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Abstract

In this report we describe a bias potential for add-atom global hyperdynam-
ics on the basis of machine-learning (ML) interatomic potential (namely, Moment
Tensor Potential, MTP). We compare the results obtained using the ML-bias po-
tential with the ones obtained with conventional bond-boost bias potential. We
also discuss possibilities for construction of a ML-bias potential for acceleration a
migration of straight screw dislocation.

1 Global hyperdynamics and bond-boost bias potential
Hyperdynamics (HD) method was proposed in [8]. This method allows to extend the
time scale tMD of a molecular dynamics (MD) simulation and to observe infrequent
events (like migrations of atoms, screw dislocations) with higher frequency.

Consider a system located in a basin A of the potential energy function V . In addition
we introduce a bias potential ∆V b, which is non-negative around the local basin A and
is equal to zero near the transition state region. We also choose such the bias potential
which does not block any escape paths, i.e., any subminima within the state Ab have
escape times substantially shorter than the escape time τA

esc for the state A. In [8] it was
shown, that the average time to escape from the state A

τ
A
esc =

1
nesc

ntot

∑
l=1

∆tMDe

∆V b
l

kBT , (1)

where nesc is the number of escape attempts, l is the current number of MD step, ∆tMD

is the MD time step, ntot is the total number of MD steps. At long time scale (infinitely
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long trajectory) the boost time tb = τA
escnesc and, thus

tb =
ntot

∑
l=1

∆tMDe

∆V b
l

kBT . (2)

With tMD = ∆tMDntot we conclude, that tb = tMD where the bias potential is equal to
zero (as for normal MD).

One of the possible bias potentials for global HD is the bond-boost potential pro-
posed in [4]. The bond of atoms i and j is defined if the equilibrium distance r0

i j between
these two atoms is smaller than specific constant value, which is defined for each spe-
cific system. The current strain of the bond i j on the l-th MD step

ε
l
i j =

rl
i j− r0

i j

r0
i j

, (3)

where rl
i j is current (non-equilibrium) distance between the atoms. The bias energy

∆V b
l,i j of any bond is defined as

∆V b
l,i j =


Vmax

1−

(
ε l

i j

q

)2
 |ε l

i j|< q

0 |ε l
i j| ≥ q.

(4)

Here the non-negative factor Vmax and the threshold q for strain (or, maximal permissible
strain) are the adjustable parameters. Let the maximum strain on the l-th step be ε l

max =
max

i j
|ε l

i j|. Then, the total potential energy of the single bond with the strain ε l
max on the

current step is equal to sum of the potential function Vl and a bias function ∆V b
l,max. We

note that ∆V b
l,max = 0 if ε l

max ≥ q. The bias force acting on the bond with the maximum
strain

f b
l,max =−

∂∆V b
l,max

∂ε l
max

=


2Vmaxε l

max
q2 ε l

max < q

0 ε l
max ≥ q.

(5)

The force can be decomposed into an equal and opposite force acting only on the atoms
which form the bond with ε l

max.
It was demonstrated in [4] that the bond-boost potential works good even for local

HD, in which the bias potential applied to a group of bonds (as opposite to global HD,
described above). Therefore, in order to investigate a possibility to use machine-learning
bias (ML-bias) potential for boosting we decided to start with add-atom global HD and
consider the bond-boost potential (4) as the reference one.
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2 Moment Tensor Potential
Moment Tensor Potential (MTP) is a machine-learning interatomic potential which was
proposed in [3, 7]. MTP is local, i.e., the energy EMTP is the sum of contributions
V MTP(ni) of atomic neighborhoods ni for N atoms

EMTP =
N

∑
i=1

V MTP(ni). (6)

Each neighborhood is a tuple ni = ({ri1,zi,z1}, . . . ,{ri j,zi,z j}, . . . ,{riNneigh.,zi,zNneigh.}),
where ri j are relative atomic positions, zi, z j are the types of central and neighboring
atoms, Nneigh. is the number of atoms in neighborhood. We also denote the maximum
number of atomic types occured in all the neighborhoods by Ntypes. Each contribution
V MTP(ni) in the potential energy EMTP expands through a set of basis functions

V MTP(ni) =
Nlin.

∑
α=1

ξαBα(ni), (7)

where Bα are the MTP basis functions, ξα are the linear parameters to be found, and
Nlin. is the number of these parameters. To define the functional form of the MTP basis
functions and the number Nlin. we introduce the so-called moment tensor descriptors

Mµ,ν(ni) =
Nneigh.

∑
j=1

fµ(|ri j|,zi,z j)ri j⊗ ...⊗ ri j︸ ︷︷ ︸
ν times

. (8)

The descriptor consists of the angular part ri j⊗ ...⊗ ri j (the symbol “⊗” denotes the
outer product of vectors and, thus, the angluar part is the tensor of ν-th order) and the
radial part fµ(|ri j|,zi,z j) of the following form

fµ(|ri j|,zi,z j) =
Npolyn.−1

∑
β=0

c(β )µ,zi,z jTβ (|ri j|)(Rcut−|ri j|)2. (9)

Here µ = 0, . . . ,Nrad.− 1 is the number of the radial function fµ (the method to de-
fine a concrete number Nrad. of radial functions needed to construct all the MTP basis
functions is detailed below), c(β )µ,zi,z j are the radial parameters to be found, Tβ (|ri j|) are
Chebyshev polynomials of the order β , Npolyn. is the number of Chebyshev polynomials
(the highest order is Npolyn.−1 because the sequence of the polynomials starts from the

one of 0 order). The number of the radial MTP parameters c(β )µ,zi,z j is Npolyn.×Nrad.×
N2

types. Finally, the term (Rcut− |ri j|)2 is introduced to ensure smothness w.r.t. to the
atoms leaving and entering the sphere with the cut-off radius Rcut.

By definition, the MTP basis function Bα is a multiplication of one or more moment
tensor descriptors, yielding a scalar, e.g.

