
Institute of Parallel and Distributed Systems

University of Stuttgart
Universitätsstraße 38

D–70569 Stuttgart

Masterarbeit

How to combine Augmentations
for Graph Contrastive Learning

Christian Stegmaier

Course of Study: Informatik

Examiner: Prof. Dr. Christian Becker

Supervisor: Michael Schramm, M.Sc.

Commenced: June 15, 2022

Completed: December 15, 2022





Abstract

Graph neural networks (GNNs) are a topic of increasing interest in recent years. They have the
potential to handle irregularly structured data, which is of great interest for graph-structured data.
Like other areas, graph-structured data suffers from a lack of data. The available data consists of
only a small portion of labeled data, while the majority is unlabeled. Semi-supervised learning
with contrastive learning has been successfully applied in image representation learning to solve
this problem. Contrastive learning relies on good augmentations, which is more complicated for
graph-structured data and still needs further exploration.

In this thesis, we attempt to solve the problem by creating multiple new augmentations and
comparing them to existing ones. We evaluate the performance of these single augmentations
and test the combination of augmentations with different augmentation ratios. Additionally, we
further improve the results by testing different loss functions. Eventually, we test transfer learning
and warm-starting the neural network with the same and different datasets. Ultimately, we give an
outlook into improved ideas to individually select augmentations for each graph and connect them
to recent research that uses generators to create augmentations.

Kurzfassung

Graph Neural Networks (GNNs) sind in den letzten Jahren ein immer wichtigeres Thema geworden.
Sie haben das Potenzial, unregelmäßig strukturierte Daten zu verarbeiten, was bei Graphen-basierten
Daten von großem Interesse ist. Wie auch in anderen Bereichen leiden Graphen-basierte Daten
unter einem Mangel an Daten. Die verfügbaren Daten bestehen nur zu einem kleinen Teil aus Daten
mit Labeln, während der größte Teil ohne Label ist. Semi-supervised Learning nutzt Contrastive
Learning, um dieses Problem zu lösen und wird beim Lernen von Bild-Repräsentationen erfolgreich
eingesetzt. Die Qualität von Contrastive Learning hängt davon ab, gute Augmentations zu finden,
ein Thema, das bei Graphen-basierten Daten komplizierter ist und weiter erforscht werden muss.

In dieser Thesis versuchen wir, das Problem zu lösen, indem wir mehrere neue Augmentations
erstellen und sie mit bestehenden vergleichen. Wir evaluieren die Leistung dieser einzelnen Augmen-
tations und testen die Kombination von unterschiedlichen Augmentations-Ratios. Darüber hinaus
verbessern wir die Ergebnisse weiter, indem wir verschiedene Loss-Functions testen. Schließlich
testen wir das Transfer-Learning und das Warmstarting des neuronalen Netzes mit denselben und
verschiedenen Datensätzen. Abschließend geben wir einen Ausblick auf verbesserte Ideen zur indi-
viduellen Auswahl von Augmentations für jeden Graphen und stellen eine Verbindung zu neueren
Forschungsergebnissen her, die Generatoren zur Erstellung von Augmentations verwenden.

3





Contents

1 Introduction 15

2 Background 17
2.1 GNN (Graph Neural Network) . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 GCN (Graph Convolution Network) . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 GIN (Graph Isomorphism Network) . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 Augmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.6 Contrastive Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Warm-Starting and Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . 22
2.8 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Problem Statement 23

4 Related Work 25

5 System Model 27
5.1 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Shrink & Perturb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.5 Warm-Starting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Augmentations 37

7 Evaluation 49
7.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
7.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.3 Augmentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.4 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.5 Shrink & Perturb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.6 Transfer Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.7 Warm-Starting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.8 Eval Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.9 Select the Best Augmentation for Each Graph . . . . . . . . . . . . . . . . . . 71
7.10 Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8 Conclusion and Future Work 77

Bibliography 79

5





List of Figures

2.1 Message Passing for two nodes (yellow). Each layer k increases the depth of
neighbor information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 The image shows the original graph on the left. Nodes have three attributes. The
four right images show the graph after applying each of the four basic augmentations. 20

2.3 Example of the calculation of contrastive loss. We build the loss for each graph with
the positive sample (green distance) and the negative samples (red distance). The
loss function pushes positive samples closer together while the negative samples
get pushed away. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1 The image shows the setup we use for pre-training and fine-tuning (with a simplified
GNN). We pre-train the layers of our network and use these weights as initialization
during fine-tuning. Additionally, we replace the projection head with a fully
connected layer that uses a softmax to classify the graphs. . . . . . . . . . . . . 24

5.1 Detailed setup of the GNN we use. Both models differ in the last layer. Pre-training
uses a projection head for the graph embeddings, while fine-tuning uses a fully
connected layer with the softmax to classify the graphs. Below is an example of
fine-tuning. For the example, we use a batch size of 64. Each graph has 20 nodes,
each node has an attribute vector of 106, and we have two classes. . . . . . . . . 28

5.2 The image shows the effect of the margin parameter m (blue) for the max-margin
contrastive loss. For the loss, we only consider negative samples closer to the
anchor (yellow) than the margin. . . . . . . . . . . . . . . . . . . . . . . . . . . 29

5.3 The image shows different cases with our weighting function. The left image shows
the optimal case when the positive sample (green) is closer to the anchor. We assign
a low weight. The right image shows the worst case. The negative sample is way
closer to the anchor than the positive sample. The weighting function punishes this
case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 The image shows the setup for transfer learning. In this example, we pre-train with
the unlabeled NCI1 data and fine-tune with the labeled PROTEINS data. We can
not keep the pre-trained input layers, like in our standard setup, because different
datasets usually have different input sizes. . . . . . . . . . . . . . . . . . . . . . 34

5.5 The image shows the setup for warm-starting. In this example, we pre-pre-train
with the unlabeled NCI1 data. We follow with a pre-training step with the unlabeled
PROTEINS data. We fine-tune with the labeled PROTEINS data. Compared
to transfer learning, we can keep the input layers between the pre-training and
fine-tuning since we use the same dataset. . . . . . . . . . . . . . . . . . . . . . 35

7



6.1 Steiner tree calculation for the red highlighted random set of terminal nodes T =
1, 4, 6, 11, 14. The blue nodes and the path are the shortest path from the current
result, R, to a terminal in T. We add the blue path to R and repeat this step until all
terminal nodes are in R. In the last step, we calculate an MST of R. . . . . . . . 47

7.1 We evaluate the combination of the original graph (Identical) with all augmentations.
We report the change in classification accuracy. The top plot shows the results when
we use the mean-accuracy. The bottom plot shows the results for the max-accuracy.
The y-axis specifies the dataset, and the x-axis the augmentation. . . . . . . . . 53

7.2 Augmentation ratio comparison for PROTEINS. The results are the change in
percentage points compared to our baseline. The top plot shows the results when
we use the mean-accuracy. The bottom plot shows the results for the max-accuracy.
On the y-axis, we see the augmentation ratio. The x-axis shows the applied
augmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3 Augmentation ratio comparison for NCI1. The results are the change in percentage
points compared to our baseline. The top plot shows the results when we use the
mean-accuracy. The bottom plot shows the results for the max-accuracy. On the
y-axis, we see the augmentation ratio. The x-axis shows the applied augmentation. 58

7.4 Evaluation of augmentation combinations for PROTEINS. The results are the
change in percentage points compared to our baseline. The left plot shows the
results when we use the mean-accuracy, the right plot for the max-accuracy. The
x-axis and y-axis, define the augmentation combination. All augmentations use
20% augmentation ratio and are averaged over five runs. . . . . . . . . . . . . . 59

7.5 Evaluation of augmentation combinations for PROTEINS. The results are the
change in percentage points compared to our baseline. The left plot shows the
results when we use the mean-accuracy, the right plot for the max-accuracy. The
x-axis and y-axis, define the augmentation combination. All augmentations use
80% augmentation ratio and are averaged over five runs. . . . . . . . . . . . . . 60

7.6 Evaluation of augmentation combinations for PROTEINS with Augmentation 1
20% (left) - Augmentation 2 80% (bottom). The results are the change in percentage
points compared to our baseline. The left plot shows the results when we use the
mean-accuracy, the right plot for the max-accuracy. The x-axis and y-axis, define
the augmentation combination. All augmentations use 80% augmentation ratio and
are averaged over five runs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7.7 UMAP of the PROTEINS embedding space with two classes. Left: 1. Episode,
Right: 100. Episode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.8 UMAP of the embedding space for one graph of PROTEINS with all augmentations.
Similar augmentations have the same color. . . . . . . . . . . . . . . . . . . . . 72

8



List of Tables

6.1 Overview of all tested augmentations . . . . . . . . . . . . . . . . . . . . . . . . 38

7.1 Datasets used from the TUDataset Collection [40], [41] . . . . . . . . . . . . . . 50
7.2 Baseline classification accuracy of the datasets with the variance. 10% baseline uses

only fine-tuning with 10% of the labeled data. Full data uses 100% of the data with
labels during fine-tuning. The best augmentation is the best single augmentation
with 20% augmentation ratio. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.3 The table shows the performance of the three steiner tree methods. We report an
increase in percentage points compared to the baseline. We use 20% of the nodes
as the terminal nodes. The real augmentation is around 60%. . . . . . . . . . . 55

7.4 Comparison of four loss functions. The bold numbers are the reference value for
the cosine loss with one positive and 127 negatives, the method we have used so
far. The red numbers are the best loss functions. The table shows the percentage
point increase in accuracy of the pre-training step compared to only fine-tuning. 62

7.5 Evaluation of the margin parameter m. The red numbers are the best margin. The
blue numbers are the second-best margin. . . . . . . . . . . . . . . . . . . . . . 63

7.6 Evaluation of two weighted loss functions for the euclidian max-margin loss.
The top table shows the mean-accuracy results, and the lower table shows the
max-accuracy results. The red numbers are the best loss function. . . . . . . . . 64

7.7 Results from testing the shrink & perturb step in our default setup. We apply it
between pre-training and fine-tuning. . . . . . . . . . . . . . . . . . . . . . . . 65

7.8 We test the performance of transfer learning. The bold numbers are the reference
value for 100 episodes of pre-training with the same dataset. We compare them
to transfer learning with a different dataset. Since other datasets have different
sizes, we offer a version with increased/decreased training with the same dataset to
compare the results. The red numbers mark the best of the four variants. . . . . 66

7.9 We test the performance of warm-starting. The bold numbers are the reference
value for 100 episodes of pre-training with the same dataset. We compare them to
warm-starting with a different dataset in a pre-pre-training step before our normal
pre-training. Since the pre-pre-training introduces additional training, we offer a
version with increased pre-training with the same dataset to compare the results.
The red numbers mark the best of the four variants. . . . . . . . . . . . . . . . . 68

7.10 We compare the baseline performances of the datasets with their variance to an
approach where we use the evaluation mode instead of the training mode. 10%
train mode and Full data are our previous baseline results for fine-tuning only. . . 70

9



7.11 Performance for selecting the augmentation that is closest to the mean graph.
The bold numbers are the reference value for the single augmentation with 20%
augmentation (We pick the same augmentation for all graphs). The red numbers
are the best performance when we pick the augmentation which is closest to the
mean graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.12 Our hand-picked best augmentation in Figure 7.1 is compared to the generator
results from Yin et al. [13]. Red numbers indicate the best performance. . . . . . 75

10



List of Algorithms

6.1 NodeDropping augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 NodeAdd augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.3 NodeMasking augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.4 NodeSwitch augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.5 Edge Perturbation augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.6 Subgraph augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.7 Subgraph-Depth-Search augmentation . . . . . . . . . . . . . . . . . . . . . . . 42
6.8 Subgraph-Width-Search augmentation . . . . . . . . . . . . . . . . . . . . . . . 43
6.9 Subgraph_merge augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.10 Subgraph_steiner augmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

11





Acronyms

CNN convolutional neural network. 15

GCN graph convolution network. 17

GIN graph isomorphism network. 17

GNN graph neural network. 15

HITS Hyperlink-Induced Topic Search. 37

InfoMax mutual information maximization. 20

MLP multilayer perceptron. 17

MST minimum spanning tree. 44

NN neural network. 23

NT-Xent loss normalized temperature-scaled cross entropy loss. 20

PCA principal component analysis. 22

ReLU rectified linear unit. 18

SS sector area similarity. 32

TS triangle area similarity. 32

TS-SS Triangle Area Similarity – Sector Area Similarity. 28

t-SNE t-distributed stochastic neighbor embedding. 22

UMAP uniform manifold approximation and projection. 22

VGAE variational graph auto-encoder. 25

WL-test Weisfeiler-Lehman graph isomorphism test. 19

13





1 Introduction

The interest in Deep Learning has continuously increased in the last years. The most well-known
examples are convolutional neural networks (CNNs) from visual representation learning. Other
fields like graph representation learning are less explored but are catching up recently. Compared
to CNNs, the graph-structured data introduces additional problems, which increase the difficulty
of successful learning. Mainly the fact that graph-structured data has very diverse fields and is
generally non-euclidian structured like social networks, citation networks, or biochemical networks
with additional possible parameters like edge weights. These different and complex setups make
CNNs ineffective for graph-structured data. The current solutions for graph representation learning
are graph neural networks (GNNs) [1], which have shown to handle these datatypes while using
neural networks and solve different tasks like node classification and link classification [2] or
graph classification [3]. Many real-world applications like Protein-Protein Interactions [4], Drug
Discovery [5] or Traffic Forecasting [6] depend on GNNs. One key element of GNNs is the
neighborhood aggregation scheme (message passing), in which nodes exchange information with
their neighbors.

Currently, GNNs have been used primarily in the context of end-to-end training tasks in the
supervised context, where large amounts of labeled data are available for general and effective
results. In contrast, most real-world tasks lack enough labeled data since areas like biochemistry
require expensive and extensive testing to obtain labels.

Semi-supervised learning is an approach to solve this problem, where a small part of the data is
labeled. In contrast, most of the data is unlabeled and used in a pre-training step in combination
with contrastive learning.

Contrastive learning for visual representation learning uses different views (augmentations) of the
same image as positive samples. Augmentations of different images are negative samples. This way,
different representations of the same image are pushed together in the embedding space. Prominent
examples from visual representation learning are SimCLR [7] and Moco [8]. Images have many
suitable augmentations, like crop, resize, flip, rotate, cutout, color distortion, noise, or blur. As
previously mentioned, graph-structured data introduces additional difficulties because the data is of
a non-Euclidian structure.

In a recent paper by You et al. [9], the authors tested the performance of four augmentations and
their combination: Node Dropping, Attribute Masking, Edge Perturbation, and Subgraph. They
conclude that pre-training with augmentations is beneficial, especially combining two different
augmentations.

While they show that this approach works and that the contrastive learning approach increases the
accuracy of graph classification, some problems remain. One problem is that this requires costly
testing and handpicking augmentations specifically for each dataset. It also needs to be investigated
if other and better augmentations exist and how much of this augmentation should be applied, i.e.,
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1 Introduction

the augmentation ratio. The second problem is that different datasets perform well with different
augmentations, while some combinations perform worse than those using no pre-training. The
selection of good augmentations is, therefore, crucial.

An improved idea of their contrastive learning approach is not to select the augmentation but instead
let the model decide which augmentations are best for the dataset. The follow-up paper by You et
al. [10] still considers the previous four augmentations. However, instead of manually picking a
specific augmentation, the model estimates probabilities for each augmentation depending on how
high the contrastive loss for these augmentations is. This approach partly solves the problem of
manually deciding which augmentation to use for the dataset. At the same time, what remains still
unknown is what additional augmentations may exist and how they perform.

The essential idea behind the augmentations is to reduce the graphs to their important parts
by removing unimportant details. As previously seen, different datasets have different optimal
augmentations and augmentation rates. A likely assumption is that every graph inside the same
dataset has a different augmentation which is optimal. Big social graphs might benefit from higher
augmentation ratios, while smaller molecular graphs tolerate less. This assumption leads to another
promising approach, not to specify explicit augmentations beforehand but to define a generator that
learns to modify graphs individually. This way, we do not limit the training by a selected number of
augmentations, and the generator can decide for each graph how many nodes get dropped or how
many node attributes get masked. Different approaches to building generators exist.

You et al. [11] implement a generator to obtain the views for contrastive learning by random walks.
Suresh et al. [12] use a generator that samples edges, while Yin et al. [13] use a generator that
decides for each node if it should be dropped or kept and also offers the possibility to mask nodes.
For some datasets, these generators reach promising results, while for other datasets, their generators
still need to be optimized.

In this thesis, we test the influence of augmentations on different graph datasets. We introduce 15
new augmentations and eight existing approaches and evaluate their performance on 12 different
datasets. Afterward, we test the combination of the most promising augmentations under different
augmentation ratios. We also propose multiple improvements to the contrastive learning pipeline.
First, we modify state-of-the-art contrastive loss functions by lowering the number of negative
samples and increasing the number of positive samples. Additionally, we introduce four loss
functions that use different distance metrics and weights. We also test the effect of transfer learning
with improvements to warm-starting pre-trained models on different datasets. Finally, we introduce
our implementation of picking individual augmentations from the embedding space.

Chapter 2 explains the technological background used in this thesis. In Chapter 3, we define
the fundamental problems we will solve. Chapter 4 briefly explains related work in pre-training
visual models and the first approaches that adapt them for graph models. Chapter 5 explains the
assumptions of our underlying system model, and in Chapter 6, we define our augmentations.
Chapter 7 evaluates our augmentations and approaches before we present our conclusion in Chapter 8
and give an outlook for future work.
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2 Background

In this chapter, we describe the theoretical approaches that currently exist to handle the task of graph
representation learning. We start by looking into the different neural networks that exist for graph
data, mainly GNNs, graph convolution networks (GCNs), and graph isomorphism networks (GINs).
Additionally, we describe the theoretic concept behind semi-supervised learning in combination
with contrastive learning and augmentations. We also introduce the concept of transfer learning
and warm-starting neural networks. We end the chapter with a short description of dimensionality
reduction techniques to visualize pre-training results.

2.1 GNN (Graph Neural Network)

Compared to image representation learning, graph-structured data introduces additional difficulties.
The main problem is the irregular data structure. While CNNs are very successful at handling
regular image data [14], they can not handle graph-structured data. GNNs solve these problems and
are currently the de facto standard for graph representation learning. We denote a graph as G = (V,
E), where V is the set of nodes and E is the set of edges. Additionally, we have node features 𝑥𝑣 for
𝑣 ∈ 𝑉 . The goal is to create a representation ℎ𝑣 for 𝑣 ∈ 𝑉 .

