Recent Submissions

ItemOpen Access
Optical charge injection and coherent control of a quantum-dot spin-qubit emitting at telecom wavelengths
(2022) Dusanowski, Łukasz; Nawrath, Cornelius; Portalupi, Simone L.; Jetter, Michael; Huber, Tobias; Klembt, Sebastian; Michler, Peter; Höfling, Sven
Solid-state quantum emitters with manipulable spin-qubits are promising platforms for quantum communication applications. Although such light-matter interfaces could be realized in many systems only a few allow for light emission in the telecom bands necessary for long-distance quantum networks. Here, we propose and implement an optically active solid-state spin-qubit based on a hole confined in a single InAs/GaAs quantum dot grown on an InGaAs metamorphic buffer layer emitting photons in the C-band. We lift the hole spin-degeneracy using an external magnetic field and demonstrate hole injection, initialization, read-out and complete coherent control using picosecond optical pulses. These results showcase a solid-state spin-qubit platform compatible with preexisting optical fiber networks.
ItemOpen Access
Periportal steatosis in mice affects distinct parameters of pericentral drug metabolism
(2022) Albadry, Mohamed; Höpfl, Sebastian; Ehteshamzad, Nadia; König, Matthias; Böttcher, Michael; Neumann, Jasna; Lupp, Amelie; Dirsch, Olaf; Radde, Nicole; Christ, Bruno; Christ, Madlen; Schwen, Lars Ole; Laue, Hendrik; Klopfleisch, Robert; Dahmen, Uta
Little is known about the impact of morphological disorders in distinct zones on metabolic zonation. It was described recently that periportal fibrosis did affect the expression of CYP proteins, a set of pericentrally located drug-metabolizing enzymes. Here, we investigated whether periportal steatosis might have a similar effect. Periportal steatosis was induced in C57BL6/J mice by feeding a high-fat diet with low methionine/choline content for either two or four weeks. Steatosis severity was quantified using image analysis. Triglycerides and CYP activity were quantified in photometric or fluorometric assay. The distribution of CYP3A4, CYP1A2, CYP2D6, and CYP2E1 was visualized by immunohistochemistry. Pharmacokinetic parameters of test drugs were determined after injecting a drug cocktail (caffeine, codeine, and midazolam). The dietary model resulted in moderate to severe mixed steatosis confined to periportal and midzonal areas. Periportal steatosis did not affect the zonal distribution of CYP expression but the activity of selected CYPs was associated with steatosis severity. Caffeine elimination was accelerated by microvesicular steatosis, whereas midazolam elimination was delayed in macrovesicular steatosis. In summary, periportal steatosis affected parameters of pericentrally located drug metabolism. This observation calls for further investigations of the highly complex interrelationship between steatosis and drug metabolism and underlying signaling mechanisms.
ItemOpen Access
Focused surface plasmon polaritons coherently couple to electronic states in above-threshold electron emission
(2023) Dreher, Pascal; Janoschka, David; Frank, Bettina; Giessen, Harald; Meyer zu Heringdorf, Frank-J.
When an intense light field strongly interacts with the band structure of a solid, the formation of hybrid light-matter quantum states becomes possible. Examples of such Floquet-Bloch states have been reported, but engineering of the band structure using Floquet states can suffer from dissipation and decoherence. Sustaining the necessary quantum coherence of the light-matter interactions requires robust electronic states in combination with strong fields of suitable polarization and frequency. Here, we explore the quantum coherent coupling of nano-focused surface plasmon polaritons (SPP) to distinct electronic states in the band structure of a solid. We observe above-threshold electron emission from the Au(111) Shockley surface state by the absorption of up to seven SPP quanta. Using time-resolved photoelectron spectroscopy the coherence of the interaction of the SPPs with the surface state during electron emission is investigated and the process is shown to be similar to light-driven above threshold electron emission. Ultimately, our work could render SPP-based Floquet engineering in nano-optical systems feasible.
ItemOpen Access
Physics inspired compact modelling of BiFeO3 based memristors
(2022) Yarragolla, Sahitya; Du, Nan; Hemke, Torben; Zhao, Xianyue; Chen, Ziang; Polian, Ilia; Mussenbrock, Thomas
With the advent of the Internet of Things, nanoelectronic devices or memristors have been the subject of significant interest for use as new hardware security primitives. Among the several available memristors, BiFe O3 (BFO)-based electroforming-free memristors have attracted considerable attention due to their excellent properties, such as long retention time, self-rectification, intrinsic stochasticity, and fast switching. They have been actively investigated for use in physical unclonable function (PUF) key storage modules, artificial synapses in neural networks, nonvolatile resistive switches, and reconfigurable logic applications. In this work, we present a physics-inspired 1D compact model of a BFO memristor to understand its implementation for such applications (mainly PUFs) and perform circuit simulations. The resistive switching based on electric field-driven vacancy migration and intrinsic stochastic behaviour of the BFO memristor are modelled using the cloud-in-a-cell scheme. The experimental current–voltage characteristics of the BFO memristor are successfully reproduced. The response of the BFO memristor to changes in electrical properties, environmental properties (such as temperature) and stress are analyzed and consistant with experimental results.