M1,0, (M1,2M0,1) ·M0,1, M1,2 : M3,2, . . . ,
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where “·” is an inner product of vectors, “:” is a Frobenius product of matrices. In order
to construct the basis functions Bα , and, thus, determine a particular functional form of
MTP, we define the so-called level of moment tensor descriptor

levMµ,ν = 2+4µ +ν , (10)

for example, levM0,0 = 2, levM2,1 = 11, levM0,3 = 5. We also define the level of moment
tensor descriptor multiplication, and, in particular, the level of the MTP basis function

levBα = lev
P

∏
p=1

Mµp,νp︸ ︷︷ ︸
scalar

=
P

∑
p=1

(2+4µp +νp). (11)

A set of MTP basis functions and, thus, a particular functional form of MTP depends
on the maximum level, levmax, which we also call the level of MTP. We include in the
set of the MTP basis functions only the ones with levBα ≤ levmax, e.g., the MTP of 8-th
level includes nine basis functions

B1 = M0,0; levM0,0 = 2≤ levmax = 8,

B2 = M1,0; levM1,0 = 6≤ levmax = 8,

B3 = M2
0,0; levM2

0,0 = 4≤ levmax = 8,

B4 = M0,1 ·M0,1; lev(M0,1 ·M0,1) = 6≤ levmax = 8,

B5 = M0,2 : M0,2; lev(M0,2 : M0,2) = 8≤ levmax = 8,

B6 = M0,0M1,0; lev(M0,0M1,0) = 8≤ levmax = 8,

B7 = M3
0,0; levM3

0,0 = 6≤ levmax = 8,

B8 = M0,0(M0,1 ·M0,1); lev(M0,0(M0,1 ·M0,1)) = 8≤ levmax = 8,

B9 = M4
0,0; levM4

0,0 = 8≤ levmax = 8.

Thus, the number of linear parameters Nlin. and the number Nrad. of radial functions
depend on the level of MTP and are fixed for each level (e.g., if levmax = 8 then Nlin. = 9,
Nrad. = 2).

Using the method described above, it is possible to calculate MTP energy. As the
energy is a smooth function, then it is possible to find its derivatives analytically, e.g.,
MTP forces and MTP stresses. Nevertheless, as it was mentioned above, typically the
MTP parameters are not known, or, non-optimal (e.g., they do not allow to predict
energies, forces and/or stresses of any realistic physical system). For finding the optimal
MTP parameters we need a training set, i.e. a set of atomic configurations with the
known reference energies, (and, probably, forces and stresses) to which we approximate
the MTP energies (and, probably, MTP forces and MTP stresses). We assume, that
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the reference energies, forces, and stresses have physical meaning and correspond to
any realistic physical system, and, thus, by using of them, we can optimize the MTP
parameters, and the potential will predict physically relevant properties of a material.
We emphasize, that in this section we only describe a general method to find optimal
parameters, but do not discuss any details on construction of a training set (see the details
in the sections below), because it depends on a particular problem we are interested in.

Let K be a number of configurations in a training set, and N(k) is a number of
atoms in k-th configuration. Denote a vector of MTP parameters to be found by θ =

(ξα ,c
(β )
µ,zi,z j). We find the optimal parameters θ̄ by solving the following optimization

problem (minimization of the objective function)

K

∑
k=1

[
we
(
EREF

k −EMTP
k (θ)

)2
+wf

N(k)

∑
i=1

3

∑
a=1

(
f REF
i,a,k − f MTP

i,a,k (θ)
)2

+ws

3

∑
a,b=1

(
σ

REF
ab,k −σ

MTP
ab,k (θ)

)2
]
→min .

(12)

We start from randomly initialized MTP parameters on the interval (−10−7,10−7). It
should be noticed, that the order of parameters on the interval does not matter, because
before the optimization such a re-normalization of parameters occurs that the norm of
the coefficient vector is equal to unity (we do not describe the details here). The opti-
mal parameters θ̄ are found numerically, by using the iterative method for minimization
of the nonlinear objective function, namely, Broyden-Fletcher-Goldfarb-Shanno algo-
rithm. Thus, after the optimization, the parameters θ̄ are near the local minimum of the
objective function. In this objective function, EREF

k , f REF
i,a,k , and σREF

ab,k are the reference
energies, forces, and stresses, i.e. the ones to which we approximate the MTP ener-
gies EMTP

k , forces f MTP
i,a,k , and stresses σMTP

ab,k , and, thus, optimize the MTP parameters
θ. The factors we, wf, and ws are non-negative weights which express the importan-
tance of energies, forces, and stresses w.r.t. each other. We refer to the minimization
problem (12) as the fitting of MTP. Using a training set and MTP trained we calculate
the so-called extrapolation grade per atom (described below) which we use to construct
ML-bias potential.

3 Extrapolation grade per atom
We introduce a concept of extrapolation grade per atom for nonlinear MTP on the basis
of the papers [6] (the grade per atom was introduced for linear MTP) and [3] (the ex-
trapolation grade of configuration was proposed for nonlinear MTP). We start with the
consideration of (12). Assume that we know the vector of optimal MTP parameters θ̄

and let the length of the vector be m. Then we can linearize each term in the objective
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function, in particular, the term with the difference between energies

EREF
k −EMTP

k (θ)≈ EREF
k −

m

∑
p=1

(θp− θ̄p)
∂EMTP

k (θ̄)

∂θp
.

We can consider fitting of MTP as the solution of the overdertemined system

m

∑
p=1

θp
∂EMTP

k (θ̄)

∂θp
= EREF

k +
m

∑
p=1

θ̄p
∂EMTP

k (θ̄)

∂θp
. (13)

Substituting (6) in (13) and taking into account that V MTP also depends on θ, we obtain

N(k)

∑
i=1

m

∑
p=1

θp
∂V MTP(θ̄,n

(k)
i )

∂θp
=

N(k)

∑
i=1

(
V REF

i,k +
m

∑
p=1

θ̄p
∂V MTP(θ̄,n

(k)
i )

∂θp

)
, k = 1,K. (14)

The matrix of the system (14) is

B=



∂V MTP

∂θ1
(θ̄,n

(1)
1 ) . . . ∂V MTP

∂θm
(θ̄,n

(1)
1 )

...
...