The key concept of GNNs is neighborhood aggregation, also called message passing. With message
passing, the GNN can calculate the representation by collecting information about the graph
structure and the node features from their neighborhood. Figure 2.1 shows the concept of message
passing. We show the process for two nodes of the graph. In practice, all nodes in the graph do
message passing. The current node (yellow) aggregates more information in each layer k.

We define the detailed propagation rules similarly to You et al. [9]. Equation (2.1) shows a K-layer
GNN propagation rule.

𝑎
(𝑘 )
𝑣 = AGGREGATE(𝑘 )

({
ℎ
(𝑘−1)
𝑢 : 𝑢 ∈ N (𝑣)

})
(2.1)

ℎ
(𝑘 )
𝑣 = COMBINE(𝑘 )

(
ℎ
(𝑘−1)
𝑣 , 𝑎

(𝑘 )
𝑣

)
(2.2)

We denote ℎ
(𝑘 )
𝑣 as the feature vector in the k-th layer of node v and the embedding of node v. We

initialize h with the node features ℎ (0)𝑣 = 𝑥𝑣 . N(𝑣) represents the neighbors of node v.

For the downstream tasks like classification, we are interested in the graph-level representation 𝑧𝑔,
created by pooling and a multilayer perceptron (MLP) as shown in Equation 2.3.

𝐹 (𝑔) = POOL
({
ℎ
(𝑘 )
𝑛 : 𝑣𝑛 ∈ 𝑉

})
(2.3)

𝑧𝑔 = MLP (𝐹 (𝑔))(2.4)
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Figure 2.1: Message Passing for two nodes (yellow). Each layer k increases the depth of neighbor
information.

Multiple different implementations of GNNs exist. We focus on GCNs [2] and GINs [3]

2.2 GCN (Graph Convolution Network)

GCNs are defined by Kipf et al. [2], and extend GNNs by the idea of convolution. Convolutions
extract features like shapes and edges from CNNs. Pooling is applied after convolutions and reduces
the size of the image while preserving these key features. Similarly, GCNs use convolutions to
extract spatial information from the graphs. Pooling in GNNs takes multiple nodes and aggregates
the information. In their paper, Kipf et al. state the layer-wise propagation as shown in Equation 2.5.

(2.5) 𝐻 (𝑘+1) = 𝜎

(
𝐷− 1

2 𝐴𝐷− 1
2 𝐻 (𝑘 )𝑊 (𝑘 )

)
With the Weight matrix 𝑊 𝑘 , a non-linear activation function 𝜎 like the rectified linear unit (ReLU),
and a normalization step 𝐷− 1

2 𝐴𝐷− 1
2 .

They use element-wise mean pooling, which is rewritable similar to the format in Section 2.1. The
final formula is Equation 2.6.

(2.6) ℎ
(𝑘 )
𝑣 = ReLU

(
W · MEAN

{
ℎ
(𝑘−1)
𝑢 ,∀𝑢 ∈ 𝑁 (𝑣) ∪ {𝑣}

})
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2.3 GIN (Graph Isomorphism Network)

2.3 GIN (Graph Isomorphism Network)

Xu et al. [3] present a theoretical framework to analyze the expressive power of different GNNs
like GCN [2] and GraphSAGE [15]. During their testing, they find graph structures they can not
distinguish by these models and introduce their model, GIN. In contrast to GCNs, GINs extend
GNNs with graph isomorphism layers. These layers perform operations such as relabeling or
permutating nodes. GINs are closely related to the Weisfeiler-Lehman graph isomorphism test
(WL-test). The graph isomorphism test asks if two graphs are topologically identical. Since there is
yet to be an algorithm with a polynomial-time algorithm, the WL-test approximates this problem.
The test can tell if two graphs are non-isomorphic, but it does not guarantee they are isomorphic. It
distinguishes a broad class of graphs by aggregating neighborhoods similar to GNNs.

The update rule of GIN is stated in Equation 2.7, with 𝜖 as the importance of the target node
compared to the neighbors.

(2.7) ℎ
(𝑘 )
𝑣 = MLP(𝑘 ) ©«

(
1 + 𝜖 (𝑘 )

)
· ℎ (𝑘−1)

𝑣 +
∑︁

𝑢∈N(𝑣)
ℎ
(𝑘−1)
𝑢

ª®¬
2.4 Semi-Supervised Learning

Neural networks can solve a wide range of supervised tasks like image classification. The success
of these approaches often relies on large amounts of labeled data. In most real-world scenarios,
labeled data is often expensive or unavailable. Most practical examples have a small amount of
labeled data, and a more significant amount of unlabeled data is available (e.g., 10% of the data
is labeled). While it is still possible to use supervised learning on the labeled data, results would
suffer from the small data. Good generalization of the model relies on large training data.

Semi-supervised learning combines supervised and unsupervised learning [16]. The unlabeled data
still contains valuable information. For graphs, topological information is an example. We can use
this information without the label during unsupervised learning. An example of this approach is
contrastive learning which we describe in Section 2.6. Before the supervised training, we add an
unsupervised pre-training step.

Recently different semi-supervised approaches have shown their success. Semi-supervised ap-
proaches in image representation learning like BYOL from Grill et al. [17] even outperform
supervised approaches. Even though the label information is missing, the increased data size can
still result in better generalizability and increased classification accuracy.

2.5 Augmentations

Augmentations are different representations of the data. The assumption is that we change the data
slightly but keep the critical part of the data, and the semantic label remains the same. For images,
examples would be the rotation of the image, adding noise, or cropping the image. Graph-structured
data can use node dropping, edge dropping, attribute masking, and building a subgraph as the most
apparent augmentations. We show examples for these four augmentations in Figure 2.2. However,
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Figure 2.2: The image shows the original graph on the left. Nodes have three attributes. The four
right images show the graph after applying each of the four basic augmentations.

graphs are much more challenging to augment because they consist of different geometry, and their
topology is essential information. So dropping the wrong node could result in an unconnected
graph, which might change the whole graph and the label. As shown in a recent paper by You
et al. [9], if you find good augmentations, contrastive learning can use them, where the different
augmentations represent positive examples of the same graph.

2.6 Contrastive Learning

Contrastive learning is successfully applied to visual representation learning [7] and has been
of interest in the recent graph representation learning research [9]. Contrastive learning relies
on the principle of mutual information maximization (InfoMax), in which we compare different
augmented forms of the data. Ideally, each augmentation identifies the original data perfectly
so the mutual information does not decrease. As mentioned in Section 2.4, we use contrastive
learning with unlabeled data as part of semi-supervised learning. In the pre-training step, contrastive
learning trains the model, and afterward, we train the downstream task on the labeled data (e.g.,
classification).

Hadsell et al. [18] introduce the idea of contrastive learning. We create positive samples of our data
points by creating augmentations of the same data point as mentioned in Section 2.5. Other data
points serve as negative samples. The contrastive loss then tries to bring the positive samples closer
together while the negative ones get pushed away. Figure 2.3 shows an example of the idea. We have
six different graphs in the 2-D embedding space. Each graph has two augmentations, augmentation
1=i and augmentation 2=j. We use one positive sample as the anchor, here the yellow graph n, with
the first augmentation i. Green is the positive sample of graph n with the second augmentation j.
Negatives are marked red, all second augmentations of the other graphs. We build the contrastive
loss for each graph with positive distances (green) and negative distances (red). We sum up all six
losses from the mini-batch in the end. As a result, the loss function pushes the positive samples
closer together while the negatives get pushed away.

Equation (2.8) [19] shows one of the most common loss functions for contrastive learning, the
normalized temperature-scaled cross entropy loss (NT-Xent loss). The distance to the single positive
sample is used in the numerator and divided by the sum of all negative samples in the denominator.
The loss decreases if the positive distance gets smaller or the negative distance increases. Usually,
the number of negative samples depends on the batch size N and is very high. Image representation
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Figure 2.3: Example of the calculation of contrastive loss. We build the loss for each graph with
the positive sample (green distance) and the negative samples (red distance). The loss
function pushes positive samples closer together while the negative samples get pushed
away.

uses a batch size of N=256 to N=4096, where all augmentations of all images except the current
one serve as negative samples [7]. The total number of negative samples is 2N-1.

(2.8) 𝑙𝑖, 𝑗 = −log
exp(sim(𝑧𝑖 , 𝑧 𝑗)/𝜏)∑2𝑁

𝑘=1, [𝑘≠𝑖 ] exp(sim(𝑧𝑖 , 𝑧𝑘)/𝜏

The similarity function sim(𝑧𝑖 , 𝑧 𝑗) is the cosine similarity (2.9). Other loss functions that use
different distance metrics, such as the max-margin loss with the euclidian distance, are also usable
and will be investigated in this thesis.

(2.9) sim(𝑧𝑛,𝑖 , 𝑧𝑛, 𝑗) = 𝑧𝑇𝑛,𝑖𝑧𝑛, 𝑗/∥𝑧𝑛,𝑖 ∥∥𝑧𝑛, 𝑗 ∥)

You et al. [9] use a slightly modified version of the NT-Xent loss, shown in Equation 2.10. Instead
of all 2N-1 negative samples, they only use N-1 samples. We denote the loss for graph n as 𝑙𝑛 and
sum up all 𝑙𝑛 in the batch for the final loss.

(2.10) 𝑙𝑛 = −log
exp(sim(𝑧𝑛,𝑖 , 𝑧𝑛, 𝑗)/𝜏)∑𝑁

𝑛′=1, [𝑛′≠𝑛] exp(sim(𝑧𝑛,𝑖 , 𝑧𝑛′ , 𝑗)/𝜏
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2 Background

2.7 Warm-Starting and Transfer Learning

Warm-starting a neural network describes the general idea of initializing the model with previously
collected data. An example would be initializing the model weights with values from a previous
training session of the same task. Areas like daily financial data, where new data arrives periodically,
profit from warm-starting the model with the previous weights and only train with the new data [20].
Transfer learning is a similar type of machine learning. In contrast to warm-starting, we take a
pre-trained model and adapt it to a new task. The new task takes the final weights of the pre-trained
model as the initialization of its model. Training the initialized model is less time-consuming than
training a model from scratch. This technique can also improve the accuracy of neural networks by
allowing them to leverage the additional knowledge learned from the pre-trained model. Transfer
learning is especially useful when the training data for the target task is limited. Successfully using
transfer learning is a challenging task. We need a deep understanding of the data and the task we
want to solve. The pre-training data and model should both be similar to the new task. We also
need to know our model and fine-tune the parameters for optimal results. Various areas use transfer
learning, including computer vision [21] and natural language processing [22].

2.8 Dimensionality Reduction

Visualizing the results of representation learning often relies on dimensionality reduction. The
high-dimensional embedding space needs to be projected onto a two-dimensional plane. Multiple
dimensionality reduction methods exist. Principal component analysis (PCA) [23] is a linear
dimensionality reduction that finds the direction of maximum variance on the data. The data gets
transformed into a new set of variables, a linear combination of the original variables. These
principal components get ranked in order of importance. PCA keeps the most important components
and retains most of the information. T-distributed stochastic neighbor embedding (t-SNE) [24] is a
nonlinear dimensionality reduction that preserves the local structure of the data. Points close together
in the high-dimensional space will also be close together in the low-dimensional space. Uniform
manifold approximation and projection (UMAP) [25] is a nonlinear dimensionality reduction that
preserves the data’s important global and local structures. The main difference between t-SNE
and UMAP is how they measure the distance between data points. T-SNE measures the similarity
between points with the probability that one data point will pick another as its neighbor. UMAP
uses the distance between the points. The distance allows UMAP to capture more of the global
structure.
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3 Problem Statement

We introduce the main problems that we solve in this thesis. Multiple problems have to be solved.
Firstly, the general problem of classifying graphs which we solve by using a neural network
(NN). The neural network can not work with the graph data directly, We need to transform it into
a representation that the neural network can use. This problem is called graph representation
learning, and the representation should retain the property that similar graphs should have a similar
representation. A prominent example of representation learning is word embeddings. They embed
the word into a vector space such that similar words are close to each other in the embedding space.
GNNs are the state-of-the-art solution for graph representation learning, which we use in our work.
They embed the graph representation into an n-dimensional embedding space, an n-dimensional
vector.

While the classification problem has been heavily researched and delivers good results in supervised
learning, this approach relies on lots of labeled data [3], [26]. An additional problem in real-world
examples is often the lack of data and, more importantly, the lack of labeled data. While we have
many unlabeled data samples, only a few have labels. Due to the small amount of labeled data we
have, supervised learning suffers from overfitting and bad generalizability. Bad generalizability
reduces the classification accuracy of the model for new data. To reduce the overfitting, we
add an unsupervised pre-training step, in which we train with many unlabeled data, followed
by the supervised training with a few labeled data samples. We train the embedding during the
pre-training, which we then use as the initialization for the supervised training. Otherwise, we
would randomly initialize the embedding. The pre-training acts as a regularizer and increases
the model’s generalizability [27]. We can increase the classification accuracy if we find a good
initialization of the embedding. We show our setup, with a simplified GNN, that combines the
pre-training with fine-tuning step in Figure 3.1. We copy the weights and the embedding from the
first layers of the pre-training model and use them in the fine-tuning model as initialization.

Image representation learning uses contrastive learning to find good embeddings. Prominet examples
are SimCLR [7] and Moco [8]. Learning embeddings for graph-structured data is less explored
and introduces additional difficulties. While image datasets like CIFAR-10 [28] have 60.000 data
samples, and ImageNet [29] consists of 14.000.000 images. Most graph datasets are in the range
of 1000-5000 graphs. The limited dataset size makes good pre-training strategies even more
important.

Contrastive learning relies on data augmentations. Augmentations on the same data act as positive
samples and should be close together in the embedding space. Different graphs are negative samples,
which should be further away in the embedding space. It is critical to select good augmentations
because they define the quality of the embedding. We must find different representations of the
same data sample that we push closer together in the embedding space. The key factor behind this
approach is that the different data representations still keep the most important information and
their class label. A good embedding would place these representations next to each other in the

23



3 Problem Statement

Input
layer

FC +
Softmax

GCN
layers

Input
layer

Aug 1

Aug 2
Projection

Head (MLP)
Contrastive

loss

[0, 0, 1, 0, 0]
Classification

PROTEINS 
Unlabeled 100%

128-D Graph 
representation

PROTEINS 
Labeled 10%

Augmentations

GNN

Class 2Class 1

GCN
layers

GNN

contrastive loss function

classification loss

Copy weights

Pr
e-

tra
in

in
g

Fi
ne

-tu
ni

ng

v0, ... , v128

v'0, ... , v'128

Figure 3.1: The image shows the setup we use for pre-training and fine-tuning (with a simplified
GNN). We pre-train the layers of our network and use these weights as initialization
during fine-tuning. Additionally, we replace the projection head with a fully connected
layer that uses a softmax to classify the graphs.

embedding space, which we force by pushing them together through the contrastive loss. While
images have a variety of augmentations like crop, cutout, color distortion, noise, blur, or rotation [7],
graphs are more limited in the range of possible augmentations. Examples like molecules are
difficult to handle because removing or changing a single atom or its connection can change the
molecule’s effect and, therefore, possibly change the class label. This would lead to representations
with now different class labels being placed close together in the embedding space, which is the
opposite of what we want and decreases the model’s accuracy.
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4 Related Work

In the following chapter, we address related work on using contrastive learning with augmentations as
a pre-training step in visual representation learning. Afterward, we focus on the existing approaches
for graph-structured data. We will describe the advantages and disadvantages and discuss still open
challenges in these approaches.

The current state-of-the-art solutions for visual representation learning are SimCLR by Chen et
al. [7], and MoCo by He et al. [8]. They use contrastive learning to solve the task of pre-training. In
MoCo, they view contrastive learning as a dictionary look-up task. The dictionary is a dynamic
queue with a moving-averaged momentum encoder. They manage to outperform previous end-to-end
and memory bank approaches. SimCLR focuses on the composition of data augmentations. They
test multiple augmentations like crop, cutout, color distortion, noise, blur, or rotation and their
combination. As key results, they introduce a nonlinear head g(·) between the encoder and the
contrastive loss. They highlight the augmentation combination’s importance and find that large
batch sizes benefit the training. The success of both approaches has led to multiple follow-up papers
with improvements. SimCLRv2 by Chen et al. [30] uses deeper models, a deeper projection head,
and a memory network similar to MoCo. In MoCov2 by Chen et al. [31], the authors introduce a
deeper projection head and add more data augmentation.

You et al. [9] build a framework to analyze contrastive learning with augmentations on graph-
structured data. They test multiple settings, from unsupervised and semi-supervised, to transfer
learning. Their focus is on four essential augmentations, node dropping, attribute masking,
edge perturbation, and subgraph. They show that pre-training on graphs increases end-to-end
classification accuracy. Further research is necessary to increase the set of augmentations. The
main problem is that testing and finding the best augmentation for each dataset is expensive.

In their follow-up paper, You et al. [10] reuse and improve their framework. They add the option to
select different augmentation combinations dynamically depending on the dataset. To do that, they
calculate the contrastive loss for each augmentation pair in every epoch and estimate probabilities
for each augmentation. While this simplifies the selection of augmentations, they still rely on
predefined augmentations, and the results are very similar to handpicking the best augmentation.

Finally, You et al. [11] try to solve the previous problem, where the set of augmentations is still
predefined. They use a generator built with a combination of a variational graph auto-encoder
(VGAE) and a random-walk sampler. As a result, with the information minimization principle,
we get an individual augmentation for each graph. More irrelevant information gets discarded,
and only the vital part of the data should remain. This approach has promising results for some
datasets and does not rely on predefined augmentations. For some datasets, though, this approach is
outperformed by extensive hand-picking of augmentations.
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4 Related Work

The AutoGCL framework by Yin et al. [13] further expands the idea of using a generator with
contrastive learning. Their generator uses the node embeddings to create a distribution for each
graph, and with the Gumbel-softmax, one of the three augmentations drop, keep, or mask gets
applied to each node. They manage to outperform handpicking augmentations on most datasets, yet
not all. Additionally, it remains to be seen if edges can and should be considered similar to the
nodes and if this improves the results.

Another approach by Suresh et al. [12] suggests using an adversarial approach as the generator.
Essentially the generator learns a probability distribution to drop edges. Their approach is in
contrast to previous methods that focus on node augmentations. Compared to previous generators
like AutoGCL, they outperform them on some datasets, while others still profit from different
generators. It remains unclear which approach performs best for an unknown dataset and if both
approaches can be combined. It is clear that all proposed generators so far have different strengths
and weaknesses, and no single generator is optimal for all datasets.

26



5 System Model

In the following chapter, we describe the System Model of the thesis. We start with a description of
the model and parameters which we use. Then we explain the different loss functions. Afterward,
we describe three different methods to handle warm-starting and transfer learning. The next chapter,
Chapter 6, covers the details of the augmentations we use.

