
Master Thesis Nr. 3355




Kamran Idrees













M.Sc. Information Technology

Prof. Dr.-Ing. Sven Simon

Dipl.-Inf. Steffen Kieß

09.07.2012

17.10.2012

C.1.2, D.3.2, E.1

Institut für Parallele und Verteilte Systeme

Universität Stuttgart 
Universitätsstraße 38 
D - 70569 Stuttgart

Abteilung Parallele Systeme



 

 

 
 
 
 
 
 
 
 

Abstract 
 
Partitioned Global Address Space (PGAS) is an abstraction of the shared memory model for Single 
Program Multiple Data (SPMD). PGAS was developed to unite the concepts of shared memory and 
distributed data into a single parallel programming model. The purpose of allying distributed data with 
shared memory was to cultivate locality-aware shared memory paradigm. In PGAS, shared space is 
partitioned among threads, such that each thread has a portion of shared space which is local to it. 
Each thread can exploit locality by effectively doing computation on data which has affinity to it or 
which resides in its local space. 
 
Unified Parallel C (UPC) is a parallel extension of ISO C. It is distributed shared memory programming 
model which is based on PGAS to support SPMD programs. UPC aims to support locality-aware 
paradigm. The declarations in UPC provide control to the programmer to efficiently distribute data 
across multiple threads, which can later be manipulated by the threads such that each thread 
manipulates data which has affinity to it to exploit locality. However UPC does not restrict the access to 
data which has affinity to any other thread. Apart from shared space, each thread has also a private 
space which can only be accessed by thread which owns this space. UPC provides library functions for 
moving data to/from shared memory economically, efficiently dividing the tasks among the threads. 

 
Molecular dynamics (MD) simulates interactions between molecules. In principle, given an initial set of 
positions and velocities of molecules, the following time progression of a set of interacting molecules is 
ascertain. After the system is initialized with the initial positions and velocities of molecules, 
calculation of forces is done on all molecules in system.  Finally Newton's equations of motion are 
integrated to advance the positions and velocities of molecules. The simulation is advanced unless the 
computation of time evolution of system is completed for the aimed length of time.  
 
We have ported an in-house MD code (CMD) to UPC, calculating interactions between the molecules 
and atoms in a parallel fashion. The molecules are spatially decomposed into cells which then are 
distributed among threads. Each thread calculates the interactions of the molecules of the cells it has 
affinity to. To minimize the access to remote data, the cells are distributed among the threads in a 
spatially coherent manner. We have tried to aid cache optimizations in most of the routines in our 
ported MD code. Here we elaborate the technical details of UPC which are necessary to understand our 
ported CMD code, then we explain the methodology we chose for porting our CMD code to UPC and 
finally we present the benchmark results for our UPC implementation of CMD. 
 
 
 
 
 
 
 
 
 
 



ii 
 

Table of Contents 
 
 1  Introduction           1 
 1.1  Partitioned Global Address Space        1 
 1.2  Unified Parallel C          2 
 1.3  Molecular Dynamics          2 
 
 2  Classifications of Computer Architectures and Programming Models   3 
 2.1  Flynn's Taxonomy of Parallel Computer Architectures      3 
 2.2  Parallel Computer Memory Architectures       4 
 2.2.1  Shared Memory Architecture         4 
 2.2.2  Distributed Memory Architecture        5 
 2.2.3  Distributed-Shared Memory Architecture       5 
 2.3  Parallel Programming Models         7 
 2.3.1  OpenMP           7 
 2.3.2  Message Passing Interface (MPI)        8 
 2.3.3  Unified Parallel C          9 
  
 3  Unified Parallel C          10 
 3.1  UPC Constants and Data Types         11 
 3.2  Distributed or Shared Arrays in UPC        12 
 3.3  UPC Pointers           13 
 3.4  Domain Decomposition in UPC         17 
 3.5  Dynamic Shared Memory Allocation        19 
 3.6  Synchronization and Memory Consistency       25 
 3.7  UPC Collective Library          32 
 3.8  Shared Data Movement Functions in UPC       36 
 3.9  Performance Tuning and Optimization        37 
 
 4  UPC Compilers          39 
 4.1  Introduction           39 
 4.2  Berkley UPC Compiler          39 
 4.3  GNU UPC Compiler          40 
 4.4  Cray UPC Compiler          40 
 