∂V MTP

∂θ1

(
θ̄,n

(1)
N(1)

)
. . . ∂V MTP

∂θm

(
θ̄,n

(1)
N(1)

)
...

...
∂V MTP

∂θ1
(θ̄,n

(K)
1 ) . . . ∂V MTP

∂θm
(θ̄,n

(K)
1 )

...
...

∂V MTP

∂θ1

(
θ̄,n

(K)

N(K)

)
. . . ∂V MTP

∂θm

(
θ̄,n

(K)

N(K)

)


,

where the first N(1) rows correspond to the first configuration (of N(1) atoms) in the
training set, the last N(K) rows correspond to the last (K-th) configuration, and, thus, the

size of the matrix is
(

K
∑

k=1
N(k)

)
×m.

Following [6] we find a square m×m submatrix A of matrix B using the maxvol al-
gorithm [2] (i.e., we find the matrix with maximum volume, or, |detA|). In order to
find grades per atom for a configuration with atomic neighborhoods n∗i , i = 1, . . . ,N, we
compose a matrix

C=



∂V MTP

∂θ1
(θ̄,n∗1) . . . ∂V MTP

∂θp
(θ̄,n∗1) . . . ∂V MTP

∂θm
(θ̄,n∗1)

...
...

...
∂V MTP

∂θ1

(
θ̄,n∗i

)
. . . ∂V MTP

∂θp
(θ̄,n∗i ) . . . ∂V MTP

∂θm

(
θ̄,n∗i

)
...

...
...

∂V MTP

∂θ1

(
θ̄,n∗N

)
. . . ∂V MTP

∂θp
(θ̄,n∗N) . . . ∂V MTP

∂θm

(
θ̄,n∗N

)


A−1,
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where the derivatives ∂V MTP

∂θm

(
θ̄,n∗i

)
are calculated analytically. The grade per i-th atom

(or, the local grade) is the maximum absolute value in the i-th row of the matrix C,
namely,

γi = γ(n∗i ) = max
1≤p≤m

(|Ci,p|), where

Ci,p =

(
∂V MTP

∂θ1

(
θ̄,n∗i

)
, . . . ,

∂V MTP

∂θp
(θ̄,n∗i ), . . . ,

∂V MTP

∂θm

(
θ̄,n∗i

))
A−1,

(15)

and the extrapolation grade of configuration (or, the global grade) is the maximum ab-
solute element of the matrix C, i.e.,

γ = max
1≤i≤N, 1≤p≤m

(|Ci,p|), (16)

thus, the global grade is indeed the maximum through local grades.
As it could be seen, the extrapolation grade depends on geometry of configuration

(or, atomic neighborhoods). In hyperdynamics we typically deal with local basins (local
minima) and transition state with different neighborhoods for atoms which participate
in transition (and, thefore, in boosting). Due to this reason, the extrapolation grades are
also different, e.g., the local grades per atoms in transition state could be greater than
the ones in local minima. This is a motivation to use the global grade as a measure
to stop boosting (i.e., if the global grade is greater than a maximal permissible grade,
then we stop boosting, and, therefore, the maximal permissible grade is an analog of
the maximal permissible strain which determines a moment to stop boosting in bond-
boost potential). The concept of global grade per atom is applied for construction of
a ML-bias potential used for global hyperdynamics (e.g., in the add-atom dynamics,
see the next two sections), whereas the concept of local grade could be used for local
hyperdynamics.

4 Machine-learning bias potential for global hyperdy-
namics

As it was discussed above, we construct a ML-bias potential for global hyperdynamics
under the assumption that it depends on global grade γ: ∆V ML−b =∆V ML−b(γ). Thus, at
every l-th MD step we calculate global grade γ l with (16) and choose the non-negative
factor Vmax and threshold γth (like the threshold q in the bond-boost potential). To a
single atom of a maximum grade we apply the ML-bias energy of the following form

∆V ML−b
l,max =

Vmaxf
(

1− γ l

γth

)
γ l < γth

0 γ l ≥ γth,

(17)
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where f
(

1− γ l

γth

)
is any non-negative function which allows to avoid too large boosting

time tb (i.e., the so-called “ballistic” effect, when the boosting energy is too large, and,
therefore, the boosting time is also too high). As it was shown above, the extrapolation
grade depends on atomic positions. That’s why it is possible to calculate the ML-bias
force. This force has the form

f ML−b
l,max =−

∂∆V ML−b
l,max

∂ rl
max

=

−Vmax

∂ f
(

1− γ l

γth

)
∂γ l

∂γ l

∂ rl
max

γ l < γth

0 γ l ≥ γth,

(18)

where rl
max is the coordinate of atom with maximum grade. As the depence of extrapo-

lation grade on atomic positions is the composition function, i.e.,

γ
l = γ

l(V MTP(n1), . . . ,V MTP(ni), . . . ,V MTP(nN)),

then it is difficult to calculate the derivative
∂γ l

∂ rl
max

analytically, that’s why we calculated

it numerically, using the central differences. We generate such a training set that the
extrapolation grade is small enough for configurations close to local basin, and is greater
for configurations close to transition state. The parameter γth could be close to the grade
in transition state, or greater, if during simulation we occur configurations with higher
grade, than in transition state, but the configuration with this grade does not correspond
to the transition state itself.