5.1 Model

We build our framework on top of the framework by You et al. [9]. They follow the general approach
from Chen et al. [32]. We start with an unsupervised learning pre-training step, using the unlabeled
data for contrastive learning. The following end-to-end fine-tuning task is graph classification with
10% of the labeled data. During the pre-training, two augmentations get selected from the set of 24
augmentations (Identical + 23 augmentations). Pre-training and fine-tuning run for 100 episodes
each with a batch size of 128. We use Adam [33] as an optimizer and set the learning rate to 0.001.
The size of the hidden dimension is 128.

We give an overview of our layers in Figure 5.1. Pre-training and fine-tuning share the same model
except for the last layer. Both models have a feature layer followed by three graph convolution layers.
Afterward, we use sum pooling, followed by a fully connected layer. We use batch normalization
layers [34] before the layers and a ReLU as an activation function after the layers. In the end,
pre-training uses a two-layer perceptron (MLP) as the projection head to create the graph embeddings
for contrastive learning. During fine-tuning, we switch the projection head with a fully connected
layer with a softmax for classification.

We evaluate the results of the classification in two different ways. We call the first method the
best-average-epoch-accuracy (mean-accuracy) and follow the approach from Xu et al. [3]. The
accuracy of the single epoch with the best 10-fold cross-validation accuracy averaged over these
10 folds is selected. We call the second approach that Yin et al. [13] use max-accuracy. We use
10-fold cross-validation again. However, we use the highest accuracy for every fold and average the
results. The first approach, the mean-accuracy, is generally lower than the max-accuracy but more
robust regarding outliers.

5.2 Loss Functions

In the following chapter, we define multiple loss functions that we evaluate later. As a baseline
loss function, we use the NT-Xent loss adaptation from You et al. [9] as described in (2.10). The
first augmentation of graph n is 𝑧𝑛,𝑖, while the second augmentation of the same graph n is 𝑧𝑛, 𝑗 .
Together they are the positive sample, while all other graphs in the batch 𝑧𝑛′ , 𝑗 [𝑛′ ≠ 𝑛] build the
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Figure 5.1: Detailed setup of the GNN we use. Both models differ in the last layer. Pre-training uses
a projection head for the graph embeddings, while fine-tuning uses a fully connected
layer with the softmax to classify the graphs.
Below is an example of fine-tuning. For the example, we use a batch size of 64. Each
graph has 20 nodes, each node has an attribute vector of 106, and we have two classes.

|batch size|-1 number of negative samples that we sum up. We define the complete loss for the
n-th graph in a mini-batch with sim(𝑧𝑛,𝑖 , 𝑧𝑛, 𝑗) as the cosine similarity in Equation 5.1. For all the
different loss functions we calculate the loss of the whole batch by summing up all individual graph
losses as shown in Equation 5.2.

(5.1) 𝑙𝑛 = −log
exp(sim(𝑧𝑛,𝑖 , 𝑧𝑛, 𝑗)/𝜏)∑𝑁

𝑛′=1, [𝑛′≠𝑛] exp(sim(𝑧𝑛,𝑖 , 𝑧𝑛′ , 𝑗)/𝜏)

(5.2) 𝑙Batch =

𝑁∑︁
𝑛=0

𝑙𝑛

We test multiple loss functions and compare them to the NT-Xent loss. We change the similarity
measure to the euclidian distance in the first part. For our default batch size of 128, this results in 2
positive and 127 negative samples for each batch. We test a different number for the positive and
negative samples in the second part, Afterward, we define a weighting function for the euclidian
distance that weights the critical cases more. Additionally, we implement a combination of
cosine, and euclidian distance, the Triangle Area Similarity – Sector Area Similarity (TS-SS) [35].
Ultimately, we add an implementation of Triplet loss, a similar formulation to our euclidian loss
with only one positive and one negative.
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Figure 5.2: The image shows the effect of the margin parameter m (blue) for the max-margin
contrastive loss. For the loss, we only consider negative samples closer to the anchor
(yellow) than the margin.

5.2.1 Euclidian Distance (Max-Margin Loss)

To apply the euclidian norm as a similarity measure, we can not simply use the NT-Xent loss (5.1)
formula. Cosine similarity is normed between -1 and 1, while the euclidian distance is not normed.
As a result, the network would infinitely push apart all other graphs, the negative samples, to
minimize the loss. This trivial solution is not practical. We need to limit the maximum distance
for negative samples. One solution is the formulation of max-margin contrastive loss [18]. As
shown in Equation 5.3, we ignore negative samples if they are further away than the margin m. We
show the effect of the margin in Figure 5.2. Each graph has two augmentations, augmentation 1=i,
and augmentation 2=j. The current anchor (yellow) is graph n, with the first augmentation i. The
positive sample (green) is graph n with the second augmentation j. All second augmentations of the
other graphs are negative samples (red). We count the negative distances outside the blue margin as
zero.

(5.3) 𝑙𝑛 = 1𝑦𝑖=𝑦 𝑗
∥𝑧𝑛,𝑖 − 𝑧𝑛, 𝑗 ∥2

2 + 1𝑦𝑖≠𝑦 𝑗
max(0, 𝑚 − ∥𝑧𝑛,𝑖 − 𝑧𝑛′ , 𝑗 ∥2)2

5.2.2 Less Negative Samples

We test the effect of the number of negatives per batch. Research in image representation learning
suggests large batch sizes with lots of negative samples improve the result [7]. To test if this is true
for graph representation learning, we modify both formulas from the NT-Xent loss (5.1) and the
max-margin loss (5.3). Instead of summing up all negative samples in the batch, we only pick |x|
graphs from the batch as negative samples. We show the modified formulas in Equation 5.4 and
Equation 5.5.

(5.4) 𝑙𝑛 = −log
exp(sim(𝑧𝑛,𝑖 , 𝑧𝑛, 𝑗)/𝜏)∑𝑥⊆(Batch\𝑛)

𝑛′ exp(sim(𝑧𝑛,𝑖 , 𝑧𝑛′ , 𝑗)/𝜏)

(5.5) 𝑙𝑛 = ∥𝑧𝑛,𝑖 − 𝑧𝑛, 𝑗 ∥2
2 +

𝑥⊆(Batch\𝑛)∑︁
𝑛′

max(0, 𝑚 − ∥𝑧𝑛,𝑖 − 𝑧𝑛′ , 𝑗 ∥2)2

29



5 System Model

5.2.3 More Positives Samples

Additionally, we test to increase the number of positive samples. For 𝑘 ≥ 2 positive samples, we
update the formula as seen in Equation 5.7. For k=2, we get the same result as before, where 𝑧𝑛,0
is equal to 𝑧𝑛,𝑖. It describes the anchor graph n under the first augmentation. Graph n under the
second augmentation is 𝑧𝑛,1.

For k>2, we build k-1 new graphs with the second augmentation, from 𝑧𝑛,1 to 𝑧𝑛,𝑘 . Since the
augmentations are not deterministic, we get k-1 similar but unequal graphs. We do the same for
the negative samples. If graph n’ is selected, we build 𝑧𝑛′ ,1 to 𝑧𝑛′ ,𝑘 . The number of positive and
negative samples increases by a factor of k-1. For k=5 and |x|=1 (one negative sample), we end
up with four positive pairs (anchor - positive sample) and four negative pairs (anchor - negative
sample).

(5.6) 𝑙𝑛 = −log
∑𝑘

𝑗=1 exp(sim(𝑧𝑛,𝑖 , 𝑧𝑛, 𝑗)/𝜏)∑𝑘
𝑗=1

∑𝑥⊆(Batch\𝑛)
𝑛′ exp(sim(𝑧𝑛,𝑖 , 𝑧𝑛′ , 𝑗)/𝜏)

(5.7) 𝑙𝑛 =

𝑘∑︁
𝑗=1

∥𝑧𝑛,0 − 𝑧𝑛, 𝑗 ∥2
2 +

𝑘∑︁
𝑗=1

𝑥⊆(Batch\𝑛)∑︁
𝑛′

max(0, 𝑚 − ∥𝑧𝑛,0 − 𝑧𝑛′ , 𝑗 ∥2)2

The number of negative samples before only changes the loss function and does not influence the
training. Increasing the number of positives, on the other hand, results in more training. The default
setting, k=2, uses all graphs twice in each episode. If we increase k to 5, we use every graph five
times. The training has increased by a factor of 2.5. We must keep this in mind when we evaluate
the accuracy of the loss functions. Increasing the number of positives could be beneficial because
of the different loss function but also due to increased training.

5.2.4 Weighted Euclidian Max-Margin Loss

We define an adaptation of the euclidian loss function that weights the graphs. We only use
one positive and one negative to simplify the weight generation. The loss calculation follows
the max-margin formulation we introduced before (5.3). Additionally, we create two weighting
functions that give a weight to each loss 𝑙𝑛 in the mini-batch. We give more weight to bad samples
and reduce the weight of good samples. A sample is bad if the positive distance is high and the
negative distance is small. We show an example of the weighting in Figure 5.3. The image on the
right side is the worst case because the negative sample is closer to the anchor than the positive
sample. It is most important to punish these occurrences. In the left image, we see an unimportant
case. The positive distance is already much smaller than the negative distance. We do not assign
much weight. Other cases in between, like the image in the middle, get an average weight. We
denote the two positives for graph n as 𝑧𝑛,𝑖 and 𝑧𝑛, 𝑗 . The graph 𝑧𝑛′𝑛 , 𝑗 is the randomly selected graph
used as the negative sample by graph n. The first weighting function in Equation 5.8 subtracts
the negative distance from the positive distance and applies a softmax over the result. The second
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5.2 Loss Functions
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Figure 5.3: The image shows different cases with our weighting function. The left image shows the
optimal case when the positive sample (green) is closer to the anchor. We assign a low
weight. The right image shows the worst case. The negative sample is way closer to
the anchor than the positive sample. The weighting function punishes this case.

weighting function in Equation 5.9 does the same but adds an upper bound to the negative distance
to prevent negative samples from being pushed infinitely away. The upper bound is the same margin
m from the max-margin loss. Equation 5.10 combines the weight with the loss.

𝑤 = softmax(pos_distance − neg_distance)(5.8) 
𝑤0
𝑤1
...

𝑤𝑛


= softmax

©«

∥𝑧0,𝑖 − 𝑧0, 𝑗 ∥2 − ∥𝑧0,𝑖 − 𝑧𝑛′0, 𝑗

∥2

∥𝑧1,𝑖 − 𝑧1, 𝑗 ∥2 − ∥𝑧1,𝑖 − 𝑧𝑛′1, 𝑗
∥2

...

∥𝑧𝑛,𝑖 − 𝑧𝑛, 𝑗 ∥2 − ∥𝑧𝑛,𝑖 − 𝑧𝑛′𝑛 , 𝑗 ∥2


ª®®®®®¬

𝑤 = softmax(pos_distance − min(m, neg_distance)(5.9) 
𝑤0
𝑤1
...

𝑤𝑛


= softmax

©«

∥𝑧0,𝑖 − 𝑧0, 𝑗 ∥2 − min(m, ∥𝑧𝑛,𝑖 − 𝑧𝑛′0, 𝑗

∥2

∥𝑧1,𝑖 − 𝑧1, 𝑗 ∥2 − min(m, ∥𝑧𝑛,𝑖 − 𝑧𝑛′1, 𝑗
∥2

...

∥𝑧𝑛,𝑖 − 𝑧𝑛, 𝑗 ∥2 − min(m, ∥𝑧𝑛,𝑖 − 𝑧𝑛′𝑛 , 𝑗 ∥2


ª®®®®®¬

(5.10)

𝑙𝑛 = 𝑤𝑛 ∗max-margin loss = 𝑤𝑛 ∗
(
1𝑦𝑖=𝑦 𝑗

∥𝑧𝑛,𝑖 − 𝑧𝑛, 𝑗 ∥2
2 + 1𝑦𝑖≠𝑦 𝑗

max(0, 𝑚 − ∥𝑧𝑛,𝑖 − 𝑧𝑛′ , 𝑗 ∥2)2
)
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5 System Model

5.2.5 Triplet Loss

Triplet loss has a similar idea to contrastive loss. In the original formula, we use one positive and
one negative sample as shown in Equation 5.11. As before, we minimize the distance between the
original anchor and maximize the distance to the negative sample. We adopt this formula to fit the
contrastive learning setup and use 𝑧𝑛,𝑖 and 𝑧𝑛, 𝑗 as the graph n with two augmentations, the positive
pair. We randomly select the negative sample 𝑧𝑛′ , 𝑗 from all other graphs in the batch. We show the
final formula in Equation 5.12.

(5.11) 𝑙 (𝑧𝑖 , 𝑧 𝑗 , 𝑧𝑘) = max(0, ∥𝑧𝑖 − 𝑧 𝑗 ∥2
2 − ∥𝑧𝑖 − 𝑧𝑘 ∥2

2 + 𝑚)

(5.12) 𝑙 (𝑧𝑛,𝑖 , 𝑧𝑛, 𝑗 , 𝑧𝑛′ , 𝑗) = max(0, ∥𝑧𝑛,𝑖 − 𝑧𝑛, 𝑗 ∥2
2 − ∥𝑧𝑛,𝑖 − 𝑧𝑛′ , 𝑗 ∥2

2 + 𝑚)

5.2.6 TS-SS

Cosine and euclidian distance both have disadvantages. While cosine distance does not consider the
magnitude of the values and only the angle, euclidian distance is the opposite and ignores the angle
and only considers the magnitude. TS-SS [35] consists of two parts, triangle area similarity (TS)
and sector area similarity (SS). TS uses three components, angle, euclidian distance, and magnitude.
SS uses the euclidian distance and the magnitude difference. In the end, we multiply both values TS
and SS. The result combines euclidian and cosine distance and solves their problems. We show the
individual formulas below, starting with Equation 5.13. For our evaluations, we use an existing
implementation [36].

CD(𝐴, 𝐵) =
∑𝑘

𝑛=1 𝐴(𝑛) · 𝐵(𝑛)
|𝐴| · |𝐵|

(5.13)

\′ = arccos(CD(𝐴, 𝐵)) + 10
(5.14)

ED(𝐴, 𝐵) =

√√√
𝑘∑︁

𝑛=1

(
𝐴(𝑛) − 𝐵(𝑛)

)2(5.15)

MD(𝐴, 𝐵) =

������
√√√

𝑘∑︁
𝑛=1

𝐴2
𝑛 −

√√√
𝑘∑︁

𝑛=1
𝐵2
𝑛

������
(5.16)
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5.3 Shrink & Perturb

TS(𝐴, 𝐵) = |𝐴| · |𝐵| · sin(\′)
2

(5.17)

SS(𝐴, 𝐵) = 𝜋 ·
(
ED(𝐴, 𝐵) + MD(𝐴, 𝐵)

)2 · ( \′

360

)(5.18)

TS-SS(𝐴, 𝐵) = TS(𝐴, 𝐵) · SS(𝐴, 𝐵)
(5.19)

We use two different ways to use the TS-SS. First, we keep the max-margin loss formulation from the
euclidian loss and replace the euclidian distance with the TS-SS distance. We call this formulation
from Equation 5.20 the TS-SS sum. Secondly, we define a ratio loss, similar to the NT-Xent loss,
where we build the ratio between the positive sample distance divided by the negative sample
distance. We call this formula in Equation 5.21 the TS-SS ratio.

(5.20) 𝑙𝑛 = 1𝑦𝑖=𝑦 𝑗
TS-SS(𝑧𝑛,𝑖 , 𝑧𝑛, 𝑗)2 + 1𝑦𝑖≠𝑦 𝑗

max
(
0, 𝑚 − TS-SS(𝑧𝑛,𝑖 , 𝑧𝑛′ , 𝑗)

)2
(5.21) 𝑙𝑛 =

TS-SS(𝑧𝑛,𝑖 , 𝑧𝑛, 𝑗)2∑𝑁
𝑛′=1, [𝑛′≠𝑛] TS-SS(𝑧𝑛,𝑖 , 𝑧𝑛′ , 𝑗)2

5.3 Shrink & Perturb

We define three strategies to use the model’s weights in transfer learning and warm-starting. The
first method is the default method and does not apply any modification to the weights. The
second method applies the shrink & perturb technique from Ash et al. [20] to increase the model’s
generalizability. Equation 5.22 shows the formula. For each weight, we apply two steps. In the
first step, the shrinking phase, all weights are multiplied with the shrinking parameter _ = 0.2.
The second step, the perturbation step, adds gaussian distributed noise with the standard deviation
𝜎=0.01 to the weights.

(5.22) ∀𝑤 : 𝑤 = 𝑤 ∗ _ + N(0, 𝜎)

In the third method, we use the same shrinking parameter _ = 0.2. We modify the formula, so
the gaussian noise has no static 𝜎, but instead, we use the average weight of the current layer to
compute the gaussian noise for all weights in the layer as shown in Equation 5.23. Since different
layers have different magnitudes of weights, we propose this method to find a better fit for 𝜎.

(5.23) ∀𝑤 : 𝑤 = 𝑤 ∗ _ + N(0,max(1e−10,AVG(𝐿𝑤)))
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Figure 5.4: The image shows the setup for transfer learning. In this example, we pre-train with
the unlabeled NCI1 data and fine-tune with the labeled PROTEINS data. We can not
keep the pre-trained input layers, like in our standard setup, because different datasets
usually have different input sizes.

5.4 Transfer Learning

We describe the transfer learning setup in Figure 5.4. As previously mentioned, we use different
datasets for pre-training and fine-tuning. In the example, we pre-train with the complete unlabeled
NCI1 and fine-tune with the labeled PROTEINS data. The goal is to gain additional training
through different and potentially bigger datasets. Consequently, as a drawback, we can not use the
pre-trained input layer since different datasets have different attribute sizes for the nodes. We add
an optional shrink & perturb step between pre-training and fine-tuning.