 5  CMD Code in Unified Parallel C        41 
 5.1  Introduction           41 
 5.2  Reading input Parameters         43 
 5.3  Phase Space Initialization         43 
 5.4  Grid Generation          49 
 5.5  Reset of Forces and Momenta         50 
 5.6  Pre-Force Integration          52 
 5.7  Lennard-Jones Force Calculation and Potential Integration     53  
 5.8  Post-Force Integration          61 
 5.9  Calculation of Ensemble Values        64 
 5.10  Synchronization in in Parallel CMD code 
 
 6  Benchmarks           68 
 6.1  Introduction           68 
 6.2  Speed up on Different Clusters         68 
 6.3  Slow Down Factor with Synchronization Variants      68 
 6.4  Execution Time with different Cells Distribution      69  
 6.5  Execution Time with UPC pointer variants       72 
 



iii 
 

 7  Bottlenecks and Solutions         73 
 7.1  Source to Source Translation Issues        73 
 7.2  Excessive Synchronization         73 
 
 8  Conclusion           74 
 
 9  References           75 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



iv 

 

List of Figures & Examples 
 

Number       Title         Page 
Figure 1.1:  Partitioned Global Address Space        1 
Figure 1.3:  Molecular Dynamics Simulation        2 
Figure 2.1(a):  Single Instruction Single Data architecture [12]      3 
Figure 2.1(b):  Single Instruction Multiple Data architecture [13]      3 
Figure 2.1(c):  Multiple Instructions Multiple Data Architecture [13]      4 
Figure 2.2(a):  Shared Memory Architecture         5 
Figure 2.2(b):  Distributed Memory Architecture        6 
Figure 2.2(c):  Distributed-Shared Memory Architecture       6 
Figure 2.3(a):  Comparison of Serial and OpenMP code       7 
Figure 2.3(b):  Thread Execution in OpenMP program of Figure 2.3(a)    8 
Figure 2.3(c):  Simple MPI Program          8 
Figure 2.3(d):  Comparison of Serial C code with UPC code       9 
Figure 3:  Memory Layout of UPC         10 
Figure 3.1(a):  Allocation of Data in Private or Shared Address Space      11 
Figure 3.1(b):  Restrictions on shared variables declaration inside a block     11 
Figure 3.2(a):  Distribution of shared array’s elements       12 
Figure 3.3(a):  Location and target space of two UPC Pointer variants (PS and SP)    14 
Figure 3.3(b):  UPC Pointer Examples          14 
Figure 3.3(c):  UPC Pointer Locations and their Target Address Space(s)     15 
Figure 3.3(d):  Program for traversing a shared array using pointers      15 
Figure 3.3(e):  Illustration of traversing shared array for the program in Figure 3.3(d)   16 
Figure 3.3(f):  Example of traversing local shared data using local pointers     16 
Figure 3.3(g):  Traversing local shared data using local pointers for the program in Fig 3.3(f)  17 
Figure 3.4(a):  Example of basic domain decomposition and work division     18 
Figure 3.4(b):  Visualization of example in Figure 4.4(a)       18 
Figure 3.4(c):  Work division using upc_forall statement with affinity argument of shared pointer  19 
Figure 3.4(d):  Work division using upc_forall statement with affinity argument of integer value  19 
Figure 3.5(a):  Example program dynamic shared memory allocation using upc_all_alloc   21 
Figure 3.5(b):  Dynamic memory allocation for the example in Figure 3.5(a) executed with 4  
threads             21 
Figure 3.5(c):  Example program dynamic shared memory allocation using upc_global_alloc   22 
Figure 3.5(d):  Dynamic memory allocation for the example in Figure 3.5(c) executed with 4  

threads           23 
Figure 3.5(e):  Example program dynamic shared memory allocation using upc_alloc   24 
Figure 3.5(f):  Dynamic memory allocation for the example in Figure 3.5(e) executed with 4  

threads           24 
Figure 3.5(g):  Example program for releasing dynamically allocated shared memory using  