5 Machine-learning bias vs bond-boost bias: a case study
of add-atom dynamics for Pt-fcc

For estimation of the ML-bias potential efficiency we compare it with the bond-boost
bias potential by using of these two potentials in add-atom dynamics on the example of
Pt-fcc. The example was taken from the LAMMPS open source software which is available
at https://lammps.sandia.gov/doc/Install_git.html (see the folder examples/hyper/).
As the potential energy function we use EAM potential for Pt-fcc generated from Voter
potential (see the file ptvoterlammps.eam in the folder mentioned above) with the
cut-off radius of 5.6 Å (which is close to the distance between any atom if fcc-lattice
and its second nearest neighbor). We consider an orthogonal unit cell of 577 atoms
with the lattice parameters a = b = 23.52 Å (along the axes Ox and Oy), c = 19.992 Å
(along the axis Oz), the crystallographic directions are < 100 >. The first 576 atoms are
located inside the surface including 8 layers (72 atoms per layer), the distance between
layers is 1.96 Å. We investigate a migration of the 577-th atom at T = 700 K from one
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local basin (where the coordinate of this atom is (13.72,13.72,15.09) Å, this atom is
above the 8-th layer) to one of four possible local basins, where the 577-th moves to the
8-th layer and its coordinate will be close to the coordinate of one of the four nearest
neighbors: (13.72,11.76,13.72) Å, (11.76,13.72,13.72) Å, (15.68,13.72,13.72) Å,
and (13.72,15.68,13.72) Å, and one of the nearest neighbors leaves the surface and
will be located above it (the so-called “add-atom exchange” mechanism). The distance
between the additional atom and any nearest neighbor is appoximately equal to 2.4 Å
(see the Fig. 1, left top, a view from above), thus, in order to migrate from one local
basin to another it is necessary to do the path of ≈ 2.4 Å for both atoms. In the case
shown below the additional atom migrates to the position (13.72,11.76,13.72) Å, and
the new coordinate of this nearest neighbor is (13.72,9.8,15.09) Å (see the Fig. 1).

We emphazsize, that in this simulation we do not consider the so-called “bridge-
hoping” diffusion of 577-th atom. Moreover, this type of atom migration is not possible
with the probability close to 1 for the Pt-fcc system described above at T = 700 K. To
verify this, we ran 1000 pure MDs of 2 ns starting from different initial velocities. For
983 of 1000 cases we observed one of four “add-atom exchange” migrations with the
close probability (it varies from 22 % to 26 %), and did not observe any migration for the
rest 17 cases. Thus, we may state, that with a probability close to one we will observe
“add-atom exchange” migrations with the transition state, close to the one shown in the
Fig. 1. Our boosting should be turned-off near this transition state.

In order to use MTP for boosting we, first, should create a training set and fit the
potential. We generated the following training set. We ran MD of 1.5 ns with the
timestep of ∆tMD = 5 fs (thus, we had 300000 steps) in NVT ensemble at T = 700
K. Then, in order to avoid the correlation between configurations, we considered each
10000-th configuration from MD simulation (i.e., 31 configurations) and added in the
training set only the configurations with small deviations (thermal vibratons) of atoms
from their starting positions. The maximum permissible deviation was chosen equal to
0.8 Å, i.e., approximately 30% of the path which is necessary to do for migration from
one local basin to other. Finally, we obtained the training set including 29 configurations
with small thermal vibrations of atoms (thus, we excluded 2 configurations in which the
deviations were more than 0.8 Å). We consider only small deviations of atoms in the
training set and do not include the configurations with big deviations, because our aim
is to have smaller extrapolation grades near local basins (at around 1 or smaller, to have
interpolation on these configurations), and higher ones (at around 2 or higher, to have
extrapolation) near transition state. The big deviations could correspond to transition
state, thus, adding the configurations with big deviations in the training set leads to
small extrapolation grade (or, even to interpolation) near transition state and we will not
be able to use the extrapolation grade as a measure to stop boosting.

We fit MTP with levmax = 8 (Nlin. = 9), Nrad. = 2, Npolyn. = 8, thus, MTP has 26
parameters. The cut-off radius Rcut. = 5.8 Å (a bit greater than the distance between any
atom in fcc-lattice and its second nearest neighbor). For optimization of MTP parame-
ters (or, fitting of MTP) we solved the problem (12). The reference energies, forces, and
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Figure 1: The left top figure illustrates the nearest neighbors of the additional atom
(crossed). In the right top figure the first local basin is shown: the coordinate of the ad-
ditional atom is (13.72,13.72,15.09) Å, the coordinate of the nearest neighbor to be mi-
grated is (13.72,11.76,13.72) Å). In the left bottom figure we see the approximate tran-
sition state. The new coordinate of the additional atom is (13.7945,13.1917,14.47) Å,
thus, the displacement is approximately equal to 0.8 Å, the atom done at around
30% of the path to its new local basin. The new coordinate of the nearest neigh-
bor is (13.7675,10.8092,14.5261) Å, therefore, the displacement is close to 1.2 Å,
the atom approximately done 50% of the path to its new local minimum. Finally, in
the right bottom figure, the second local basin is shown: the coordinate of the addi-
tional atom is (13.72,11.76,13.72) Å, now it is located in the 8-th layer, thus, we do
not see the crossed atom in this figure, and the coordinate of the nearest neighbor is
(13.72,9.8,15.09) Å, it is migrated from the layer.
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stresses in (12) (or, the energies, forces, and stresses in the training set) were calculated
using EAM potential for Pt-fcc mentioned above, the factors before the differences be-
tween energies, forces, and stresses were we = 1, wf = 0.01, ws = 0. We chose ws = 0,
because it is not necessary to predict stresses (or, elastic constants).

Once we trained MTP (or, optimized the parameters of MTP), we can calculate the
extrapolation grade and ML-bias potential. For the add-atom dynamics we consider the
ML-bias energy for the atom with maximum extrapolation grade of the following form

∆V ML−b
l,max =

Vmax

(
1− γ l

γth

)p

γ l < γth = 10, p = 8

0 γ l ≥ γth = 10, p = 8,
(19)

with different non-negative weights Vmax from the interval (0,1). We boost an atom with
maximal extrapolation grade (there could be any of 577 atoms, either add-atom, or one
of atoms inside layers) if the global extrapolation grade γ l of current configuration is
greater than γth, and do not boost any atom otherwise. For choosing the threshold γth
we, first, ran 100 add-atom with bond-boost bias potential starting from different initial
velocities, then, calculated the grades for all the configurations sampled. We found that
the maximum grade among all the runs was at around 10. Such a high grade corresponds
to configuration in which additional atom moved for at around 1 Å above the surface
compared to its original position. Thus, γth = 10. We also found that the grade of
configuration in transition state is equal to 2-3, thus, our ML-bias potential should be
close to zero if γ l = 3 for turning-off boosting near the transition state. Finally, our ML-
bias potential should not be “ballistic”, i.e., a boosting energy should not be too large.
In order to choose a power of the boost function which allows to satisfy all the above
criterions, we considered the 2-nd, 4-th, 6-th, 8-th, 10-th, and 20-th powers of (19). The
bias energies, and their derivatives w.r.t. to extrapolation grade γ for Vmax = 0.8 are
plotted in the Fig. 2.

