2 im überkritischen Zustand vor, gekennzeichnet durch eine hohe Dichte und geringe Viskosität. Diese Lagerstätten enthalten oft salzhaltiges Wasser, das dichter ist als CO2. Eine möglichst undurchlässige geologische Deckschicht verhindert das Aufsteigen des leichteren CO2 an die Erdoberfläche. Jedoch müssen, z. B. im Rahmen von Risikostudien, mögliche Störungen oder Risse in dieser Deckschicht betrachtet werden, die zu einem Entweichen des CO2 führen könnten. Die Deckschicht in der Nähe eines CO2-Injektionsbrunnens ist besonders gefährdet. Der hohe Druckanstieg während der ersten Injektionsphase, Zementkorrosion am Brunnen aufgrund des CO2-reichen Formationswassers und eventuelle Beschädigungen der Deckschicht während der Erstellung des Bohrlochs sind als mögliche Ursachen für gestörte Deckschichten zu nennen. Biobarrieren könnten verwendet werden, um solche Risiken zu minimieren, z. B. indem sie Risse in der Deckschicht abdichten oder den Bohrlochzement vor Korrosion schützen. Eine Biobarriere kann aus einem Biofilm selbst bestehen, aber auch aus vom Biofilm begüngstigten mineralischen Ablagerungen. Die vorliegende Arbeit behandelt im Wesentlichen die Entwicklung eines numerischen Modells, um die Anreicherung von mikrobieller Biomasse im Untergrund simulieren zu können. Das entwickelte Modell soll in der Lage sein, das Abdichten der beschädigten geologischen Deckschicht einer unterirdischen Kohlendioxid-Lagerstätte mit Hilfe von Biofilmen zu simulieren. Dafür müssen einerseits Strömungsprozesse und andererseits auch die mikrobielle Aktivität sowie die Interaktion dieser Vorgänge in porösen Medien richtig beschrieben werden. Die Anreicherung von Bakterien in einem porösen Medium beeinflusst die hydraulischen Eigenschaften des Mediums und als Folge davon auch die darin stattfindende Strömung. Im Gegenzug bestimmt die Strömung den Transport der mikrobiellen Nährstoffe und damit auch die Verteilung mikrobieller Wachstumsraten. Dementsprechend ist die richtige Beschreibung der Wechselwirkung zwischen Strömung und mikrobiellen Prozessen eine wesentliche Herausforderung in der Modellbildung.
Enthalten in den Sammlungen:02 Fakultät Bau- und Umweltingenieurwissenschaften

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat 
Ebigbo_DISS_OPUS.pdf3,12 MBAdobe PDFÖffnen/Anzeigen


Alle Ressourcen in diesem Repositorium sind urheberrechtlich geschützt.