upc_free           25 
Figure 3.5(h):  Illustration of example in Figure 3.5(g) after execution of statement 5   25 
Figure 3.6(a):  Example program using blocking barrier       27 
Figure 3.6(b):  Behavior of each thread after executing the upc_barrier call     27 
Figure 3.6(c):  Example program using non-blocking barrier       28 
Figure 3.6(d):  Behavior of each thread after executing the upc_notify and upc_wait calls   28 
Figure 3.6(e):  Use of lock function          31 
Figure 3.7:  Use of reduction function         35 
Figure 4.1(a):  Berkley UPC Compiler architecture [2]       39 
Figure 5.1(a):   Hierarchy of Phasespace, Molecule Container and Molecule Cells    41 
Figure 5.1(b):  Flow of CMD Application         42 
Figure 5.3(a):  Structure of Molecule Container        44 
Figure 5.3(b):  Structure of Molecule Cell         44 
Figure 5.3(c):  Sequence of calls for Phase Space initialization      44 



v 

 

 

Number       Title         Page 
Figure 5.3(e):  Allocation of molecule cells on shared space and their affinity to each thread   45 
Figure 5.3(f):  Allocation of molecules on shared space and their affinity to each thread   45 
Figure 5.3(g):  Each thread initializes pointers in cell structure to point to local portion of molecules 
(molecule block) allocated on shared space         46 
Figure 5.3(h):  Molecule block allocation         47 
Figure 5.3(i):  Consecutive integer cell ID generation for spatially coherent cells by routine 
   get_cell_id           48 
Figure 5.3(j):  get_cell_id routine          49 
Figure 5.4(a):  Sequence of calls for addition of molecules to cells      49 
Figure 5.4(b):  mc_add_molecule routine         50 
Figure 5.5(a):  Main Simulation Loop          51 
Figure 5.5(b):  Cycle of routines called inside main simulation loop      51 
Figure 5.5(c):  Sequence of calls for resetting forces of molecules inside phase space   51 
Figure 5.5(d):  mc_reset_forces_and_momenta routine       52 
Figure 5.5(e):  molecule_block_reset_forces_and_momenta routine      52 
Figure 5.6(a):  Sequence of calls for pre-force integration       52 
Figure 5.6(b):  mc_integrate_pref routine         52 
Figure 5.6(c):  molecule_block_integrate_pref routine       53 
Figure 5.7(a):  Hierarchy of calls for computation of molecules interactions     53 
Figure 5.7(b):  mc_calc_forces routine         54 
Figure 5.7(c):  mc_update_halo routine         55 
Figure 5.7(d):  Interaction among molecules of a cell and its neighbor cells lying within cutoff  

radius [9]           55 
Figure 5.7(e):  mcell_calc_forces, mcell_calc_intra_forces and mcell_calc_inter_forces routines  56 
Figure 5.7(e):  Routines for calculating forces acting on each molecule and integrating LJ potential  61 
Figure 5.8(a):  Post-force integration hierarchy of calls       61 
Figure 5.8(b):  psp_integrate_postf routine         62 
Figure 5.8(c):  mc_integrate_postf routine         62 
Figure 5.8(c):  mc_update routine          64 
Figure 5.9(a):  mc_get_num_molecules routine        65 
Figure 5.10(a): Definition of synchronization constants       65 
Figure 6.1:  Specifications of benchmark platforms       67 
Figure 6.2:  Speed up on different clusters         68 
Figure 6.3:  Slow Down Factor Due to Synchronization       68 
Figure 6.4(a):  Round Robin cells distribution        69 
Figure 6.4(b):  Spatially coherent cells distribution        70 
Figure 6.4(c):  Execution Time for different cell distributions and N=1800 molecules   70 
Figure 6.4(d):  Execution Time for different cell distributions and N=3000 molecules   71 
Figure 6.4(e):  Execution Time for different cell distributions and N=27000 molecules   71 
Figure 6.5:  Execution Time with manual pointer optimizations      72 



 

 

1 Introduction 
 

1.1 Partitioned Global Address Space (PGAS) 
 
It seems like shared memory parallel programs are easy to write compared to distributed memory 
programs [1], as access to any memory location is identical in shared memory paradigm because all 
threads view a single address space. Therefore there is not any restriction or resistance for a thread to 
access a data which is designated for some other thread to compute on. There is no locality-awareness 
in shared memory models, which might lead to unwanted proliferation of accesses to the data which is 
not local to a thread. This leads to different cached value of single memory location and therefore 
shared memory models rely heavily on a cache coherence system for maintaining the local copy of the 
data consistent. This results in deterioration of performance and scalability of an application written 
for a shared memory model [5]. Hence, shared-memory programming models fail to exploit locality 
effectively. This leads to the development of Partitioned Global Address Space. 
 