We then ran 100 add-atom dynamics with the ML-bias potentials described above
and calculated the average boosting time tb for all runs. As it will be shown below,
typical number of steps, needed to detect an event (i.e., jump of the additional atom)
with bond-boost potential for Vmax = 0.8 with the probability close to 1 is 100000 with
the timestep ∆tMD = 5 fs. We adjusted the critical time of boosting tb

critical = 2 ns, i.e., if
the hyperdynamics time is four times greater than the pure MD time (0.5 ns), than, the
ML-bias potential is considered as “ballistic” and could not be used for boosting. The
MD time was exceeded for the ML-bias potentials with p = 2, p = 4, and p = 6 (i.e.,
tb > 2 ns for 100000 steps), thus, the potentials with these powers are the “ballistic”
ones. Also, these bias potentials are not suitable, because the bias energies are close
to zero too far from the grade near transition state. All the potentials with the powers
greater than 8 are not the “ballistic” ones. We chose the power p = 8, because the
derivatives of bias energy w.r.t. to extrapolation grade are greater for this power, than
for p = 10, and p = 20 if the extrapolation grades are greater than 1 (i.e., when we deal
with extrapolation and close to transition state).

11



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  2  4  6  8  10

V
b
ia

s

extrapolation grade

Vmax = 0.8, power=2, threshold=10
Vmax = 0.8, power=4, threshold=10
Vmax = 0.8, power=6, threshold=10
Vmax = 0.8, power=8, threshold=10

Vmax = 0.8, power=10, threshold=10
Vmax = 0.8, power=20, threshold=10

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0  2  4  6  8  10

F
b
ia

s

extrapolation grade

Vmax = 0.8, power=2, threshold=10
Vmax = 0.8, power=4, threshold=10
Vmax = 0.8, power=6, threshold=10
Vmax = 0.8, power=8, threshold=10

Vmax = 0.8, power=10, threshold=10
Vmax = 0.8, power=20, threshold=10

Figure 2: Energies of ML-bias potential (left) and their derivatives w.r.t. extrapolation
grade (right).

For a comparison of ML-bias potential and bond-boost bias potential we ran add-
atom dynamics at T = 700K for different parameters Vmax = 0.4,0.6,0.8 and con-
structed the probability functions of distribution of the first jumps of atoms (i.e., we
consider only the first jump of additional atom and one of its nearest neighbohrs and
did not consider next jumps) on a certain time intervals. For this aim, depending on
the value of Vmax, we ran from 1000 to 3000 simulations starting from different initial
velocities. As it is expected, smaller the parameter Vmax, higher the probability to de-
tect the first jumps of atoms at further time moments (i.e., more time intervals to detect
jumps we have), thus, we need more simulations for the small parameters Vmax for more
accurate estimation of the probability function. The MD timestep of each simulation
was ∆tMD = 5 fs, the time of each simulation was 1.5 ns, each time interval (bin) width
was 50 ps (i.e., we binned simulation time on the intervals (0, 50) ps, (50, 100) ps, ...,
(1450, 1500) ps), the number of simulations was 100 times greater than the number of
the bin for which the “latest” first jumps were detected (i.e., if the “latest” first jumps
for a specified Vmax occured on the 20-th interval, (950, 1000) ps, then the number of
simulations was equal to 2000). In order to demonstrate that ML-bias potential accel-
erates pure MD (i.e., the probability to detect the first jumps in the very beginning of
simulation interval is greater than for pure MD) we also ran 2000 MD simulations of 10
ns, the width of bin was 500 ps (greater than for hyperdynamics) because it is expected,
that the probability to detect the first jumps with pure MD simulations will be smaller,
than for the one with boosting.

The probability functions of distribution of the first jumps of atoms are shown in the
Fig. 3, the same function for pure MD is shown in the Fig. 4.

The probability to detect the first jumps “faster” is greater for simulations with ML-
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Figure 3: Probability functions of distribution of the first jumps of atoms for the bond-
boost bias potential (left red histograms) and the ML-bias potential (right blue his-
tograms) for Vmax = 0.4,0.6,0.8. For two small Vmax = 0.4,0.6 the bond-boost bias
potential gives better acceleration of pure MD, than the ML-bias potential, whereas for
the greatest Vmax = 0.8 the ML-bias potential accelerates pure MD “faster”.
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Figure 4: Probability function of distribution of the first jumps of atoms for pure MD
(without any boosting).

bias potential, than without it (pure MD). Thus, both ML-bias potentails accelerate pure
MD. As it was expected, greater the parameter Vmax, higher the frequency (probability)
of the first jumps in the very beginning of add-atom dynamics. For two small Vmax =
0.4,0.6 the bond-boost bias potential gives better acceleration of pure MD, than the ML-
bias potential (i.e., the probability to detect the jumps “faster” is greater for the bond-
boost bias potential than for the ML-bias potential), whereas for the greatest Vmax =
0.8 the ML-bias potential accelerates pure MD “faster”. This effect may be related to
either the choice of ML-bias energy, or to the training set. Nevertheless, for add-atom
dynamics, we did not have the aim to create a ML-bias potential that accelerates pure
MD better than bond-boost potential. Here we just demonstrated that the conception of
extrapolation grade, in principle, could be used for construction of a bias potential.

6 Examination of MTP for prediction of Nb-bcc elastic
constants

The second problem was investigation of a possibility to construct a ML-bias potential
for acceleration of a migration of straight screw dislocation in Nb-bcc structure.