5.5 Warm-Starting

We describe our setup of warm-starting in Figure 5.4. We add a pre-pre-training step to our default
setup. The pre-pre-training step uses a different dataset, similar to transfer learning. In the example,
we pre-pre-train with the complete unlabeled NCI1. Afterward, we pre-train with the unlabeled
PROTEINS, followed by fine-tuning with the labeled PROTEINS data. We plan to profit from the
general idea of transfer learning. At the same time, we still pre-train on the same dataset before the
fine-tuning step to reduce the downside of transfer learning. In this setup, we can use a pre-trained
input layer in the fine-tuning step.
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5.5 Warm-Starting
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Figure 5.5: The image shows the setup for warm-starting. In this example, we pre-pre-train with the
unlabeled NCI1 data. We follow with a pre-training step with the unlabeled PROTEINS
data. We fine-tune with the labeled PROTEINS data. Compared to transfer learning,
we can keep the input layers between the pre-training and fine-tuning since we use the
same dataset.
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6 Augmentations

This chapter describes the details of the augmentations we evaluate in this thesis. We construct 23
different augmentations of different types. The three basic operations for nodes are add, remove
and mask, while edges have two options, add or remove. Simple augmentations start by randomly
editing the graphs. More advanced augmentations focus on using an order or strategy to remove
unimportant nodes and edges that carry few crucial details. As motivated in 2.6, the success of
contrastive learning relies on the fact that we remove nodes and edges without changing the label
of the graph. We can measure the importance of a node by centrality, which ranks the nodes
in the graph. Many centralities like degree, eigenvector, pagerank [37], and Hyperlink-Induced
Topic Search (HITS) [38] exist. Since it is yet unknown which centrality gives the best results
for contrastive learning, and we expect that different datasets have different centralities that will
perform the best, we test all previously mentioned. We present an overview of all the augmentations
with a short description in Table 6.1.

6.0.1 Augmentation Ratio

The augmentation ratio defines how many nodes or edges get edited. Since the augmentation
ratio is an important parameter, we construct most methods to result in the specified ratio. For
example, the width-search subgraph method has been slightly modified compared to the typical
implementation. As a default value, we use 20%, similar to other research [9], although we later
analyze different augmentation ratios because, depending on the dataset, different datasets can
tolerate higher augmentation rates and achieve better results.

6.0.2 Node Dropping

Algorithm 6.1 NodeDropping augmentation
Require: G = {V, E}, aug_ratio=k

1: 𝑉drop = select_nodes_to_drop(V, |V|*k)
2: 𝑉nodedrop = 𝐺 \𝑉drop
3: 𝐸nodedrop = {𝑒 |𝑒 ∈ 𝐸 and 𝑒[0] ∈ 𝑉nodedrop and 𝑒[1] ∈ 𝑉nodedrop}
4: 𝐺nodedrop = {𝑉nodedrop, 𝐸nodedrop}
5: return 𝐺nodedrop

Augmentations 1-4 define different variations of node dropping. 20% node dropping means that
we drop |V|*0.2 nodes. Even though only nodes are directly affected by this method, we also drop
edges because all the edges which connect a dropped node are now redundant.
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6 Augmentations

Nr. Data Augmentation Type Description
1 dropN Nodes + Edges Drop random nodes
2 dropN_high_degree Nodes + Edges Drop nodes with the lowest degree
3 WdropN_high_degree Nodes + Edges Drop nodes with high degree with

higher probability
4 WdropN_low_degree Nodes + Edges Drop nodes with low degree with

higher probability

5 addN Nodes + Edges Add nodes randomly and connect them
to the graph

6 Mask_Mean Masking Mask nodes attributes with the mean
attribute of all nodes

7 Mask_0 Masking Mask nodes with 0
8 Switch_Attributes Masking Switch the node attributes of two nodes

9 permE Edges Randomly remove existing edges an
create new ones

10 addE Edges Randomly add edges
11 dropE Edges Randomly remove edges

12 subgraph Nodes + Edges Subgraph from a random start node
13 subgraph_depth Nodes + Edges Subgraph with depth-first-search
14 subgraph_width Nodes + Edges Subgraph with width-first-search
15 subgraph_high_degree Nodes + Edges Subgraph with highest degree nodes

first
16 subgraph_low_degree Nodes + Edges Subgraph with lowest degree nodes

first
17 subgraph_eigenvector Nodes + Edges Subgraph with highest eigenvector

value nodes first
18 subgraph_pagerank Nodes + Edges Subgraph with highest pagerank value

nodes first
19 subgraph_HITS Nodes + Edges Subgraph with highest HITS value

nodes first
20 subgraph_merge_nodes Nodes + Edges Merge Nodes and keep their edges

21 subgraph_steiner Nodes + Edges Steiner Tree
22 subgraph_steiner_low_degree Nodes + Edges Steiner Tree of the lowest degree nodes
23 subgraph_steiner_weighted Nodes + Edges Steiner Tree with weights depending

on the degree

Table 6.1: Overview of all tested augmentations
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The base algorithm selects the nodes to drop, removes them, and removes the redundant edges.
Algorithm 6.1 shows the base algorithm. We test four different settings for node dropping. They
differ in the select_nodes_to_drop method. The first method, augmentation 1, is the basic function,
where select_nodes_to_drop selects the nodes randomly. Augmentation 2 sorts the nodes by degree
and drops the nodes with the highest degree in the graph. Augmentations 3+4 are a weighted
function from You et al. [9]. Both methods assign weights to the nodes depending on the degree.
The weight defines the probability of dropping a node. We show the formulas for computing the
weights in (6.1). A higher weight results in a higher chance of the node getting dropped. Nodes are
then randomly selected given these probabilities. In contrast, augmentation 2 is a hard decision
boundary.

Augmentation 3: WdropN_high_degree: P(node) =
degree(node)2∑
n∈N degree(n)2(6.1)

Augmentation 4: WdropN_low_degree: P(node) =
degree(node)−2∑
n∈N degree(n)−2(6.2)

6.0.3 Node Adding

Instead of removing nodes, we also test adding additional nodes in Algorithm 6.2. 20% node adding
means that |V|*0.2 nodes are added. Compared to dropping nodes, this creates some problems.
Mainly which edges and which attributes the new node should have. Ideally, we add meaningful
nodes in the context of the dataset, but this would require in-depth domain knowledge. We stick to a
simple version, in which we randomly select a node, copy the node and its attributes and add it to
another random node in the graph with one edge.

Algorithm 6.2 NodeAdd augmentation
Require: G = {V, E}, aug_ratio=k

1: for i in range(|V|*k) do
2: v = random_node(V)
3: vcopy = copy_node(v)
4: u = random_node(V)
5:
6: V = V ∪ vcopy
7: E = E ∪ ( vcopy, u) ∪ (u, vcopy)
8: end for
9: return G

6.0.4 Attribute Masking

Attribute Masking does not change the graph’s topology but only masks the node attributes. 20%
node masking means that |V|*0.2 nodes are selected, and all attributes in this node are masked.
Similar to node adding, we would like to mask the node attributes with values that fit the data.
Again, this is only possible with in-depth domain knowledge, so we use two approximations instead.
Algorithm 6.3 shows the algorithm for masking. The first version is augmentation 6, which sets the
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6 Augmentations

attributes of the selected nodes to the mean value of all node attributes in the graph. This method is
used by previous papers like [9] and achieved mixed results. However, many datasets use one-hot
vectors as a node attribute, while the average is usually a continuous value. These continuous values
are an outlier to the model and not expected, which contradicts our assumption to mask with values
that fit the data and look more natural. This observation leads us to the assumption that masking
with the average might not be optimal, and we introduce the alternative, augmentation 7, where all
node attributes get masked with 0. In Algorithm 6.3, we set all values in the mask to 0 instead of
the average.

Algorithm 6.3 NodeMasking augmentation
Require: G = {V, E}, aug_ratio=k

1: 𝑉mask = random_nodes(V, |V|*k)
2: mask = average(V[’attribute’])
3: 𝑉mask [’attribute’] = mask
4: return G

Additionally, Algorithm 6.4 shows the switching of node attributes in augmentation 8. 20% Attribute
switch means that (V*0.2)/2 node pairs are selected. The node attributes of both nodes get switched,
which results in some form of masking node attributes. One advantage is that we use the attribute
from an actual node, not a synthetical average. A downside of this approach is that we still can not
guarantee to get realistic results. In a molecule graph, the node can represent an atom, defined by
the attributes. We solve the problem that the average attribute is most likely not a feasible atom. We
did not solve the problem that the atom, which changed its position in the topology, now changes
the molecule. Even though our graph consists of feasible nodes, we can still end up with unfeasible
graphs.

Algorithm 6.4 NodeSwitch augmentation
Require: G = {V, E}, aug_ratio=k

1: for i in range((|V|*k)/2) do
2: v = random_node(V)
3: u = random_node(V)
4: attribute_v = v[’attribute’]
5: attribute_u = u[’attribute’]
6: v[’attribute’] = attribute_u
7: u[’attribute’] = attribute_v
8: end for
9: return G

6.0.5 Edge Perturbation

In augmentation 9, 20% Edge Perturbation means that N existing edges get removed, and additionally,
E*0.2 edges are created randomly between the nodes. It is a combination of augmentation 10 and
11, as marked in Algorithm 6.5.
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Algorithm 6.5 Edge Perturbation augmentation
Require: G = {V, E}, aug_ratio=k

1: edges = random_edges(E, |E|*k)
2: E = E \ edges
3:
4: for i in range(|E|*k) do
5: v = random_node(V)
6: u = random_node(V)
7: E = E ∪ (u, v) ∪ (v, u)
8: end for
9: return G

Remove edges [Aug. 10]

Add edges [Aug. 11]

Edge Perturbation [Aug. 9]

6.0.6 Subgraph

20% Subgraph augmentation means that a subgraph with |𝑉subgraph | = (|V| * (1-0.2)) nodes is
created. Similar to node dropping, 20% of the nodes get removed, but the remaining nodes are
now not random but, instead, are an ideally connected subgraph. We select the start node randomly.
Neighboring nodes get added until the subgraph is big enough. The select_neigbour_node(𝑉neigbors)
in line 11 is the crucial difference between the multiple subgraph methods.

In the end, the resulting graph consists of all the selected nodes 𝑉subgraph and all the edges between
the nodes in the subgraph. Algorithm 6.6 shows augmentation 12, the basic subgraph algorithm in
pseudocode. The select_neigbour_node(𝑉neigbors) method randomly selects one of all the neighbors
𝑉subgraph from as the next node.

Algorithm 6.6 Subgraph augmentation
Require: G = {V, E}, aug_ratio=k

1: 𝑉subgraph = ∅
2: v = random_node(V)
3: 𝑉subgraph = v
4:
5: while |𝑉subgraph| < |V| * (1-k) do
6: 𝑉neigbors = (𝑉neigbors∪ get_neigbors(v) ) \𝑉subgraph
7: if 𝑉neigbors = ∅ then
8: v = random_node(V \ 𝑉subgraph)
9: else

10: v = select_neigbour_node(𝑉neigbors)
11: end if
12: 𝑉subgraph = 𝑉subgraph∪ v
13: end while
14: 𝐸subgraph = {𝑒 |𝑒 ∈ 𝐸 and 𝑒[0] ∈ 𝑉subgraph and 𝑒[1] ∈ 𝑉subgraph}
15: 𝐺subgraph = {𝑉subgraph, 𝐸subgraph}
16: return 𝐺subgraph
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Depth-First-Search

Algorithm 6.7 shows the selection of the depth-first-search subgraph. A random start node is
selected, and depth-first-search is used from this starting point until the subgraph has the correct
size. Depth-first-search traverses the graph and explores all nodes along the selected branch until
they are all added to the subgraph.

Algorithm 6.7 Subgraph-Depth-Search augmentation
Require: G = {V, E}, aug_ratio=k

1: 𝑉subgraph = ∅
2: v = random_node(V)
3: 𝑉subgraph = v
4:
5: while |𝑉subgraph| < |V| * (1-k) do
6: 𝑉neigbors = get_neigbors(v) \𝑉subgraph
7: if 𝑉neigbors = ∅ then
8: 𝑉all_neigbors =

(
∪𝑣∈𝑉subgraphget_neigbors(v)

)
\𝑉subgraph

9: if 𝑉all_neigbors = ∅ then
10: v = random_node(𝑉 \𝑉subgraph)
11: else
12: v = random_node(𝑉all_neigbors)
13: end if
14: else
15: v = random_node(𝑉neigbors)
16: end if
17: 𝑉subgraph = 𝑉subgraph∪ v
18: end while
19: 𝐸subgraph = {𝑒 |𝑒 ∈ 𝐸 and 𝑒[0] ∈ 𝑉subgraph and 𝑒[1] ∈ 𝑉subgraph}
20: 𝐺subgraph = {𝑉subgraph, 𝐸subgraph}
21: return 𝐺subgraph

Width-First-Search

Algorithm 6.8 uses width-first-search to build the subgraph. A random start node is selected, and
width-first-search is used from this starting point until the subgraph has the correct size. In contrast
to depth-first-search, we do not explore a single branch but all branches simultaneously. For our
case, this means all neighbors of 𝑉subgraph get added during every step.

Degree

Augmentations 15 and 16 decide which node gets added to the subgraph with the degree. Instead of
randomly selecting neighbor nodes in the select_neigbour_node(𝑉neigbors) method, augmentation 15
sorts and selects the neighbor of 𝑉subgraph which has the highest degree. Accordingly, augmentation
16 selects the neighbor with the lowest degree.
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Algorithm 6.8 Subgraph-Width-Search augmentation
Require: G = {V, E}, aug_ratio=k

1: 𝑉subgraph = ∅
2: v = random_node(V)
3: 𝑉subgraph = v
4:
5: while |𝑉subgraph| < |V| * (1-k) do
6: 𝑉neigbors =

(
∪𝑣∈𝑉subgraphget_neigbors(v)

)
\𝑉subgraph

7: if 𝑉neigbors = ∅ then
8: v = random_node(V \ 𝑉subgraph)
9: 𝑉subgraph = 𝑉subgraph∪ v

10: else
11: for neig in neigbors do
12: if |𝑉subgraph| < |V| * (1-k) then
13: 𝑉subgraph = 𝑉subgraph∪ neig
14: end if
15: end for
16: end if
17: end while
18: 𝐸subgraph = {𝑒 |𝑒 ∈ 𝐸 and 𝑒[0] ∈ 𝑉subgraph and 𝑒[1] ∈ 𝑉subgraph}
19: 𝐺subgraph = {𝑉subgraph, 𝐸subgraph}
20: return 𝐺subgraph

Eigenvector

The select_neigbour_node(𝑉neigbors) method sorts the neighbors and selects the neighbor node with
the highest eigenvector value. The eigenvector centrality gets calculated by solving the equation
𝐴𝑥 = _𝑥, where A is the adjacency matrix of the graph with eigenvalue _. For node i, the i-th
element of x is the eigenvector centrality.

Pagerank

The select_neigbour_node(𝑉neigbors) method sorts the neighbors and selects the neighbor node with
the highest Pagerank value. The Pagerank algorithm [37] is a way to measure the importance
of websites and was introduced by Google. Nodes with more (incoming) edges receive a higher
Pagerank. The assumption is that a node with lots of incoming edges is important. For undirected
graphs, which we use, the Pagerank is close to the degree distribution. We show the equation to
calculate the Pagerank for a graph in (6.3). The total number of nodes is N. We use a damping
parameter d=0.85. PR(n) describes the Pagerank of node n. M(n) are all nodes with an edge to
node n. L(n) is the number of outgoing edges from n. We compute the Pagerank iteratively. We
start with a Pagerank of 1/N for all nodes and update the Pagerank for all nodes with the formula in
(6.3). We repeat this calculation process until convergence.
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6 Augmentations

(6.3) PR(𝑛𝑖) =
1 − 𝑑

N
+ 𝑑

∑︁
𝑛 𝑗 ∈M(𝑛𝑖 )

PR(𝑛 𝑗)
L(𝑛 𝑗)

Hyperlink-Induced Topic Search (HITS)

The select_neigbour_node(𝑉neigbors) method sorts the neighbors and selects the neighbor node
with the highest HITS value. HITS is an algorithm to rate websites with the concept of hubs and
authorities [38]. Like Pagerank, it is an iterative algorithm, but it calculates two values, the authority
score and the hub score. We start with an authority and hub value of 1 for all nodes. The authority
value gets calculated by summing all hub values of the incoming edges, see (6.4). The hub value
sums the authority values of all target nodes from the outgoing edges, see (6.5). Afterward, both
values are normalized. We repeat this calculation process until convergence. Since we use directed
graphs, both values have the same result, and for our calculations, we only use the hub value.

(6.4) Auth(𝑛𝑖) =
∑︁

𝑛 𝑗 ∈M(𝑛𝑖 )
Hub(𝑝𝑖)

(6.5) Hub(𝑛𝑖) =
∑︁

𝑛 𝑗 ∈M(𝑛𝑖 )
Auth(𝑝𝑖)

6.0.7 Merge Nodes

The subgraph_merge_nodes method is similar to the subgraph method, but instead of selecting
neighbors and adding them to the subgraph, we select a random node, one of the neighbors, and
then merge these two neighbors. Merging in this context means keeping the first node and adding
edges to all neighbors of the second node. Afterward, we remove the second node and all edges
from it as seen in Algorithm 6.9. The result is a mixture of node dropping and subgraph. Compared
to node dropping, we keep the nodes connected when we remove a node. In the subgraph method,
we keep the complete subgraph, while merging the nodes allows us to remove a node from the
subgraph without splitting up the graph. The merge nodes method guarantees that if we have two
connected nodes and remove some of the nodes connecting them, they remain connected.

6.0.8 Steiner Trees

Steiner trees are a problem similar to the minimum spanning tree (MST). Every edge e ∈ E has a
corresponding cost C(e) ∈ N. A MST connects all the vertices V in G (without cycles) with minimal
total cost C(G)

The Steiner tree has instead only a subset T ⊆ V, the terminal nodes, of the vertices V given and
searches for the spanning tree that connects this subset with minimal cost. The Steiner tree problem
is proven to be NP-hard [39]. Thus an approximation is needed to calculate the trees efficiently.
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Algorithm 6.9 Subgraph_merge augmentation
Require: G = {V, E}, aug_ratio=k

1: for i in range(|V|*k) do
2: v = random_node(V)
3: N = select_neigbour_node(𝑉neigbors)
4: u = random_node(N)
5:
6: V = V \ u
7: for edge in {e|e ∈ E and e[0] = u} do:
8: E = E \ edge
9: E = E ∪ (v, edge[1])

10: end for
11: for edge in {e|e ∈ E and e[1] = u} do:
12: E = E \ edge
13: E = E ∪ (edge[0], v)
14: end for
15: end for
16: return G

First, the approximation solves the shortest path problem for all pairs of vertices in the graph, which
results in the metric closure of the graph. The algorithm starts with one of the terminal nodes,
which we add to the result set R. The terminal node with the shortest distance to one of the nodes in
R will be selected, and we will add all the nodes on this shortest path to R. We repeat the previous
step until no more terminal nodes are left. After all terminal nodes are in the result set R, we can
calculate the MST on the resulting graph. The result is the Steiner tree, a subgraph of G.

We need to add some exceptions due to the limitations of the approximation. The graph must be
connected in order for the steiner approximation to work. If the graph is not connected, we use the
subgraph (12_subgraph) implementation instead. For the larger social graph datasets like COLLAB
and REDDIT-BINARY, the runtime is even for the approximation very high. Therefore, we limit
the three steiner methods to the five datasets PROTEINS, NCI1, FRANKENSTEIN, COIL-DEL,
and COLORS-3.