ItemOpen Access
Cluster of electric thrusters for astronautic and robotic INPPS flagship space flights to Mars and Europa moon
(2023) Jansen, Frank; Andreussi, Tommaso; Cesarretti, Giovanni; Ehresmann, Manfred; Grill, Julia; Herdrich, Georg; Funaki, Ikkoh; Girard, Nathalie; Grundmann, Jan Thimo; Krejci, David; Leiter, Hans; Masson, Frederic; Maiwald, Volker; Misuri, Tommaso; Oriol, Stephane; Piragino, Antonio; Reissner, Alexander; Schanz, Lars
This review deals with the selection of the electric propulsion system (EPS) for the internationally developed and designed, primary nuclear-electric space tug International Nuclear Power and Propulsion System (INPPS). INPPS is scheduled for interplanetary missions to Mars and Jupiter moon Europa missions by the end of decade 2020. Regarding specific technical and mission parameters preselected electric thruster (ET) types, developed by international companies and institutions, are analysed, evaluated and investigated for a possible application as propulsion system (PS), the so-called CET (Cluster of Electric Thrusters). It is analysed whether solely electric thrusters, combined in an adequate CET, enable the envisaged interplanetary missions-robotic and astronautic/crewed with the INPPS flagship. Thruster clusters with strategic consortium considerations are analysed as a feasible PS of the INPPS. The studied CET consists of the following: (a) only European ETs, (b) combination of German and European ETs, (c) Japanese and European ETs or at least (d) Japanese, European and US thrusters. The main results are (1) Robotic and crewed INPPS mission to Mars/Europa are realizable with EPS only (no chemical propulsion is needed), (2) that every CET, except (c) of only Japanese and part of European thrusters, is capable to perform the main part of envisaged INPPS flagship mission orbit to Mars, back to Earth and to Jupiter/Europa moon.
ItemOpen Access
Growth-rate dependency of ribosome abundance and translation elongation rate in Corynebacterium glutamicum differs from that in Escherichia coli
(2023) Matamouros, Susana; Gensch, Thomas; Cerff, Martin; Sachs, Christian C.; Abdollahzadeh, Iman; Hendriks, Johnny; Horst, Lucas; Tenhaef, Niklas; Tenhaef, Julia; Noack, Stephan; Graf, Michaela; Takors, Ralf; Nöh, Katharina; Bott, Michael
Bacterial growth rate (µ) depends on the protein synthesis capacity of the cell and thus on the number of active ribosomes and their translation elongation rate. The relationship between these fundamental growth parameters have only been described for few bacterial species, in particular Escherichia coli . Here, we analyse the growth-rate dependency of ribosome abundance and translation elongation rate for Corynebacterium glutamicum , a gram-positive model species differing from E. coli by a lower growth temperature optimum and a lower maximal growth rate. We show that, unlike in E. coli , there is little change in ribosome abundance for µ <0.4 h -1 in C. glutamicum and the fraction of active ribosomes is kept above 70% while the translation elongation rate declines 5-fold. Mathematical modelling indicates that the decrease in the translation elongation rate can be explained by a depletion of translation precursors.
ItemOpen Access
Machine-learning-based virtual load sensors for mooring lines using simulated motion and lidar measurements
(2024) Gräfe, Moritz; Pettas, Vasilis; Dimitrov, Nikolay; Cheng, Po Wen
Floating offshore wind turbines (FOWTs) are equipped with various sensors that provide valuable data for turbine monitoring and control. Due to technical and operational challenges, load estimations for mooring lines and fairleads can be difficult and expensive to obtain accurately. This research delves into a methodology where simulated floater motion measurements and wind speed measurements, derived from forward-looking nacelle-based lidar, are utilized as inputs for different types of neural networks to estimate fairlead tension time series and damage equivalent loads (DELs). Fairlead tension is intrinsically linked to the dynamics and the position of the floater. Therefore, we systematically analyze the individual contribution of floater dynamics to the prediction quality of fairlead tension time series and DELs. Wind speed measurements obtained via nacelle-based lidar on floating offshore wind turbines are inherently influenced by the platform's dynamics, notably the rotational pitch displacement and surge displacement of the floater. Consequently, the lidar wind speed data indirectly contain the dynamic behavior of the floater, which, in turn, governs the fairlead loads. This study leverages lidar-measured line-of-sight (LOS) wind speeds to estimate fairlead tensions. Training data for the model are generated by the aeroelastic wind turbine simulation tool, openFAST, in conjunction with the numerical lidar simulation framework ViConDAR. The fairlead tension time series are predicted using long short-term memory (LSTM) networks. DEL predictions are made using three different approaches. First, DELs are calculated from predicted time series; second, DELs are predicted using a sequence-to-one LSTM architecture, and third, DELs are predicted using a convolutional neural network architecture. Results indicate that fairlead tension time series and DELs can be accurately estimated from floater motion time series. Further, we found that lidar LOS measurements do not improve time series or DEL predictions if motion measurements are available. However, using lidar measurements as model inputs for DEL predictions leads to similar accuracies as using displacement measurements of the floater.
ItemOpen Access
From framework to industrial implementation : the digital twin in process planning
(2023) Wagner, Sarah; Gonnermann, Clemens; Wegmann, Marc; Listl, Franz; Reinhart, Gunther; Weyrich, Michael
In today’s fast-paced market, companies are challenged to meet increasing customer demands and shorter product life cycles. To successfully respond to these demands, companies must produce a wide variety of different products. This requires the determination of necessary processes and resources for each product, which can be difficult for process engineers due to the high manual effort and expertise involved. The current state of research has not yet provided explicit definitions of the necessary knowledge and has not fully achieved complete process planning automation. To address this challenge, a digital twin is a valuable tool for automating and understanding process planning. This paper presents a digital twin concept for process planning. It automatically analyzes the product, determines production processes, and selects appropriate resources by linking information about products, resources, and processes. The effectiveness of the digital twin concept is demonstrated through verified and validated use cases, including the production of a compressor element.
Thumbnail Image
ItemOpen Access
N-heterozyklische Borylphosphane : Synthese und Reaktivität
(2025) Kaaz, Manuel; Gudat, Dietrich (Prof. Dr.)