As the first step we investigated the accuracy of prediction of elastic constants with
MTPs of different levels. We constructed the training sets on the basis of Nb-bcc con-
figuration including 2 atoms in orthogonal box with the lattice parameters a = b =
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Nb-bcc, (±2.1;±1.5;±0.9;±0.6;±0.3)% bulk deformation (10), shear deformation
(extension/compression, 12), random atomic displacements (10), fully relaxed
configuration (1), total # configurations: 33
# atoms: 54; 128; 250; 432; 686; 1024
# training sets: 54 × 33 configurations
Shear deformation, % ± 0.6 ± 1.3 ± 2.0
Random atom displacement, Å
(-0.10, 0.10) + + +
(-0.15, 0.15) + + +
(-0.20, 0.20) + + +

Table 1: Nb-bcc training sets for fitting MTPs of different levels. All the results of
training are demonstrated for 2 % shearing of lattice vectors, and for atomic random
displacements from the interval (-0.2, 0.2) Å.

c = 3.3 Å (along all the three axes: Ox is parallel to the direction [100], Oy is paral-
lel to the direction [010], Oz is parallel to the direction [001]). We started with study
the accuracy of MTPs fitting w.r.t. size of the unit cell, or, how many atoms in con-
figurations do we need for accurate and reliable fitting of MTP. For this aim we cre-
ated fully relaxed configurations with orthogonal box of size from (9.9,9.9,9.9) Å to
(26.4,26.4,26.4) Å (thus, we increased the number of atoms from 54 to 1024). Each
training set includes 33 configurations of the same size: 1 fully relaxed configuration, 10
extended/compressed configurations with bulk deformations, 12 extended/compressed
configurations with different shear deformations (xx, yy, zz, yz, xz, xy), and 10 config-
urations with random displacements of each atom in the fully relaxed configuration.
The quantities of bulk and shear deformations, as well as the intervals of atomic per-
turbations (from which the random values of atomic displacements were chosen) are
shown in the Table. 1. All the results below are demonstrated for 2 % shearing (exten-
sion/compression) of lattice vectors, and for random displacement of each atom from
the interval (−0.2,0.2) Å. Refence energies, forces, and stresses in the training sets
were calculated with the Farkas EAM potential [1]. This potential predicts different
properties of Nb-bcc with high accuracy, in particular, the elastic constants are close to
the experimental ones.

We fit MTPs of three levels: 8 (Nlin. = 9), 12 (Nlin. = 29), and 16 (Nlin. = 92). For all
the MTPs we choose Rcut = 5 Å, Npolyn. = 8, therefore, the total of parameters in these
MTPs are 26, 54, 125, respectively. We denote these potentials by MTP-26, MTP-54,
and MTP-125. The weights in the optimization problem (12) are we = 1, wf = 0.01, and
ws = 0.001, because it was shown in [5], that the weights close to these allow to predict
energies, forces, and stresses with high accuracy.

For each level of MTP we fit an ensemble (or, group) of five potentials in order to be
able to estimate uncertainty of MTP prediction of different values (e.g., errors, elastic
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constants, etc.) due to randomness of the fitting, i.e., we always start from a random set
of MTP parameters for each fitting, and, thus, each MTP trained could be considered
as a random quantity. We considered five potentials for each of the three ensembles,
because, first, we manually checked that in each ensemble all five potentials converge
to various local minimum, and, second, we compared the ensembles of five and ten
potentials and verified, that the uncertainties of estimations (i.e., standard deviations of
values predicted by each potential from the average value predicted by ensemble) were
close to each other.

As we fit the ensembles of potentials, we calcute the average absolute energy, force,
and stress fitting root-mean square errors (RMSEs)

ĒRMSE =
1
5

5

∑
j=1

√√√√ 1
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where MTP j is the j-th MTP in the ensemble. The average absolute energy (20), force
(21), and stress (22) fitting RMSEs for the three ensembles of MTPs and the standard
deviations of MTPs’ absolute errors are shown in the Figs. 5, 6, 7, respectively. From
the figures we can conclude, that increasing of the MTP level decreases training errors.
Mainly (except for the ensemble of MTPs with levmax = 8 and several points for MTPs
of higher levels), the standard deviations from average errors are reasonable, less than
10 %. It indicates, that the uncertainty of errors prediction is small enough, the average
values of errors predicted are reliable.

The average absolute energy and force RMSEs do not signifficantly depend on size
of configurations in the training sets, whereas the average absolute stress RMSEs de-
crease while increasing number of atoms in configurations. Finally, for the ensembles
of MTP-54 and MTP-125 all the average errors for the configurations with 686 atoms
and 1024 atoms are also close to each other (i.e., we observe the convergence w.r.t.
number of atoms). Thus, it could be reasonable to consider configurations with 686
atoms in the training set.

For calculation of elastic constants it is necessary to find such a lattice constant at
which cohesive energy of Nb-bcc structure reaches minimum. For all the three ensem-
bles of potentials and for each potential we obtained very close dependence of cohesive
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Figure 5: Average absolute energy fitting RMSEs and the standard deviations of MTPs’
energy errors for different configuration sizes in the training sets. Higher the level of
MTP, smaller the average energy RMSEs. The energy errors do not signifficantly de-
pend on number of atoms in each configuration in the training set.

Figure 6: Average absolute force training RMSEs and the standard deviations of MTPs’
force errors for different number of atoms in the training sets. Greater the number of
parameters in MTP, smaller the errors. The force errors do not depend on sizes of
configurations in the training set.
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Figure 7: Average absolute stress fitting RMSEs and the standard deviations of MTPs’
stress errors for different number of atoms in the training sets. Higher the level of
MTP, smaller the average stress RMSEs. The stress errors decrease with increasing the
number of atoms of each configuration in the training set.

energy on a lattice constant, the dependence is shown in the Fig. 8 for one of MTPs.
The MTP curve is close to the reference (EAM) curve with the minimum at a = 3.3 Å.