While we previously made sure to apply the same level of augmentation to the graphs, we can not
guarantee this for steiner trees. We do not know how big the steiner tree for a specific subset T will
be, while the other subgraph methods construct subgraphs with an exact number of nodes. The
subgraph augmentation with 20% augmentation ratio builds a subgraph with 80% of the nodes,
while 20% of the nodes get removed. If we build a steiner tree with 80% of the nodes in the
terminal set, the subgraph is likely considerably larger. In the best case, all nodes 𝑣 ∈ 𝑇 are already
a connected subgraph, and no additional nodes are necessary. Since the shortest path connects the
nodes in T, the resulting augmentation ratio is, on average, considerably lower than we wanted. In
our example, instead of 20%, the augmentation ratio would be closer to 5-10%. In theory, We could
pick a smaller size for T, such that the steiner tree has the correct augmentation ratio. However,
we only know the exact size of the steiner tree after its construction. So to find a steiner tree with
a specific size, we need to construct lots of steiner trees, which is not reasonable. Therefore, we
accept the limitation of a higher actual augmentation ratio.
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6 Augmentations

We use three different variants of steiner trees. One thing they have in common is that we select the
subset T ⊆ V with a size of T = |V| * aug_ratio nodes for our Evaluations. For the PROTEINS
dataset, an augmentation ratio of 20% would result in the terminal set of size 0.2*|V|. After
connecting these terminal nodes, on average, we end up with graphs that keep around 40% of the
nodes. The real augmentation for the 20% input is 60%. Other datasets can achieve different results.
Consequently, comparing the steiner tree performance to other augmentation ratios is hard. We
only compare the steiner tree methods to the best augmentations of the dataset, independent of the
augmentation ratio.

We show a general example for the steiner tree approximation in Figure 6.1. The nodes, terminal
nodes, and edge weights in this example are random. They depend on the augmentation we use.

Algorithm 6.10 shows the first general version. In augmentation 21, the subset T ⊆ V is created by
randomly selecting T from all nodes. The weight for all edges is the same, so only the distance is
used.

Augmentation 22 does not use random nodes. We create the subset T ⊆ V by selecting the |T| nodes
with the lowest degree from all nodes. This method is similar to augmentation 16, where we build
the subgraph by selecting the lowest degrees. We only consider the neighbors of 𝑉subgraph for the
subgraph. This augmentation selects the neighbors with the lowest degree from the whole graph
and afterward connects these nodes. Once again, we do not use specific weights and only consider
the distance for the shortest paths.

In augmentation 23, we select the same subset T as in augmentation 22, with the lowest degree
nodes. Additionally, we now introduce weights for the edges. As a cost function, we add the degree
of both connected nodes, C(e) = degree(e[0]) + degree(e[1]). This way, we connect the low-degree
nodes and minimize the degree of the nodes connecting them.

Algorithm 6.10 Subgraph_steiner augmentation
Require: G = {V, E}, aug_ratio=k

1:
2: if ! G.is_connected then
3: return subgraph(V, k)
4: end if
5:
6: T = select_terminal_nodes(V, |V|*k)
7: G_steiner = steiner_approximation(G, T)
8: return G_steiner
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T = {4, 6, 11, 14}
R = {1}
Shortest path from T to R: 1->11: {1, 2, 3, 11}

T = {4, 6, 14}
R = {1, 2, 3, 11}
Shortest path from T to R: 11->14: {11, 12, 14}

T = {4, 6,}
R = {1, 2, 3, 11, 12, 14}
Shortest path from T to R: 3->4: {3, 4}

T = {6,}
R = {1, 2, 3, 11, 12, 14, 4}
Shortest path from T to R: 14->6: {14, 9, 5, 6}

T = {}
R = {1, 2, 3, 11, 12, 14, 4, 9, 5, 6}
Shortest path from T to R: 14->6: {14, 9, 5, 6}

Steiner Tree for terminal nodes {1, 4, 6, 11, 14}

1 2 3

4 5 6

Figure 6.1: Steiner tree calculation for the red highlighted random set of terminal nodes T = 1, 4, 6,
11, 14. The blue nodes and the path are the shortest path from the current result, R, to a
terminal in T. We add the blue path to R and repeat this step until all terminal nodes are
in R. In the last step, we calculate an MST of R.
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7 Evaluation

During our evaluations, we test multiple settings and approaches. Firstly, we briefly describe the
datasets and introduce our setup for the following evaluations. In Section 7.3, we start with the first
evaluation, the fundamental performance analysis of the augmentations defined in Chapter 6. We
first evaluate the performance of single augmentations with the original graphs, check the influence
of the augmentation ratio and finally evaluate the combination of different augmentation ratios
with the best-performing augmentations. We also test different loss functions and the influence
of the number of positive and negative samples for contrastive learning. We then look into two
methods two improve our setup, transfer learning and warm-starting. Additionally, we add the
shrink and perturb step introduced by Ash et al. [20] to both approaches and test if their approach is
transferable to our setting. To improve the previous results from the augmentations, we propose
different strategies of selecting augmentations for each graph individually in Section 7.9 instead of
one augmentation for all graphs. We finish with Section 7.10 and the advanced approach of not
using predefined augmentations but instead using a generator that creates individual augmentations
for each graph by removing all unimportant nodes and edges.

7.1 Datasets

We focus on 12 graph datasets from the TUDataset collection [40], [41]. They are from different
domains, Bioinformatics, Small molecules, Computer Vision, and Social networks, which differ in
size, connections, and classes. See Table 7.1 for details.

Bioinformatics graphs like PROTEINS or DD describe macromolecules. Examples are protein
structures, where the task is to predict if the protein is an enzyme. Nodes represent structure
elements with their type and physical and chemical information. Edges connect two nodes that are
neighbors along amino acid sequences.

Small molecules graphs like NCI1, MUTAG, and FRANKENSTEIN (FRANKEN.) describe
molecules with nodes as atoms and edges as chemical bonds. The labels of the molecules represent
different properties like toxicity or biological activity.

COIL-DEL is a graph dataset from the computer vision domain. Originally 100 objects are
photographed from different angles. Corner features are extracted from the images, and a Delaunay
triangulation is applied. The Delaunay triangulations are transformed into a graph where each node
has a coordinate, and the edges represent the lines.

IMDB-BINARY (IMDB-B), COLLAB, github_stargazers (GITHUB), REDDIT-BINARY (RDT-B),
and REDDIT-MULTI-5k (RDT-5K) are all graph datasets from social networks. REDDIT-BINARY
and REDDIT-MULTI-5k represent nodes as users, and edges indicate that one user responded to
another. The task is to distinguish the type of subreddit and where a thread was posted. COLLAB,
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Datase Graphs Classes Nodes Edges Node Att. Type Source
PROTEINS 1113 2 39.06 72.82 1 Bioinformatics [42] [43]

DD 1178 2 284.32 715.66 0 Bioinformatics [43] [44]
NCI1 4110 2 29.87 32.30 9 Small molecules [45] [44]

MUTAG 188 2 17.93 19.79 0 Small molecules [46]
FRANKENSTEIN 4337 2 16.90 17.88 780 Small molecules [47]

COIL-DEL 3900 100 21.54 54.24 2 Computer vision [48] [49]
IMDB-BINARY 1000 2 19.77 96.53 0 Social networks [50]

COLLAB 5000 3 74.49 2457.78 0 Social networks [50]
GITHUB 12725 2 113.79 234.64 0 Social networks [50]

REDDIT-BINARY 2000 2 429.63 497.75 0 Social networks [50]
REDDIT-MULTI-5K 4999 5 508.52 594.87 0 Social networks [50]

COLORS-3 10500 11 61.31 91.03 4 Synthetic [51]

Table 7.1: Datasets used from the TUDataset Collection [40], [41]

IMDB-BINARY, and GITHUB are three datasets with the same task but from different backgrounds.
The COLLAB datasets are from scientific collaboration networks. Each graph represents the
network of one researcher. The task is to predict the research field. In the IMDB-Binary dataset,
instead of scientists, each graph represents an actor’s network. We predict the genre of the actor.
The GITHUB dataset uses the network of GitHub users and predicts if they starred in machine
learning or web development repositories.

COLORS-3 is a synthetic dataset that was generated to show specific strengths and weaknesses of
attention in GNNs. Random graphs are generated and assigned red, green, or blue. The task is to
count the number of nodes with a specific color (green). The original idea is to study the influence
of the model’s initialization.

7.2 Setup

If not stated otherwise, our evaluations run with the model and setup described in Section 5.1 We
first run a pre-training step using unsupervised contrastive learning on the entire dataset. Followed
by that, we run graph classification in a supervised fine-tuning step with only 10% of the (labeled)
data. The results from the fine-tuning follow a 10-fold cross-validation. To compare our results to
different papers, we use both the mean-accuracy and the max-accuracy as described in Section 5.1.
We split our data into 90% training data and 10% test data. We count 10% labeled data for
fine-tuning as 10% of the whole data. 10% of the whole data would equal 11.11% of the training
data, which means 11.11% would be a more accurate description. Since the exact label percentage
is irrelevant and the papers we reference all adopt the same split and call this setup 10% labeled
data, we decided to keep this notion for better comparability.

The augmentation experiments are repeated and averaged five times (DD, NCI1, COLLAB, GITHUB,
RDT-B, RDT-5K, COLORS-3) or 20 times (PROTEINS, MUTAG, FRANKENSTEIN, COIL-DEL,
IMDB-B), depending on the size of the dataset. The accuracy in our result is the final classification
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Dataset PROTEINS DD NCI1 MUTAG FRANKEN. COIL-DEL

mean-acc
10% baseline 69.82±5.13 74.30±3.89 73.85±2.89 78.83±8.41 60.85±2.91 21.69±2.09

best aug 72.30±3.77 75.97±3.77 74.22±2.76 80.80±8.09 63.42±2.12 45.54±2.06
Full data 75.99±2.91 79.09±3.14 83.03±1.64 88.29±7.92 66.86±2.09 74.66±2.13

max-acc
10% baseline 73.42±3.93 76.75±3.20 75.70±2.71 85.86±6.53 63.84±1.90 22.71±2.06

best aug 74.70±3.03 78.13±3.50 75.85±2.51 85.49±6.61 65.90±1.50 46.87±1.89
Full data 78.64±3.93 81.85±3.20 84.77±2.71 94.13±6.53 69.19±1.90 76.84±2.06

Dataset IMDB-B COLLAB GITHUB RDT-B RDT-5K COLORS-3

mean-acc
10% baseline 66.90±4.80 73.45±1.63 61.01±1.78 86.72±2.11 51.38±2.06 51.78±2.10

best aug 68.52±5.55 75.81±1.79 66.22±1.50 88.70±2.05 52.81±1.95 83.68±2.61
Full data 73.68±4.95 82.39±1.55 69.09±1.37 92.28±1.60 56.76±1.55 99.75±0.24

max-acc
10% baseline 69.30±4.56 75.14±1.25 62.57±1.39 89.06±1.54 53.08±1.60 53.34±1.89

best aug 71.13±5.29 77.45±1.28 67.12±1.20 90.73±1.29 54.20±2.12 85.90±1.77
Full data 78.36±3.93 84.10±3.20 70.40±2.71 94.00±1.90 58.45±6.53 99.97±2.06

Table 7.2: Baseline classification accuracy of the datasets with the variance. 10% baseline uses
only fine-tuning with 10% of the labeled data. Full data uses 100% of the data with
labels during fine-tuning. The best augmentation is the best single augmentation with
20% augmentation ratio.

accuracy of the fine-tuning. We state our baseline without pre-training in Table 7.2. The following
results always show the change in percentage points in the classification accuracy we get when we
add the specific pre-training step before fine-tuning the model.

Contrastive learning uses two augmented views of the data. Due to computation limitations,
we can only test a limited number of augmentation combinations. We use a setup in which
we, if not explicitly stated otherwise, pick the first augmentation as the original graph without
augmentation, the so-called Identical augmentation. The second augmentation is one of our 23
defined augmentations from Chapter 6. For better readability, we do not use the full name of
the augmentation. Instead, we highlight specific augmentations by adding the number of the
augmentation in round brackets behind it. If we write that we build the low-degree subgraph (16),
we reference augmentation 16_subgraph_lowest_degree. We list all combinations of augmentation
names and numbers in Table 6.1. If not stated otherwise, we use the NT-Xent loss with one positive
and 127 negatives.

All evaluations run on four NVIDIA A100-SXM4-40GB (only one GPU per evaluation) and two
AMD EPYC 7763 processors with 64 cores. We run CUDA 11.3 with python 3.8, Pytorch 1.7.1,
and torch-geometric 1.6.0.

7.3 Augmentations

In the first step, we test different augmentations and their performance on different datasets. We
state the baselines of the datasets in Table 7.2. 10% baseline is the classification accuracy of using
no pre-training and only the fine-tuning step with 10% of the labeled data. As a reference, full data
is the accuracy when we use 100% of the data with labels during fine-tuning. The best augmentation
is the best single augmentation with 20% augmentation ratio that we combine with the original
graph. The results are only for one single combination that we test. Later evaluations show that
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higher augmentation ratios and the combination of augmentations further increase the result. Even
with this single test, we show that pre-training consistently improves our results throughout all the
datasets. Some datasets like PROTEINS, FRANKENSTEIN, GITHUB, RDT-B, and COLORS-3
close the gap to the full data results by close to 50%. Other datasets like NCI1 and COLLAB still
increase the results but have a large gap compared to the full data results.

We show the detailed results from the best augmentation evaluation in Figure 7.1. We tested the
original graph (Identical) combined with the selected augmentation during our first evaluations.
The reported values are the percentage point increase or decrease in classification accuracy we
get by adding pre-training with this augmentation compared to the baseline with no pre-training
from Table 7.2. We show improved performance in red and decreased performance in blue. The
top plot shows the results when we use the mean-accuracy. The bottom plot shows the results for
the max-accuracy. The y-axis specifies the dataset, and the x-axis the augmentation we use. All
augmentations use 20% augmentation ratio.

Eventually, we will combine two augmentations and evaluate their performance in the next chapter.
However, since for our 23 augmentations, there already exist 529 possible combinations, it is not
feasible to compute all possibilities for multiple datasets. Therefore, we use this first evaluation to
filter out the most promising augmentations.

The most important result is that an augmentation that improves a dataset does not necessarily
perform well on other datasets. We do, however, see strong similarities across datasets. We
make multiple interesting key observations. Firstly, using the Identical augmentation for both
augmentations, i.e., using only original graphs, usually lowers the model’s accuracy. As previous
research by You et al. [9] has suggested, contrastive learning with only the original graphs is
generally not helpful. The positive loss is 0, which results in different graphs being pushed further
away in the embedding space.

We also observe that some augmentations lower the model’s accuracy even further than using
only original graphs. It is crucial to select good augmentations, while bad augmentations can
significantly lower the model’s accuracy. We see the general effects in both the mean-accuracy
and the max-accuracy evaluations. They only differ in the magnitude of improvement since the
max-accuracy method profits more from outliers. This means that the improvement is bigger for the
mean-accuracy because the baseline is not as strongly affected by outliers and is lower. As a result,
it is easier to improve the mean-accuracy.

Across all datasets adding nodes, attribute mean-masking, switching node attributes, edge pertur-
bation, adding edges, removing edges, and the three subgraph metrics eigenvector, Pagerank, and
HITS do not perform well (5, 6, 8, 9, 10, 11, 17, 18, 19). For some datasets, these augmentations do
increase the performance, but we have other similar augmentations that perform at least the same or
considerably better and make the previous methods redundant.

Bioinformatic datasets like PROTEINS and DD perform best with node dropping and subgraph
augmentations (1, 3, 12, 13, 16). PROTEINS additionally improves with attribute masking and
merging nodes (7, 20). Keeping low-degree nodes and removing high-degree nodes is a good
strategy. The random node dropping and subgraph methods (1, 12) are especially good with DD.
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DD              20%  aug_ratio

NCI1            20%  aug_ratio

MUTAG           20%  aug_ratio

FRANKENSTEIN    20%  aug_ratio
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Figure 7.1: We evaluate the combination of the original graph (Identical) with all augmentations.
We report the change in classification accuracy. The top plot shows the results when
we use the mean-accuracy. The bottom plot shows the results for the max-accuracy.
The y-axis specifies the dataset, and the x-axis the augmentation.

53
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Small molecules datasets like NCI1, MUTAG, and FRANKENSTEIN are more difficult to improve.
Especially in the max-accuracy setting, many augmentations result in decreased accuracy. The
width-search subgraph (14) is generally good across all datasets in this category. MUTAG and
FRANKENSTEIN also benefit from the random, high-degree, and Pagerank subgraph (12, 15,
18).

Social network datasets like IMDB-B, COLLAB, GITHUB, RDT-B, and RDT-5K perform best
with node dropping and attribute masking (2, 3, 4, 7). Only random, low-degree, and merging nodes
(12, 16, 20) perform well from the subgraph methods. The other subgraph methods are considerably
worse. GITHUB is an outlier in this behavior. All the subgraph methods perform well.

COIL-DEL performs best with random node dropping and merging nodes (1, 20). This dataset
profits a lot from pre-training. Big outliers are the four subgraph methods that keep high-degree
nodes (15, 17, 18, 19) and adding nodes (5). They decrease the accuracy by two percentage points,
while many other augmentations increase it by over 20 percentage points.

The COLOR-3 dataset also profits a lot from pre-training. We have to consider that this is a synthetic
dataset. It is hard to judge how valuable the information from this dataset is. Node dropping,
attribute masking, and merging nodes is best (2, 3, 7, 20).

COIL-DEL and COLORS-3 show a very strong increase in accuracy with pre-training compared to
the other datasets. To show that the improvement is actually due to the pre-training itself and not
only more training, we increase the episodes for fine-tuning and compare the results. Instead of 100,
we now use 200 episodes of fine-tuning to calculate the baseline values. For the mean-accuracy,
COIL-DEL increases from 21.69% to 21.72%, COLORS-3 increases from 51.78% to 52.22%. In
the max-accuracy setting, COIL-DEL increases from 22.71% to 23.58%, COLORS-3 increases
from 53.34% to 53.82%. Increased fine-tuning only very slightly increases the performance, while
the pre-training step greatly improves the model.

Node dropping and subgraphs are good methods for all datasets. Attribute masking is also decent and
especially good for social networks. The specific strategy that selects which nodes are augmented
differs. Node dropping and subgraphs both do not need an advanced strategy. The random methods
already improve the accuracy, yet selecting a strategy that depends on the dataset is highly beneficial.
An example is the COLLAB dataset. With mean-accuracy, random node dropping (1) increases the
result by 1.85 percentage points. Dropping high-degree nodes instead (2) increases the results by
2.36 percentage points. Accordingly, the increase for a random subgraph (12) is 1.45 percentage
points, while a subgraph with low-degree nodes (16) improves by 1.75 percentage points. We also
find examples where some node selection strategies perform badly, even though the random strategy
is good. Unsurprisingly, opposite strategies like dropping high-degree and low-degree nodes usually
show opposite results. If we look at the same subgraph example with COLLAB, we see that most
strategies like depth-search or width-search not only perform worse than the random variant. They
also result in a performance decrease compared to the baseline.

We can observe a general tendency in the different node selection strategies. Specifically, we
observe that removing high-degree nodes and keeping the low-degree nodes is often beneficial. We
see this effect in node dropping and subgraphs. Dropping high-degree nodes with a higher chance
performs better than random node dropping while dropping low-degree nodes is significantly worse.
The same goes for subgraphs. Building the subgraph with high-degree nodes performs worse than
building the subgraph with low-degree nodes. Consequently, the three augmentations 17-19 also
perform worse because these node centralities tend to assign a higher score to nodes that receive
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7.3 Augmentations

Steiner tree augmentation
Dataset random (21) low-degree(22) weighted (23)

m
ea

n-
ac

c
PROTEINS 1.90 2.06 1.84

NCI1 0.35 0.25 0.03
FRANKENSTEIN 1.98 4.26 4.29

COIL-DEL 18.87 7.98 7.90
COLORS-3 13.43 14.68 15.24

Steiner tree augmentation
Dataset random (21) low-degree(22) weighted (23)

m
ax

-a
cc

PROTEINS 0.79 0.82 0.46
NCI1 -0.16 0.20 0.20

FRANKENSTEIN 1.63 3.35 3.31
COIL-DEL 19.10 8.00 7.93
COLORS-3 13.74 14.64 15.44

Table 7.3: The table shows the performance of the three steiner tree methods. We report an increase
in percentage points compared to the baseline. We use 20% of the nodes as the terminal
nodes. The real augmentation is around 60%.

more edges. Since we have an undirected graph, higher-degree nodes usually get a high score.
PROTEINS, COLLAB, GITHUB, RDT-B, and COIL-DEL show that keeping low-degree nodes is
beneficial. The FRANKENSTEIN dataset is an outlier for this behavior. Building the low-degree
subgraph (16) is the worst subgraph strategy for this dataset. The high-degree subgraph (15) is the
best.

Another effect we see is the difference between masking node attributes with the average or with
0. Masking with 0 outperforms the mean masking in all datasets we tested. As mentioned in the
augmentation Chapter 6, we assume that reason for this is the fact that the node attributes are
one-hot vectors in our datasets. The continuous average value is an outlier and can not be handled
well by the model.

We mentioned earlier that adding nodes, switching node attributes, edge perturbation, adding edges,
and removing edges do not perform well (5, 8, 9, 10, 11). Often they are not only worse than
the other augmentations, but they are often worse than the baseline. What these methods have in
common is that they do not change the original nodes. It makes sense that the results are similar to
using no augmentation (Identical). The key structure of the graph is unchanged. All nodes, most
edges, and most attributes are still the same. Other methods, like subgraphs, remove complete parts
of the graph.

Merging nodes (20) is a mixture of node dropping and building a subgraph. The results from
merging nodes are close to the random variants of node-dropping and subgraph. The method does
not generally improve the performance of either of them by much.

We show the results for five datasets with the three steiner tree augmentations in Table 7.3. As
previously mentioned, the steiner tree methods have the disadvantage that we can not pick a specific
augmentation ratio. The results use a terminal set with 20% of the nodes, which results in about 60%
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augmentation ratio. The three different variants show no clear favorite. The random variant (21)
performs better with COIL-DEL. Selecting the low-degree nodes (22) and the weighted approach
(23) perform better with FRANKENSTEIN. For most datasets, there are better augmentations than
the steiner trees. FRANKENSTEIN is an exception. Here they are significantly better than the other
augmentations with 20% augmentation ratio. However, FRANKENSTEIN is similar to datasets
like PROTEINS and benefits from higher augmentation ratios. Part of the increased performance
for FRANKENSTEIN is because we apply a higher augmentation ratio. Steiner trees are generally
an interesting approach to augmentations. Nevertheless, the results can not compensate for the
disadvantages of not being able to pick exact augmentation ratios and infeasible computation times
for the big datasets.

As mentioned before, we see that different datasets can show different behavior. Datasets like
PROTEINS improve with most augmentations, while NCI1 shows the opposite effect. Here nearly
all augmentations result in slightly lower accuracy than the baseline. A simple assumption is
that similar datasets behave the same. To define a dataset as similar, multiple parameters can be
compared. Examples are the source of the data and their general type, the number of graphs, the
number of nodes and edges, and the average degree. As a simple example, we compare NCI1 and
FRANKENSTEIN. They both are graphs of small molecules, and while NCI1 has twice as big
graphs, their average degree is the same. We expect these very similar datasets to show similarities
in the performance of the augmentations and augmentation ratios. As we see in Figure 7.1, this is
not the case for these two datasets. While NCI1, in general, is a dataset that is improved very little
by all tested augmentations, FRANKENSTEIN shows improvements in nearly all augmentations.
However, not only the magnitude of improvement is different. As we previously mentioned,
NCI1 shows the usual pattern of getting better performance when we remove high-degree nodes.
FRANKENSTEIN performs better when we keep the high-degree nodes. This effect shows in
node dropping, the subgraph method, and the three metrics from augmentation 17-19. There is no
simple way to predict whether an augmentation will perform well on a dataset. Finding datasets
that show the same behavior by looking only at these simple parameters is impossible. This task
would require at least more profound in-depth knowledge of the datasets.

7.3.1 Augmentation Ratios

After analyzing the single augmentation performance, we now evaluate different augmentation
ratios. We compare their impact in detail for PROTEINS in Figure 7.2 and for NCI1 in Figure 7.3.
We evaluate the combination of the original graph (Identical) with all augmentations. The top
plot shows the results when we use the mean-accuracy. The bottom plot shows the results for
the max-accuracy. On the y-axis, we see the augmentation ratio. The x-axis shows the applied
augmentation. Previous research [9] often uses 20% as a default augmentation ratio, and not much
time has been invested into researching different augmentation ratios. We test augmentation ratios
in the range of 5%, 20%, 35%, 50%, 65%, 80%, and 95%. We observe that a higher augmentation
ratio often gives better results. We see this in the PROTEINS dataset in Figure 7.2. Other datasets
like FRANKENSTEIN, COLLAB, and RDT-B show the same behavior. The optimum for these
datasets is between 60% and 80%. In contrast to this, other datasets show the reverse behavior. For
the NCI1 dataset in Figure 7.3, most augmentations get worse with higher augmentation ratios. In
general, nearly all augmentations for NCI1 result in worse accuracy. We somewhat expect that a
bad augmentation, which is applied more, results in a worse performance. For the PROTEINS
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Figure 7.2: Augmentation ratio comparison for PROTEINS. The results are the change in percentage
points compared to our baseline. The top plot shows the results when we use the
mean-accuracy. The bottom plot shows the results for the max-accuracy. On the y-axis,
we see the augmentation ratio. The x-axis shows the applied augmentation.

dataset, we manage to increase our best mean-accuracy result with 20% augmentation ratio from
1.28 to 1.75 percentage points. The max-accuracy increases from 2.48 to 3.68 percentage points
With different augmentation ratios, we improved our previous results by 40%. We conclude that
the augmentation ratio is a very important, so far neglected, parameter.

7.3.2 Augmentation Combinations

We test the combination of augmentations in Figure 7.4, Figure 7.5, and Figure 7.6. Due to
computational limits, we can not test all possible combinations with all datasets. We use ten of the
most interesting augmentations from our previous single performance evaluation and evaluate them
with the PROTEINS dataset. We do see, however, similar effects on other datasets. We test three
different configurations: both augmentations with 20%, both with 80%, and one augmentation with
20% and the other with 80% augmentation ratio.
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Figure 7.3: Augmentation ratio comparison for NCI1. The results are the change in percentage
points compared to our baseline. The top plot shows the results when we use the
mean-accuracy. The bottom plot shows the results for the max-accuracy. On the y-axis,
we see the augmentation ratio. The x-axis shows the applied augmentation.

The first image, Figure 7.4, shows both augmentations with 20% augmentation ratio. Compared to
our single performance before in Figure 7.2, the best mean-accuracy combination of augmentations
increases from 2.48 to 3.34 percentage points. The best max-accuracy combination increases from
1.28 to 1.84 percentage points. Interestingly, the two best single augmentations from before do
not yield the best augmentation combination. For mean-accuracy, dropping high-degree nodes
(3) and masking nodes (7) is the best combination. They only increase the accuracy by 2.40 or
2.65 percentage points, depending on the order of both augmentations. They are slightly better
than their previous single performance, 2.40 and 2.48 percentage points. Generally, most of the
20% augmentation ratio combinations seem to benefit from the combination and result in higher
accuracy than both augmentations individually. Augmentations like the depth-first subgraph (13)
increased noticeably throughout all tested combinations. There are a few combinations that do
perform worse. Most noticeably, the combination of two times 0-masking (7) performs worse than
the single version and even worse than the baseline. Another thing we notice is that the order of
the augmentations does matter. We do not see perfect symmetry between the table’s lower left
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Figure 7.4: Evaluation of augmentation combinations for PROTEINS. The results are the change
in percentage points compared to our baseline. The left plot shows the results when
we use the mean-accuracy, the right plot for the max-accuracy. The x-axis and y-axis,
define the augmentation combination. All augmentations use 20% augmentation ratio
and are averaged over five runs.

and upper right sides. Some combinations show differences. For example, the mean-accuracy for
subgraph (9) and edge perturbation (12) increases to 2.33 or 1.67 percentage points, depending on
the order of both augmentations. Although the magnitude of the combination, if it is bad, average,
good, or very good, is not dependent on the order. Especially the smaller graph datasets generally
suffer from high variance. We attribute most of the difference to the variance.

The second image, Figure 7.5, shows both augmentations with 80% augmentation ratio. Similarly to
the combination of 20% augmentation ratios, we see a general increase by combing the augmentations.
Compared to before, we get higher accuracies for more combinations but also more combinations
with lower accuracies. The 20% augmentation ratio combinations were closer to the average. For
80% we get more high and low values. However, we can say the same for the single combination
with 20% augmentation ratio compared to 80% augmentation ratio. This result is, therefore, not
surprising. The best augmentation combination increased the mean-accuracy from 3.68 to 3.87
percentage points. The max-accuracy increased from 1.73 to 2.23 percentage points. Compared to
before, the increase from the combination for 80% augmentation ratio is noticeably lower than for
20% augmentation ratio. The worst method is once again the combination of two times 0-masking
(augmentation 7). The performance has significantly decreased. For 20% to 80% augmentation
ratio, the single mean-accuracy decreased from 2.48 to 2.15. At the same time, the combination
of 20% with -0.29 percentage points decreased to -2.49 percentage points with the combination
of 80%. While the single accuracy only slightly decreased with the higher augmentation ratio,
the decrease of the combination was much higher. This supports our previous observation, in
which higher augmentation ratios result in more outliers in both positive and negative directions.
This result indicates that while combing augmentations is generally very beneficial, there might
be a turning point for the augmentation ratio when some combinations stop benefiting from the
combination and start to decrease.
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Figure 7.5: Evaluation of augmentation combinations for PROTEINS. The results are the change
in percentage points compared to our baseline. The left plot shows the results when
we use the mean-accuracy, the right plot for the max-accuracy. The x-axis and y-axis,
define the augmentation combination. All augmentations use 80% augmentation ratio
and are averaged over five runs.
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Figure 7.6: Evaluation of augmentation combinations for PROTEINS with Augmentation 1 20%
(left) - Augmentation 2 80% (bottom). The results are the change in percentage
points compared to our baseline. The left plot shows the results when we use the
mean-accuracy, the right plot for the max-accuracy. The x-axis and y-axis, define the
augmentation combination. All augmentations use 80% augmentation ratio and are
averaged over five runs.
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7.4 Loss Functions

Finally, we test the third option, in Figure 7.6, where one augmentation has 20% augmentation ratio
and the other one 80% augmentation ratio. The best augmentation increases for the mean-accuracy
from 3.68 to 3.96 percentage points. The max-accuracy increased from 2.23 to 2.57 percentage
points. While the best combination only slightly increased, we notice that we have many more
combinations with high accuracy than before. 20%-20% has 13 combinations with ≥3.00 percentage
points increase, 80%-80% has 28 combinations, 20%-80% has 66 combinations. A surprising result
is that the negative outlier from before, two times 0-masking (7), has vanished. While two times
20% resulted in -0.29, and two times 80% resulted in -2.49, combining 20% 0-masking with 80%
0-masking results in an increase of 2.01 percentage points.

We have seen that combining different augmentations, especially with different augmentation ratios,
results in better pre-training. While many combinations result in good performances, we are
interested in the highest accuracy. The difference between the best single augmentation and the
best combination is low. For mean-accuracy, the best single augmentation is dropping high-degree
nodes (2) with 80% augmentation ratio, which results in a 3.68 percentage points increase. The best
combination is 0-masking (7) with 20% augmentation ratio and dropping high-degree nodes (2)
with 80%, which increases the result by 3.96 percentage points. We found a better combination,
but it took us 300 combinations for a small increase, even though we only tested half of our
augmentations and two different augmentation ratios. Generally, a good approximation can be
found quickly by testing the generally good single augmentations and combining them with low and
high augmentation ratios. Since there are infinitely many possible combinations, an unknown, very
good combination might exist.

7.4 Loss Functions

To evaluate the different loss functions, we use an augmentation that performs well for nearly
all datasets combined with the original graph. Identical is the first augmentation, and the lowest
degree subgraph (16) with 20% augmentation ratio is the second augmentation. We evaluate all
loss functions with the basic settings described in Section 7.2 and run the experiments 20 times
to calculate the average mean-accuracy and max-accuracy. We test seven different loss functions.
Cosine (5.1), euclidian (5.3), TS-SS sum (5.20), TS-SS ratio (5.21), Triplet (5.12), Weighting-1
(5.8), and Weighting-2 (5.9). For the following evaluations, we use m=5 for the margin. We later
see in our evaluations that m=5 is a reasonable parameter.

We show the results in Table 7.4. The top table shows the mean-accuracy results, and the lower
table shows the max-accuracy results. Bold numbers are the reference values for the default loss
of using one positive with 127 negatives and our NT-Xent loss variant, which we call cosine in
the table. We highlight the best loss function in red. As augmentations, we use Identical and the
lowest-degree subgraph (16) with an augmentation ratio of 20%. The accuracy values we have to
compare our new loss functions to are a 2.46 percentage point increase for the mean-accuracy and a
1.09 percentage point increase for the max-accuracy with the PROTEINS dataset. The NCI1 dataset
increases by 0.57 percentage points for the mean-accuracy and by 0.25 percentage points for the
max-accuracy. These are the previous results for the selected augmentation and augmentation ratio
when we use our default loss.
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positive samples 1 1 1 1 1 1 4
negative samples 0 1 2 10 50 127 8
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N
C

I1

cosine -0.92 0.12 0.14 0.64 -0.14 0.57 0.17
euclidian -0.95 -0.71 -0.38 -0.21 -0.05 -0.05 -0.22
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positive samples 1 1 1 1 1 1 4
negative samples 0 1 2 10 50 127 8

m
ax

-a
cc PR

O
TE

IN
S cosine -0.24 1.08 1.20 1.04 0.14 1.09 1.27

euclidian -0.23 1.29 1.53 0.84 0.44 0.21 1.30
TS-SS sum -0.67 1.11 1.02 1.09 0.84 0.97 0.79
TS-SS ratio - -0.14 -0.27 0.03 -0.13 0.08 -0.52

N
C

I1

cosine -0.78 -0.11 -0.05 0.28 -0.30 0.25 -0.08
euclidian -0.82 -0.75 -0.58 -0.38 -0.25 -0.28 -0.38

TS-SS sum -0.08 -0.36 -0.44 -0.28 -0.45 -0.23 -0.45
TS-SS ratio - -0.41 -0.46 -0.44 -0.42 -0.54 -0.09

Table 7.4: Comparison of four loss functions. The bold numbers are the reference value for the
cosine loss with one positive and 127 negatives, the method we have used so far. The
red numbers are the best loss functions. The table shows the percentage point increase
in accuracy of the pre-training step compared to only fine-tuning.

We first look into the different loss functions with the default setting of 127 negatives. The cosine
loss significantly outperforms the euclidian loss, while the TS-SS sum performance is between
both. The TS-SS ratio loss is consistently worse than the TS-SS sum. Generally, cosine distance is
regarded as a good distance metric in the high dimensional space, so we expect these results.

For all loss functions using no negatives results in worse performance. Since negative samples are
a crucial part of contrastive learning, we expect these results. Interestingly, the mean-accuracy
for PROTEINS is still positive, although worse than with negatives, compared to the baseline.
Pre-training without negatives can still be helpful on some datasets.

In the next step, we lower the negative samples for the different loss functions. For cosine loss, we
see a drop-off in performance when we go down to 50 negatives. For 2-10 negatives, we get the same
performance or slightly better as for 127 negatives. This result contradicts the assumption from
image representation learning, where previous research [7] suggests that a high number of negative
samples benefits contrastive learning. The euclidian loss shows a different behavior, depending on
the dataset. For PROTEINS, the performance increases the fewer negatives we use, down to two
negatives being the optimal result. For NCI1, we get the optimal performance with 127 negatives
and only get worse with fewer negatives. Interestingly, the best performance of the euclidian loss
results in a 2.80 percentage point increase in the mean-accuracy. The best-performing cosine loss
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margin m 0.1 1.0 2.5 5.0 10.0 20.0

m
ea

n-
ac

c PROTEINS euclidian 0.99 1.45 2.17 2.79 2.57 2.79
Triplet 1.40 1.88 1.85 2.02 1.93 2.08

NCI1 euclidian -0.91 -0.64 -0.47 -0.36 -0.41 -0.33
Triplet -0.44 -0.59 -0.51 -0.55 -0.43 -0.62

margin m 0.1 1.0 2.5 5.0 10.0 20.0

m
ax

-a
cc PROTEINS euclidian -0.35 0.47 0.87 1.57 1.36 1.58

Triplet 0.28 0.89 0.71 0.99 0.97 1.07

NCI1 euclidian -0.83 -0.63 -0.53 -0.45 -0.53 -0.49
Triplet -0.56 -0.71 -0.73 -0.64 -0.68 -0.70

Table 7.5: Evaluation of the margin parameter m. The red numbers are the best margin. The blue
numbers are the second-best margin.

only increases the mean-accuracy by 2.52 percentage points. Similarly, for the max-accuracy, the
best euclidian results outperform the best cosine result with a 1.53 over a 1.20 percentage point
increase. Both the TS-SS sum and TS-SS ratio are less affected by the number of negatives. They
show similar results throughout all settings. We additionally tested the Triplet loss, for which the
number of negatives is always one, and the calculation is similar to the max-margin euclidian loss
formula. Table 7.5 shows the results for different margin parameters m. The higher margins between
5-20 result in the best performance. TS-SS sum and Triplet loss have a similar performance and are
generally better than the TS-SS ratio. Euclidian and cosine loss with few negatives remain the best
two options. For PROTEINS, the euclidian loss with two negatives, and for NCI1, the cosine loss
with ten negatives has the best performance.