Once we found the proper lattice constant of Nb-bcc structure, we calculate the elas-
tic constants C11, C12, and C44. The dependence of the average elastic constants for the
three ensembles of MTPs on the size of configurations in the training sets, and the elas-
tic constants calculated with the Farkas EAM are shown in the Fig. 9. Tthe maximum
relative error in constants prediction is less than 25 %, but the constants C11 and C44
were better predicted with MTP-54 and MTP-125, than with MTP-26 (see the descrip-
tion of the Fig. 9 for details). Thus, it is better to use MTPs of high levels (12-th and
16-th) for prediction of Nb-bcc elastic properties and calculation of local extrapolation
grades (on the basis of which a ML-bias potential should be constructed) of Nb config-
urations with screw dislocations. The maximim uncertainty (standard deviation) of the
elastic constants estimation is less than 15 %. Finally, as for stress RMSEs, we observe
the convergence of the elastic constants w.r.t. number of atoms for configurations with
686 and 1024 atoms. Due to this reason we used configurations with 686 atoms for the
training of MTPs, on the basis of which we are trying to construct a ML-bias potential.
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Figure 8: The dependence of cohesive energy on the lattice constant for Nb-bcc. Both
the Farkas EAM potential and the MTP dependences are close to each other, cohesive
energy reaches the minimum at a = 3.3 Å.

7 Extrapolation grades for structures with straight screw
dislocations and kink-pairs

Before trying to construct a ML-bias potential for acceleration of a screw dislocation
migration it is necessary to construct a training set which allows to differentiate local
minima and a transition state, and find a threshold grade γth at which a boosting of atoms
is turned-off (or, to recognize a transition state with an extrapolation grade). For this
aim we, first, discuss the process of screw dislocation migration. Screw dislocations are
shown in the Fig. 10, the process of screw dislocation migration is shown in the Fig.
11. The configurations were obtained during MD simulations with the Farkas EAM
potential.

As it could be seen from the figures, there are at least two types of atomic neigh-
borhoods in any configuration with screw dislocations: neighborhoods including only
bcc atoms, and neighborhoods including the atoms from the cores of dislocation. Thus,
the grades of atoms from the cores of dislocations and in bcc-lattice are expected to
be different. The local minimum is the configuration with straight screw dislocations
(SDs). The transtition state is somewhere between the configuration with nucleation (an
unstable kink-pair, KP) and the configuration with growing kink-pair (a stable one). It is
necessary to stop boosting at the time frame “before” the configuration with a stable KP,
thus, we should differentiate structures with unstable and stable KPs. In the language of
extrapolation grades, a grade of a configuration with stable KP should be greater than a
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Figure 9: The dependence of the average elastic constants C11, C12, C44 calculated with
the three ensembles of MTPs on the size of configurations together with the constants
predicted by the Farkas EAM potential. The C12 constants obtained with MTPs of three
levels are close to each other (the maximum error in the constant CEAM

12 ≈ 129.5 GPa
estimation is at around 4 GPa (3 %)). The C11, C44 constants were better predicted
with MTP-54 and MTP-125, than with MTP-26. The maximum error in the constant
CEAM

11 ≈ 243.4 GPa prediction is ≈ 6 GPa (2.5 %) for MTP-54 and MTP-125, and is
approximately equal to 14 GPa (5.5 %) for MTP-26. For the constant CEAM

44 ≈ 27.5 GPa
the maximum error is 3.5 GPa (12.5 %, for MTP-54 and MTP-125),and is 6.5 GPa (24
%, for MTP-26). The maximum uncertainty (standard deviation) of the elastic constants
estimation is 5 GPa. 20



Figure 10: Screw dislocations in Nb-bcc structure: the top-view is perpendicular to
the direction [21̄1] (which is parallel to Oz), the bottom-view is perpendicular to the
direction [111] (which is parallel to Oy), the direction [01̄1] is perpendicular to Ox. The
white atoms are the ones in the cores of screw dislocations (along green lines), the blue
atoms are the bcc ones.

Figure 11: Process of screw dislocation migration under applied external shear stress.
It starts from almost straight screw dislocation which corresponds to the local minimum
(left), then the nucleation of the kink-pair takes place (middle), and, finally, the kink-
pair is growing (right), this state is close to the transition state after which the whole
dislocation jumps to the right side completely.
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grade of a configuration with unstable KP, and a grade of a configuration with straight
SDs. A threshold grade should be close to a grade of stable KP.

In order to investigate the possibility to satisfy all the above-mentioned conditions
we created two different types of training sets: a training set with 33 configurations of
686 atoms (or, the training set without screw dislocations at T = 0 K described in the
previous section), and a training set with a configuration including two straight screw
dislocations with opposite Burger vectors (or, dipoles) at T = 75 K (see the Fig. 10). We
used configurations with two dipoles because this allows to apply 3D periodic boundary
conditions required for ML-bias potentials. The configuration with screw dislocations
is of 14400 atoms. We emphasize, that many MTPs of 8-th, 12-th, and 16-th level with
cut-off radia varying from 3.6 Å to 6.2 Å were fitted on the training sets mentioned
above, but here we present only the results for MTPs-54 and MTPs-125, because the
training errors and elastic constants were reasonable for these MTPs (see the previous
section). We also note, that for each training set we fitted an ensemble of five MTPs
with the same parameters which are not optimized (like, level, cut-off radius, etc.), but
with a random vector of parameters to be optimized. After training we calculated the
average errors (20), (21), (22) for the ensemble of MTPs and chose the one with the
errors closest to the average ones (i.e., we choose the “representative” MTP from the
ensemble and demonstrate all the results for this MTP). We compared extrapolation
grades of the series of configurations obtained during a simulation illustrated in the Fig.
11.

First we discuss the results obtained with MTPs-54 (levmax = 12) fitted on the train-
ing set including configuration with two sctraight screw dislocations. We considered
MTPs with Rcut = 3.6 Å and Rcut = 5 Å. The extrapolation grades calculated with these
MTPs for the configurations corresponding to the local minima and the transition state
(we refer a set of these configurations to as a migration set 1, MS1) are shown in the
Table 2. The series of these configurations obtained at T = 75 K during MD runs under
shearing with the strain rate 108 s−1. We compared the average grades of the migrating
core of dislocation γ̄core, maximum grades of the core of dislocation γmax

core , and maxi-
mum grades of the bcc atoms γmax

bcc . As it could be seen, the average grades are close to
each other for both MTPs, but the MTP with Rcut = 3.6 Å better differentiates the bcc
and the core atoms (the difference between the maximum core and bcc grades is mainly
greater). Therefore, it is better to use MTP with smaller cut-off radius for grade calcu-
lation. However, no one MTP among these two could differentiate the local minimum
and the transition state, thus, a threshold grade γth could not be determined.