At last, we now increase the number of positives. We compare ourselves to the results from one
positive and two negatives. We now increase the number of positives to four. Accordingly, we also
increase the number of negatives from two to eight as described in Section 5.2.3. For PROTEINS,
we see an increase for both cosine and euclidian loss, TS-SS sum, and TS-SS ratio are unaffected
or even decrease slightly. The cosine loss increases from 2.46 to 2.66 percentage points for the
mean-accuracy and from 1.20 to 1.27 percentage points for the max-accuracy. The euclidian loss
increases from 2.75 to 2.94 percentage points for the mean-accuracy and from 1.29 to 1.30 percentage
points for the max-accuracy. For NCI1, we see no improvements or only small improvements for all
loss functions, some of which are negative. We can improve our cosine and euclidian results with
more positive samples. By increasing the number of positives by a factor of four, we also increase
the training the model gets. Later evaluations of transfer learning, warm-starting, and increased
pre-training episodes show better improvements with a smaller increase in training. Increasing the
number of positive samples in the loss function does not seem to be a valuable trade-off between
resources and results.
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No weight Weighting-1 Weighting-2

mean-acc PROTEINS 2.75 2.80 2.62
NCI1 -0.71 -0.68 -0.61

No weight Weighting-1 Weighting-2

max-acc PROTEINS 1.29 1.52 1.30
NCI1 -0.75 -0.61 -0.77

Table 7.6: Evaluation of two weighted loss functions for the euclidian max-margin loss. The top
table shows the mean-accuracy results, and the lower table shows the max-accuracy
results. The red numbers are the best loss function.

7.4.1 Margin Parameter

The euclidian function and the Triplet loss introduce an additional parameter m, the max-margin, as
described in Section 5.2.1. In Table 7.5, we test the influence of the margin parameter m in the
euclidian loss and the triplet loss. The top table shows the mean-accuracy results, and the lower
table shows the max-accuracy results. As augmentations, we use Identical and the lowest-degree
subgraph (16) with an augmentation ratio of 20%. The table shows the percentage increase in
accuracy of the pre-training step compared to only fine-tuning. We highlight the best margin in red
and the second best in blue.

The euclidian loss performs best with a margin of 5-20 on both PROTEINS and NCI1. The results
above five do stay the same and do not increase further. The Triplet loss also performs best for
PROTEINS with a margin between 5-20. For NCI1, a low margin of 0.1 also shows a good
performance. We conclude that m=5 is a reasonable margin parameter that performs well in all our
tests.

7.4.2 Weighting Loss Functions

We also test an improvement of the euclidian loss. We weight the loss of graphs in the mini-batch
compared to the rest. We describe the two formulas in Section 5.2.4. We want to assign more weight
to the loss of a graph if the positive distance is high and the negative distance is low. Weighting-1
does not limit the negative distance, while Weighting-2 limits the size of the negative loss to the
margin m=5. The reference result is the euclidian loss with one negative, called no weight. We show
the results in Table 7.6 and mark the best methods with red. As augmentations, we use Identical and
the lowest-degree subgraph (16) with an augmentation ratio of 20%. The table shows the increase
in percentage points compared to the baseline.

We see that the weighting functions are better in both settings and datasets. The mean-accuracy
increased from 2.75 to 2.80 percentage points for the PROTEINS dataset. The max-accuracy
decreased from 1.29 to 1.52 percentage points. For the NCI1 dataset, the mean-accuracy increased
from -0.71 to -0.61 percentage points. The max-accuracy increased from -0.75 to -0.61 percentage
points. This simple example shows that a good weighting function improves the loss function
further.
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7.5 Shrink & Perturb

Pre-training Episodes Fine-tuning Episodes Shrink & Perturb mean-acc max-acc
PROTEINS 100 PROTEINS 100 No 2.32 1.00
PROTEINS 100 PROTEINS 100 Yes -0.35 -1.29
PROTEINS 100 PROTEINS 100 Average weight -2.70 -1.05
NCI1 100 NCI1 100 No 0.37 0.14
NCI1 100 NCI1 100 Yes -1.22 -0.82
NCI1 100 NCI1 100 Average weight -0.90 -0.59
FRANKEN. 100 FRANKEN. 100 No 0.30 0.19
FRANKEN. 100 FRANKEN. 100 Yes 0.45 0.58
FRANKEN. 100 FRANKEN. 100 Average weight 0.10 0.23

Table 7.7: Results from testing the shrink & perturb step in our default setup. We apply it between
pre-training and fine-tuning.

7.5 Shrink & Perturb

Warm-starting describes that we start a neural network with trained weights instead of randomly
initializing them. We do this in our fine-tuning step. Ash et al. [20] describe a general approach to
improve warm-starting neural networks. We describe their approach in Section 5.3 and present the
results in Table 7.7. Between pre-training and fine-tuning, we apply warm-starting, but until now,
without a shrink & perturb step, which we use as a reference. The default shrink & perturb variant
is by Ash et al. with the parameters they found work best (5.22). We call our adaptation the average
weight method (5.23)

For PROTEINS and NCI1, both shrink & perturb methods do not improve the results. They
decrease them very strongly. The FRANKENSTEIN dataset does profit from the default shrink &
perturb. The mean-accuracy increases from 0.30 to 0.45 percentage points. For the max-accuracy,
we increase from 0.19 to 0.58 percentage points. When we use max-accuracy, the average weight
method also slightly increases the results from 0.19 to 0.23. For the mean-accuracy, the accuracy
decreases more strongly from 0.30 to 0.10 percentage points.

We see in later evaluations that the FRANKENSTEIN dataset profits from fewer episodes, potentially
due to fast overfitting. The shrink & perturb step could revert part of the overfitting. Generally, the
shrink & perturb does not improve the results when we use it between pre-training and fine-tuning
the same dataset. In most cases, it strongly decreases the accuracy. During the next section, we test
the effect of transfer learning. During this evaluation, we test the shrink & perturb method in the
setting where the dataset on pre-training and fine-tuning is different.

7.6 Transfer Learning

In this section, we test the performance of transfer learning. Since the pre-training does not rely on
labels, the assumption is that we can pre-train with different other datasets as well. We described
the approach in Section 5.4. We show the results in Table 7.8. We might profit from more training
due to more episodes or larger datasets. If we switch out the pre-training dataset with a much larger
dataset, the larger training size might have a more significant impact than the data itself. To make
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Pre-training Fine-tuning
Dataset Episodes Total #Graphs Dataset Episodes Shrink & Perturb mean-acc max-acc
PROTEINS 100 111.300 PROTEINS 100 No 2.32 1.00
PROTEINS 370 411.810 PROTEINS 100 No 2.51 1.20
NCI1 100 411.000 PROTEINS 100 No 1.00 1.33
NCI1 100 411.000 PROTEINS 100 Yes -0.93 1.04
NCI1 100 411.000 PROTEINS 100 Average weight -2.43 -1.87
PROTEINS 390 434.070 PROTEINS 100 No 2.32 0.96
FRANKEN. 100 433.700 PROTEINS 100 No 1.06 1.41
FRANKEN. 100 433.700 PROTEINS 100 Yes -0.44 1.83
FRANKEN. 100 433.700 PROTEINS 100 Average weight -1.22 0.28

Pre-training Fine-tuning
NCI1 100 411.000 NCI1 100 No 0.37 0.14
NCI1 27 110.970 NCI1 100 No 0.15 -0.09
PROTEINS 100 111.300 NCI1 100 No -0.17 -0.28
PROTEINS 100 111.300 NCI1 100 Yes -1.15 -0.76
PROTEINS 100 111.300 NCI1 100 Average weight -0.71 -0.48
NCI1 100 411.000 NCI1 100 No 0.37 0.14
FRANKEN. 100 433.700 NCI1 100 No -0.37 -0.37
FRANKEN. 100 433.700 NCI1 100 Yes -1.15 -0.71
FRANKEN. 100 433.700 NCI1 100 Average weight -0.72 -0.49

Pre-training Fine-tuning
FRANKEN. 100 433.700 FRANKEN. 100 No 0.30 0.19
FRANKEN. 26 112.762 FRANKEN. 100 No 0.90 0.83
PROTEINS 100 111.300 FRANKEN. 100 No 0.21 0.32
PROTEINS 100 111.300 FRANKEN. 100 Yes 0.50 0.59
PROTEINS 100 111.300 FRANKEN. 100 Average weight 0.10 0.37
FRANKEN. 100 433.700 FRANKEN. 100 No 0.30 0.19
NCI1 100 411.000 FRANKEN. 100 No 0.23 0.35
NCI1 100 411.000 FRANKEN. 100 Yes 0.52 0.58
NCI1 100 411.000 FRANKEN. 100 Average weight 0.20 0.33

Table 7.8: We test the performance of transfer learning. The bold numbers are the reference value
for 100 episodes of pre-training with the same dataset. We compare them to transfer
learning with a different dataset. Since other datasets have different sizes, we offer a
version with increased/decreased training with the same dataset to compare the results.
The red numbers mark the best of the four variants.
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7.7 Warm-Starting

our results more comparable, we always give the base performance for 100 episodes of pre-training
with the same dataset, for example, with the PROTEINS dataset. We then test the performance for
100 episodes of pre-training with different datasets like NCI1 and FRANKENSTEIN. Since NCI1 is
3.7 times as large as PROTEINS and FRANKENSTEIN is 3.9 times as large, we additionally state
the performance for 370 and 390 episodes of pre-training with PROTEINS. This way, we ensure
that the total number of graphs during pre-training is comparable. The amount of pre-training is still
different since other parameters, like the size of the graphs, also influence the training. However,
we get a better approximation to compare our results.

If we look at the first example, the table at the top in Table 7.8, we fine-tune on PROTEINS.
The base results are 2.32 percentage points for mean-accuracy and 1.00 for max-accuracy. For
mean-accuracy, transfer learning does not work with either NCI1 or FRANKENSTEIN. They
perform significantly worse while increasing the episodes of PROTEINS to 370 slightly increases
the results. For max-accuracy, pre-training with NCI1 without shrink & perturb increases the
results from 1.00 to 1.33 percentage points, while training with 370 episodes only results in a 1.20
percentage point increase. For FRANKENSTEIN, the max-accuracy results are even better. The
results increase both with and without shrink & perturb. We significantly increased the results from
1.00 to 1.83 percentage points with shrink % perturb.

The middle table shows the results of fine-tuning on NCI1. For NCI1, none of the different transfer
learning setups can improve the results. They are worse than the reference value and even negative
compared to the baseline.

In the lower table, we see the results for fine-tuning on FRANKENSTEIN. Interestingly we
see that lowering the episodes for FRANKENSTEIN increases the results, which suggests that
FRANKENSTEIN overfits very fast during pre-training. Pre-training with PROTEINS does increase
the reference results. Nevertheless, as we explained, less training with the same dataset is still
better than transfer learning with PROTEINS. Pre-training with NCI1 increases mean-accuracy
results only when we apply the shrink & perturb step. Max-accuracy is increased by all three shrink
& perturb methods. We get the best performance with the default shrink & perturb, the same as
with mean-accuracy. We increase the mean-accuracy from 0.30 to 0.52 percentage points and the
max-accuracy from 0.19 to 0.58 percentage points.

We see that transfer learning is, like other methods, dataset-dependent. NCI1 is negatively affected
by transfer learning. We perform worse than the baseline without pre-training. We show that
other datasets like PROTEINS and FRANKENSTEIN benefit from pre-training with different
datasets. In most cases, we perform slightly worse with a different pre-training dataset than using
the same dataset. However, this shows that pre-training with completely different graphs can
improve fine-tuning. In some cases, we showed better results with transfer learning than with the
same dataset. A shrink & perturb step further improved the results in most cases between different
datasets. Previous tests of the shrink & perturb step showed that it often does not work when we
use the same dataset for pre-training and fine-tuning.
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Pre-Pre-training Pre-training Fine-tuning
Dataset Episodes Dataset Episodes Total #Graphs Dataset Episodes Shrink & Perturb mean-acc max-acc
- - PROTEINS 100 111.300 PROTEINS 100 No 2.32 1.00
- - PROTEINS 470 523.110 PROTEINS 100 No 2.31 0.98
NCI1 100 PROTEINS 100 522.300 PROTEINS 100 No 3.08 1.70
NCI1 100 PROTEINS 100 522.300 PROTEINS 100 Yes 3.63 1.91
NCI1 100 PROTEINS 100 522.300 PROTEINS 100 Average weight 2.46 1.03
- - PROTEINS 490 545.370 PROTEINS 100 No 2.90 1.09
FRANKEN. 100 PROTEINS 100 545.000 PROTEINS 100 No 3.23 1.70
FRANKEN. 100 PROTEINS 100 545.000 PROTEINS 100 Yes 3.65 1.89
FRANKEN. 100 PROTEINS 100 545.000 PROTEINS 100 Average weight 2.52 1.04

Pre-Pre-training Pre-training Fine-tuning
Dataset Episodes Dataset Episodes Total #Graphs Dataset Episodes Shrink & Perturb mean-acc max-acc
- - NCI1 100 411.000 NCI1 100 No 0.37 0.14
- - NCI1 127 521.970 NCI1 100 No 0.72 0.40
PROTEINS 100 NCI1 100 522.300 NCI1 100 No 0.29 0.06
PROTEINS 100 NCI1 100 522.300 NCI1 100 Yes -0.88 -0.49
PROTEINS 100 NCI1 100 522.300 NCI1 100 Average weight -0.33 -0.08
- - NCI1 200 822.000 NCI1 100 No 0.65 0.30
FRANKEN. 100 NCI1 100 844.700 NCI1 100 No 0.34 0.13
FRANKEN. 100 NCI1 100 844.700 NCI1 100 Yes -0.66 -0.18
FRANKEN. 100 NCI1 100 844.700 NCI1 100 Average weight -0.40 -0.27

Pre-Pre-training Pre-training Fine-tuning
Dataset Episodes Dataset Episodes Total #Graphs Dataset Episodes Shrink & Perturb mean-acc max-acc
- - FRANKEN. 100 433.700 FRANKEN. 100 No 0.30 0.19
- - FRANKEN. 126 546.462 FRANKEN. 100 No 0.01 -0.25
PROTEINS 100 FRANKEN. 100 545.000 FRANKEN. 100 No 0.57 0.45
PROTEINS 100 FRANKEN. 100 545.000 FRANKEN. 100 Yes 0.33 0.20
PROTEINS 100 FRANKEN. 100 545.000 FRANKEN. 100 Average weight 0.18 0.22
- - FRANKEN. 200 867.400 FRANKEN. 100 No -0.36 -0.73
NCI1 100 FRANKEN. 100 844.700 FRANKEN. 100 No 0.62 0.41
NCI1 100 FRANKEN. 100 844.700 FRANKEN. 100 Yes 0.61 0.58
NCI1 100 FRANKEN. 100 844.700 FRANKEN. 100 Average weight 0.42 0.36

Table 7.9: We test the performance of warm-starting. The bold numbers are the reference value for
100 episodes of pre-training with the same dataset. We compare them to warm-starting
with a different dataset in a pre-pre-training step before our normal pre-training. Since
the pre-pre-training introduces additional training, we offer a version with increased
pre-training with the same dataset to compare the results. The red numbers mark the
best of the four variants.

7.7 Warm-Starting

We call this section warm-starting. We defined warm-starting in Section 5.5. It is a further
improvement of transfer learning. Transfer learning has the advantage that we can use additional
data for training. One downside is that the data in the pre-training is usually quite different, and we
can only use the weights from some layers. We described this problem in Section 5.4. We have
seen in the previous section that most transfer learning settings could not improve the results. For
NCI1, all the tests have been even worse than the baseline.
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7.8 Eval Mode

Instead of pre-training only on a different dataset, we now keep our original setup of pre-training
and fine-tuning on the same dataset. Additionally, we introduce a pre-pre-training step in which we
use a different dataset. We want to benefit from the different datasets in the pre-pre-training step,
while the pre-training step with the same dataset as the fine-tuning ensures that our model is well
suited for the data in the fine-tuning.

Like before, in transfer learning, we offer an alternative of pre-training with more episodes to better
compare our different approaches and make sure the impact of the size of the datasets is limited.

We show the results in Table 7.8. In the top table, we see the results from fine-tuning PROTEINS.
Increasing the pre-training episodes up to 490 increases the results slightly. We increase the
mean-accuracy from 2.32 to 2.90 and the max-accuracy from 1.00 to 1.09. Adding a pre-pre-training
step with either NCI1 or FRANKENSTEIN performs for both datasets much better. Both perform
nearly identically. The mean accuracy increases from 2.32 to 3.65, while the max-accuracy increases
from 1.00 to 1.89. Using the default shrink & perturb step significantly improved the results.

The middle table shows the results for NCI1. We see a similar result as in transfer learning. Increasing
the episodes rather than pre-pre-train with other datasets is still the best option. However, we see
that only some combinations are worse than the baseline. Especially the case of pre-pre-training
with FRANKENSTEIN and no shrink & perturb step is nearly identical to the evaluation without
the pre-pre-training. 0.37 to 0.34 percentage points for mean-accuracy and 0.14 to 0.13 percentage
points for max-accuracy. In contrast to transfer learning, we do not lose anything by using the
FRANKENSTEIN dataset. Nevertheless, increasing the episodes for the NCI1 pre-training is still
better.

The lower table shows the results for FRANKENSTEIN as a fine-tuning dataset. We can see
again that more pre-training episodes on the FRANKENSTEIN dataset significantly decrease
the performance. Similar to transfer learning, we see again that applying the same amount of
extra training with another dataset will instead increase the Frankenstein performance. In this
setting, the shrink & perturb step performs slightly worse than without it. We manage to increase
the mean-accuracy from 0.30 to 0.57 percentage points and the max-accuracy from 0.19 to 0.45
percentage points with PROTEINS as pre-pre-training. Even better is the performance with the
bigger pre-pre-training dataset NCI1. Now we increase the mean-accuracy from 0.30 to 0.62
percentage points and the max-accuracy from 0.19 to 0.58 percentage points.