As the next step, we fitted MTP-125 (levmax = 16) with Rcut = 3.6 Å on the training
sets (TS) with and without straight SDs. The grades of the configurations in the MS1
for two MTPs-125 fitted and for the MTP-54 with Rcut = 3.6 Å fitted on the training
set with straight SDs are shown in the Table 3. The MTPs-125 allow to recognize the
transition state (i.e., the extrapolation grade is maximum near the transition state), a
threshold grade γth could be determined and used as a measure for stop boosting.

In order to check whether MTPs of levmax = 16 always allow to differentiate local
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Description γ̄core γmax
core γmax

bcc Rcut, Å
2 straight SDs 0.80 5.0 1.5 3.6

0.75 2.3 1.2 5.0
KP nucleation 0.92 3.2 1.6 3.6

0.98 5.6 1.7 5.0
KP growth 0.71 2.2 1.5 3.6

0.78 1.5 1.9 5.0
Jump, 2 SDs 0.84 4.9 1.3 3.6

0.84 2.4 1.4 5.0

Table 2: Comparison of average grades γ̄core and maximum grades γmax
core of the mi-

grating core of dislocation, and maximum grades of bcc atoms γmax
bcc calculated using

MTPs-54 with Rcut = 3.6 Å and Rcut = 5 Å. A set of the configurations for which the
grades were calculated obtained at T = 75 K under shearing with the strain rate 108 s−1.
The set is called a migration set 1, MS1. The MTP with smaller cut-off radius better dif-
ferentiates the bcc and the core atoms (the difference between γmax

core and γmax
bcc is mainly

greater). The average grades γ̄core are close to each other for all the configurations in
MS1. The transition state (the KP growth) could not be reconsized by these potentials
(the extrapolation grades do not reach maximum in the transition state).

minima and transition state, we created another migration set (MS2) starting from differ-
ent initial velocities in MD simulation. The extrapolation grades for the configurations
in the MS2 calculated with the MTPs-125 are represented in the Table 4. From the Ta-
ble 4 it could be concluded that the MTPs-125 do not allow to recognize the transition
state in the MS2, and, therefore, the extrapolation grade could not be reliably used as a
measure for stop boosting.

Taking into account the above limited results we conclude, that usage of the extrap-
olation grade as a measure for the differentiation of staraight SDs and KPs, and for stop
boosting is difficult for the problem of screw dislocation migration. Therefore, a con-
struction of a ML-bias potential on the basis of extrapolation grade would require future
additional work. A probable reason is that the neighborhoods of straight SDs and KPs
are similar and, thus, the extrapolation grades are also similar.

8 Outlook
In this section we provide suggestions for future work. For further development of
ML-bias potential for add-atom hyperdynamics it could be useful to consider other tem-
peratues (not only T = 700 K) and other positions of additional atom, and study the
conditions under which simple hoping of add-atom or exchange mechanism dominate.
Then, it could be meaningful to investigate whether different levels of MTPs improve
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Description γ̄core γmax
core γmax

bcc levmax, TS
2 straight SDs 0.75 5.0 1.5 12, TS with SDs

15.7 432 348 16, TS without SDs
12.8 26 19 16, TS with SDs

KP nucleation 0.98 3.2 1.6 12, TS with SDs
54.0 1157 192 16, TS without SDs
13.3 36 15 16, TS with SDs

KP growth (1) - - - 12, TS with SDs
1318 90596 87315 16, TS without SDs
17 216 175 16, TS with SDs

KP growth (2) 0.78 2.2 1.5 12, TS with SDs
20.1 343 231 16, TS without SDs
13.1 25 16 16, TS with SDs

Jump, 2 SDs 0.78 4.9 1.3 12, TS with SDs
137 6023 41 16, TS without SDs
14 71 8 16, TS with SDs

Table 3: Comparison of the grades for the configurations in the MS1 calculated with the
MTP-54 (TS with SDs) and with the MTPs-125 (TS with and without SDs). Transition
state could be easily recognized with the MTPs-125 (KP growth (1)) and γmax

core , it does
not matter whether to include the configuration with SDs in TS, or not. A threshold
grade γth could be determined.
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Description γ̄core γmax
core γmax

bcc levmax, TS
2 straight SDs 36 1711 1202 16, TS without SDs

13 44 30 16, TS with SDs
KP nucleation 12 345 287 16, TS without SDs

12 23 19 16, TS with SDs
KP growth (1) 39 1025 603 16, TS without SDs

12.5 39 24 16, TS with SDs
KP growth (2) 26 572 297 16, TS without SDs

12 33 16 16, TS with SDs
KP growth (3) 17 413 357 16, TS without SDs

11 28 17 16, TS with SDs
Jump, 2 SDs 17 204 91 16, TS without SDs

11 20 12 16, TS with SDs

Table 4: Comparison of the grades for the configurations in the MS2 calculated with
with the MTPs-125 (TS with and without SDs). Transition state could not be reliably
recognized with the MTPs-125 (the grades of KP growth (1)-(3) are mainly smaller than
the grades of 2 SDs). A threshold grade γth could not be determined.

the results of boosting with ML-bias potential (for the moment the ML-bias potential
for add-atom hyperdynamics was created on the basis of MTP with levmax = 8), and it
is necessary to create other training sets and fit MTPs on them (e.g., with various ran-
dom perturbations of atoms in initial non-perturbed configuration). Finally, it could be
useful to pay more attention on selection of ML-bias energy ∆V ML−b

l,max (in this report we
consider only the power function for the bias energy).

In the context of development of ML-bias potential for acceleration of a screw dislo-
cation migration one can try other criterion (measure) for stop boosting than a threshold
of extrapolation grade (e.g., maximum strain of the bond). Next, it could be meaningful
to investigate a main direction of ML-bias forces which could be crucial for effective
acceleration of a SD migration, and try to apply these forces to atoms in the core of SD.
Finally, Nb configurations of other crystallographic directions could be analyzed.
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