We show that warm-starting with an additional pre-pre-training step increases the results compared
to transfer learning. Especially for the PROTEIN dataset, we significantly improved our results
with an additional dataset. At the same time, we showed that increasing the training on the same
dataset does not improve the results by the same magnitude. We can attribute the improvement to
the additional dataset.

7.8 Eval Mode

We make an interesting observation during our evaluations. Instead of using the training mode
during fine-tuning, using the eval mode increases the performance for some datasets. We show
the results in Table 7.10. 10% train mode is the previous baseline without a pre-training step from
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Dataset PROTEINS DD NCI1 MUTAG FRANKEN. COIL-DEL

mean-acc
10% train mode 69.82±5.13 74.30±3.89 73.85±2.89 78.83±8.41 60.85±2.91 21.69±2.09
10% eval mode 71.95±3.47 74.53±3.88 71.38±2.73 83.58±9.47 61.57±2.27 26.06±2.64

Full data 75.99±2.91 79.09±3.14 83.03±1.64 88.29±7.92 66.86±2.09 74.66±2.13

max-acc
10% train mode 73.42±3.93 76.75±3.20 75.70±2.71 85.86±6.53 63.84±1.90 22.71±2.06
10% eval mode 75.11±2.91 77.12±3.12 72.96±2.59 85.65±9.24 64.31±1.56 27.65±2.31

Full data 78.64±3.93 81.85±3.20 84.77±2.71 94.13±6.53 69.19±1.90 76.84±2.06

Dataset IMDB-B COLLAB GITHUB RDT-B RDT-5K COLORS-3

mean-acc
10% train mode 66.90±4.80 73.45±1.63 61.01±1.78 86.72±2.11 51.38±2.06 51.78±2.10
10% eval mode 69.76±5.47 72.69±1.78 66.72±1.70 78.51±3.14 52.92±2.22 95.47±2.26

Full data 73.68±4.95 82.39±1.55 69.09±1.37 92.28±1.60 56.76±1.55 99.75±0.24

max-acc
10% train mode 69.30±4.56 75.14±1.25 62.57±1.39 89.06±1.54 53.08±1.60 53.34±1.89
10% eval mode 72.43±5.15 74.39±1.40 67.94±1.54 80.90±2.30 55.26±1.77 97.00±1.27

Full data 78.36±3.93 84.10±3.20 70.40±2.71 94.00±1.90 58.45±6.53 99.97±2.06

Table 7.10: We compare the baseline performances of the datasets with their variance to an approach
where we use the evaluation mode instead of the training mode. 10% train mode and
Full data are our previous baseline results for fine-tuning only.

Table 7.2, where we use 10% labeled data. The same applies to the full data, where we instead use
100% labeled data. The 10% eval mode evaluation is identical to the 10% train mode, with the
single difference of setting the mode to eval instead of train.

Only three of the 12 datasets decrease with the eval mode. The accuracy of NCI1 and COLLAB
decreases slightly, while RDT-B decreases by about eight percentage points. On the other hand, the
rest of the nine datasets increases. PROTEINS, DD, FRANKENSTEIN, and RDT-5K only slightly
increase. MUTAG, COIL-DEL, IMDB-B, and GITHUB increase by around 3-6 percentage points,
while COLORS-3 increases by 44 percentage points, close to the performance of the full data.

For some datasets like PROTEINS, IMDB-B, GITHUB, and RDT-5K, the improvements by the eval
mode are equal to or even more significant than the improvements by the current best pre-training
approaches from Yin et al. [13], and Suresh et al. [12]. We significantly increase the accuracy, even
though we do not use pre-training or other improvements.

There are two differences between the train and eval modes. Firstly, dropout is deactivated during
the eval mode. However, in our model, we do not use dropout.

Secondly, batch normalization layers calculate a running estimate of its computed mean and variance
during training. In the eval mode, we use both mean and variance from the training for normalization.
We use multiple batch normalization layers in our network. Since we only set the eval mode, we
never use the train mode. We do not calculate any values for the running estimate of mean and
variance. We have to use the default values in both training and evaluation. The values are mean=0
and variance=1 and are never changed.
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7.9 Select the Best Augmentation for Each Graph

Figure 7.7: UMAP of the PROTEINS embedding space with two classes. Left: 1. Episode, Right:
100. Episode

7.9 Select the Best Augmentation for Each Graph

This section tests methods individually to select augmentations for each graph. We tested multiple
approaches. A good performance usually depends on many parameters. Most importantly, we need
a metric to decide the best augmentation for a graph. Finding such a metric comes down to the
general problem that we need to know what a good augmentation is, which is also dataset dependent.
We propose different approaches to select an augmentation from the embedding space. We show an
example of the embedding space for PROTEINS visualized by UMAP in Figure 7.7. The left image
shows the embedding space in the first episode, and the right image after 100 episodes of contrastive
learning. The embedding is initially decent. We can see some separation between the two classes.
We increased it through the contrastive pre-training slightly. The two classes are more grouped.
We get fewer outliers directly next to other classes. Since we do not have the label information, in
which class the graph is, we still end up in a pretty noisy embedding and can not separate the classes
perfectly. Our idea is to use this embedding space and the position of different augmentations to
approximate good augmentations.

To do that, we define a set of augmentations and augmentation ratios. We calculate all the
combinations and their embedding in our model. We show two graphs with their augmentations
in the embedding space in Figure 7.8. The augmentations all have 20% augmentation ratio.
As expected, similar augmentations end up close together. We also see that methods like edge
perturbation (9) tend to be very close to the original. Since we only change edges and none of the
nodes or node attributes, this makes sense.

We have different options for how we pick augmentation from the embedding space. We could
pick the augmentation that is furthest away from the original graph. The furthest augmentation has
proven to be suboptimal because high augmentation ratios can lead to augmentations being very
far away because they have little in common with the original graph. We should not pick these
augmentations as positive samples since there is a high chance that these graphs are so far apart that
they would not share the same label. With a similar idea, we could pick the augmentation closest
to the original graph. This approach has the problem that results with a low augmentation ratio
are selected, and we get a result close to using two times the original, identical graph. We have
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Figure 7.8: UMAP of the embedding space for one graph of PROTEINS with all augmentations.
Similar augmentations have the same color.

seen this in the example in Figure 7.8 where augmentations like edge perturbation are very close to
the original. Our previous results showed that these augmentations have mostly bad performances,
which makes sense since they are similar to the original graph. Other ideas are picking the two
augmentations that are furthest apart or closest together. They do suffer from similar problems.

For our evaluation, we instead use the variant where we build a mean graph of all the currently
selected augmentations. We select the one augmentation closest to the mean graph and combine it
with the original graph (Identical). We do this because contrastive learning does not only depend
on a single graph. Because all other graphs in the batch are negatives, they influence each other.
By picking a different augmentation for one graph in the batch, we change the loss of all the other
graphs. The positive and all negative samples end up being very similar by picking augmentations
close to the mean graph. While contrastive learning pushes negative samples apart, we pick
augmentations that are close together and work against the model. This approach increases the
difficulty of contrastive learning, which is generally beneficial.

Since the augmentation ratio is an important factor, datasets like PROTEINS tend to pick different
augmentations, all with a very high augmentation ratio. The results are better than our benchmark
from Figure 7.1, where we compared the different augmentations with 20% augmentation ratio. We
can, however, not confirm if the improvements are due to the individual augmentation selection or
because we use a higher augmentation ratio. To have values to compare to, especially for the other
datasets, we decide to limit the augmentation ratio in our experiments to only 20%. In this case, we
can directly compare our results to the earlier test of the single augmentation performance. We use
augmentations 1-20. We have seen in our first tests that selecting a new augmentation for every graph
in every episode does not work. This does not work because we pick the augmentation depending
on the embedding of the model. As previously mentioned, the augmentation selection impacts the
other graphs as well. By picking different augmentations, we influence how the embedding changes
in the next episode. Doing this with all graphs causes heavy shifts of the embedding, which stops
the model from learning and improving. Instead, we start by using no augmentations, only the
original graphs. For every X episodes, we select the Y% of the graphs furthest away from the mean
graph. For these Y% we calculate all of our 20 augmentations and pick the one that is closest to the
mean graph.
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With this evaluation, We want to show if we benefit from individually selecting augmentations for
each graph with this strategy. A previous test in which we randomly assigned different augmentations
for each graph did not improve the results. We got an average result between the performance from
good and bad augmentations. As a reference, we look at our previous results where we always
picked the same augmentation in Figure 7.1. We show our results for different X and Y in Table 7.11.
We test different combinations of how many percent of the total graphs the model selects during
each step and after how many epochs we repeat the augmentation selection. The reference values for
picking the best augmentation for all graphs are bold. The best performance by picking individual
augmentations is marked red.

FRANKENSTEIN performs in all tests significantly worse than the reference. All parameters
showed even worse results than the baseline, even though the single augmentations mostly performed
better than the baseline. COIL-DEL shows good results. We are better than most augmentations.
Only the best two outperform our test. We can confirm our hypothesis for PROTEINS, NCI1,
MUTAG, and IMDB-B. Our approach improved the result on all these datasets compared to the fixed
augmentation. PROTEINS, NCI1, and IMDB-B show a substantial increase. MUTAG shows the
best results. The mean-accuracy increases from 1.97 to 3.30 percentage points The max-accuracy
increases from -0.37 to 0.11 percentage points.

We showed that the general idea of picking an augmentation individually for each graph gives
good results for most datasets and often outperforms the best single augmentation result. With this
approach, we improve the results and save computational resources. When we run the augmentations
individually, we need to calculate an augmentation for every graph in every epoch and repeat that 20
times for each augmentation. For 100 epochs, we calculate |dataset|*100*20 augmentations. Our
approach with 10% of the graphs, repeated every ten epochs, introduces an overhead to calculate
all 20 augmentations of |dataset|*0.1*10*20. We need this to decide which augmentation we pick.
We also need to calculate the actual augmentations for the contrastive learning in every episode
of |dataset|*100*1. The total computation adds up to |dataset|*0.1*10*20 + |dataset|*100*1 =
|dataset|*120. We managed to reduce our augmentation calculation by a factor of 16.

We do, however, still have multiple problems. Our approach still depends on calculating all
augmentations and augmentation ratio combinations. Especially if we pick many different
augmentation ratios, we still end up with many combinations that we need to test, which is
computationally expensive. We have also seen in our results that there exist new parameters. We
have to decide how often we calculate the best augmentation for each graph and with how many
percent of the graphs we do it. Different datasets show the best results with different parameters.
There is no easy way to pick good parameters other than testing.

7.10 Generators

We further research the idea of selecting individual augmentations for each graph. Our previous
test relied on the fact that we use predefined augmentations and augmentation ratios. We also need
to test these computationally expensive combinations. Ideally, we find a generator that does not
rely on predefined augmentations and their combination. The generator takes a graph as input
and outputs an augmented graph that should still contain the key features. Generators can be, for
example, VGAEs or adversarial networks.
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Graphs Repeat PROTEINS NCI1 MUTAG FRANKEN. COIL-DEL IMDB-B

m
ea

n-
ac

c

best aug 2.48 0.37 1.97 2.57 23.85 1.62
individual 20% 1 2.06 0.37 3.18 -0.23 21.69 1.82
individual 20% 5 2.35 0.15 3.30 -0.36 22.39 1.72
individual 20% 10 2.73 0.38 1.88 -0.38 22.22 1.42
individual 20% 20 2.65 0.59 1.37 -0.13 21.74 2.02
individual 10% 1 2.51 0.53 1.92 -0.65 22.67 2.02
individual 10% 5 2.62 0.27 1.02 -0.41 22.21 1.70
individual 10% 10 2.56 0.14 2.08 -0.47 22.60 1.08
individual 10% 20 2.94 0.30 2.13 -0.28 21.02 2.20
individual 5% 1 2.37 0.23 -0.41 -0.09 22.60 1.76
individual 5% 5 2.60 0.33 2.13 -0.63 22.79 1.40
individual 5% 10 3.45 0.30 0.12 -0.58 23.16 1.24
individual 5% 20 2.55 0.53 1.33 -0.58 22.72 1.40

Graphs Repeat PROTEINS NCI1 MUTAG FRANKEN. COIL-DEL IMDB-B

m
ax

-a
cc

best aug 1.19 0.15 -0.37 2.06 24.16 1.83
individual 20% 1 0.62 -0.23 0.00 -0.46 21.88 1.48
individual 20% 5 0.89 -0.20 0.11 -0.69 22.68 1.64
individual 20% 10 1.26 0.05 -0.09 -0.72 22.58 1.28
individual 20% 20 1.30 0.14 -0.32 -0.38 21.94 1.98
individual 10% 1 1.12 0.18 -0.64 -0.91 22.95 1.94
individual 10% 5 1.35 -0.07 -1.08 -0.67 22.61 1.80
individual 10% 10 1.66 -0.32 -0.42 -0.78 22.87 0.76
individual 10% 20 1.17 -0.17 0.11 -0.51 21.08 1.88
individual 5% 1 1.23 -0.21 -1.61 -0.37 22.84 1.96
individual 5% 5 1.54 -0.16 -1.05 -0.68 23.12 1.30
individual 5% 10 1.53 -0.09 -1.06 -0.69 23.39 1.06
individual 5% 20 1.55 0.15 -0.53 -0.71 23.04 1.48

Table 7.11: Performance for selecting the augmentation that is closest to the mean graph. The bold
numbers are the reference value for the single augmentation with 20% augmentation
(We pick the same augmentation for all graphs).
The red numbers are the best performance when we pick the augmentation which is
closest to the mean graph.

Yin et al. [13] implemented such an approach. We tested some modifications to improve their setup
further. We notice that the generator takes a batch as input and decides for all nodes in the batch if
they should be dropped, kept, or masked. While this is computationally efficient, we suspect that
this has disadvantages. We see that for multiple graphs in each batch, all nodes get dropped, which
contradicts the idea that we want to keep the key features of the graph.

We implemented their generator approach into our model to use the batch information of the
generator and reconstruct single graphs. We are then able two test two things. Firstly, we use the
information if nodes are dropped and implement a node-dropping method that drops exactly these
nodes. Secondly, we use the chance of dropping the node that the generator calculated to implement
weighted node dropping with these probabilities.

Our second approach of using weighted node dropping showed worse performances than the original
generator. The probabilities of the generator do not seem to translate well into drop percentages. As
expected, the hard decision of which nodes get dropped by the generator is a good approximation
for node dropping. We generally do not improve the results much when we translate the generator
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Dataset PROTEINS DD NCI1 COLLAB GITHUB IMDB-B RDT-B RDT-5K
Our best 20% result 74.70±3.03 78.13±3.50 75.85±2.51 77.45±1.28 67.12±1.20 71.13±5.29 90.73±1.29 54.20±2.12

Generator [13] 75.65±2.40 77.50±4.41 73.75±2.25 77.16±1.48 62.46±1.51 71.90±4.79 79.80±3.47 49.91±2.70

Table 7.12: Our hand-picked best augmentation in Figure 7.1 is compared to the generator results
from Yin et al. [13]. Red numbers indicate the best performance.

node-dropping to single graphs. For some of the larger social networks, we see a slight improvement.
GITHUB increased from 62.46% in the paper to 62.85%. RDT-5K increased from 49.91% to
50.88%. For other datasets, we do see, on the other hand, a slight decrease.

While their general approach is promising and computationally efficient, it still has disadvantages.
We compare the results from our best single performance augmentation in Table 7.2 to the results
of the generator in Table 7.12. We outperform the generator in most datasets. For the PROTEINS
dataset, we increase even further from 74.70% to 75.99 through the combination of augmentations
and augmentations ratios as described in Section 7.3.2. Our approach comes at the cost of intensive
evaluations. It is also to note that Yin et al. [13] only used 30 episodes for training. It is unclear if
and how much their approach would benefit from more episodes.
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This thesis presented the problem of finding good augmentations and improving contrastive learning
for semi-supervised learning. We created 15 new augmentations and evaluated them together with
eight existing augmentations on 12 different datasets. Through intensive testing, we managed
to show that not only the augmentation itself but the metrics that select the nodes significantly
impact the performance. Generally, the best strategies are dropping high-degree nodes or building
subgraphs with low-degree nodes. Additionally, we have seen that the augmentation ratio is a very
important, so far neglected, parameter. While an augmentation ratio of 20% is generally considered
a reasonable value, we showed that many datasets perform best with a 60-80% augmentation ratio.
Especially the combination of different augmentations with high and low augmentation ratios has
proven to work best in our evaluations.

We implemented additional improvements to the contrastive learning pipeline. In contrast to
research in image representation learning, we showed that we do not need many negative samples in
the contrastive loss function. Reducing the number of negative samples from 127 down to 2-10 did
not harm the results and, in fact, slightly improved them. Additionally, we showed that the NT-Xent
loss is not the only loss function we can use. A euclidian max-margin loss function showed similar
performance and even outperformed the NT-Xent loss on some datasets.

Transfer learning is a common approach in the semi-supervised setting where we intend to use
unlabeled data from different datasets. Usually, we do transfer learning with specific, similar datasets
from the same domain. We tested the approach with multiple models that showed different behavior
in earlier evaluations under the same augmentations, which suggested that transfer learning would
likely not work. Transfer learning alone did indeed not work in most scenarios. We introduced an
improved form, which we called warm-starting. Instead of replacing the pre-training, we added
transfer learning as a pre-pre-training step before our normal pre-training. This approach has proven
to improve the results on multiple datasets significantly. We showed that in this scenario, a shrink &
perturb step, introduced by Ash et al. [20], further improves the results in the graph pre-training
setup.

Finally, we introduced the idea of selecting individual augmentations for each graph. We presented
multiple ideas and showed the first results that indicate the potential of this approach. Strategies
like selecting augmentations such that all augmented graphs are similar have shown to be a good
approximation to increase the difficulty of the contrastive learning problem and benefit it. While
this approach is still computationally intensive, it also relies on predefined augmentations and
augmentations ratios.

The next step is to use generators that get a graph as input and output the new, augmented graph.
We briefly introduced existing generators, which show decent results for some datasets. We can
still match the performance on most datasets and even outperform them on multiple datasets with
our predefined augmentations. Generally, a generator does not yet exist that manages to solve the
task entirely. So far, all generators still have individual downsides. While some work through
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augmenting nodes, others focus on edges or node attributes. Future work could focus on combining
the approaches of different generators to work on nodes and edges. VGAEs and adversarial networks
are also areas of interest in the search for better generators.
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