Partitioned Global Address Space is a locality-aware distributed shared memory model for Single 
Program Multiple Data (SPMD) stream (discussed later in chap. 2). In this memory model, the shared 
address space is distributed among threads, thus named Distributed Shared Memory Model. Each 
thread has a portion of the address space local to it. Hence making it possible for mapping of each 
thread and data (which is local to this thread) to the same physical node. Programmers can therefore 
allocate the data to be computed on by a thread to the local space of the thread, which makes it 
locality-aware programming model. Each thread then knows the data which is local to it and thus 
majorly computes on this data, resulting in very less or no access at all to remote data.  PGAS allows 
multiple threads to be working on data in the same or entirely different way, unlike data parallel model 
where multiple threads processes data in strictly identical manner [5]. Therefore PGAS model does not 
only provide ease of shared data programming but also abstain from uncompromising flow of data 
parallel model where multiple threads need to process data in similar way.    
     

 
 
 
 
     Figure 1.1: Partitioned Global Address Space 
 
Consider an example of PGAS model in Figure 1.1. Each thread has local variable x in its private 
address space; therefore it can only be accessed by the thread who owns this variable. There is also an 
array which is allocated in the shared address space, having its elements distributed in round robin 
fashion across the shared space. Thus each thread has few elements of array in the fragment of shared 
address space which has affinity to it. Each thread can access all elements of array but to access 
elements of array which are in the portions of shared address space of other threads, a thread must use 
pointer to shared region. Whereas, each thread can exploit the locality by doing extensive computation 
on the elements of array which resides in its portion of shared address space. In figure 1, Thread 0 has 
a local variable x which can only be accessed by Thread 0. Thread 0 also have access to all elements of 

array[0]                array[1]              array[2] 
array[3]                array[4]              array[5] 

x x x 
Private Space 

T
0 

T
1 

T
2 

Shared Space 



2 

 

shared array but it can exploit locality by computing extensively on the array elements which resides in 
its portion of shared address space (which are array[0] and array[3]). 
 

1.2 Unified Parallel C (UPC) 
 
UPC is an explicit parallel extension of C language, more specifically it is an extension of ANSI C99 
standard, and therefore it inherits all the functionality available in ANSI C99 standard [1]. It is set up 
on Partitioned Global Address Space model, hence threads in UPC share part of their address space. 
Each thread has a portion of shared memory which is local to it. UPC provides data declarations and 
rich set of library functions to distribute the data among threads, divide the loop iterations or different 
tasks among threads and coordination among threads. A detailed description of UPC functionality is 
covered in chapters 2 and 4. 
 

1.3 Molecular Dynamics 
 
Molecular dynamics (MD) simulations calculates interactions between molecules. In principle, given an 
initial set of positions and velocities of molecules, the following time progression of a set of interacting 
molecules is ascertain. After the system is initialized with the initial positions and velocities of 
molecules, calculation of forces is done on all molecules in the system.  Finally Newton's equations of 
motion are integrated to advance the positions and velocities of molecules. The simulation is advanced 
unless the computation of time evolution of system is completed for the aimed length of time. Figure 
1.3 shows an image of a molecular dynamics simulation. 
 
 

Figure 1.3: Molecular Dynamics Simulation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



3 

 

2 Classifications of Parallel Computer 
Architectures and Programming Models 
 

2.1 Flynn's Taxonomy of Parallel Computer Architectures 
 
There are two types of information dealt by a processor, instruction and data [12]. Flynn's Taxonomy 
classifies Parallel Computer Architectures along these two independent dimensions of instruction and 
data. Depending on these dimensions, there are four types of computer architectures. These are Single 
Instruction Single Data, Single Instruction Multiple Data, Multiple Instruction Single Data and Multiple 
Instruction Multiple Data. 
 

Single Instruction Single Data (SISD) 
 
Traditional single processor computer architectures are categorized as Single Instruction Single Data 
architecture. In this conventional architecture, only single stream of instructions can be executed at a 
time which operates on a single stream of data [13]. So if there is an instruction for increment 
operation, it will only increment a single variable at a time. This is how the traditional serial computers 
operate. Figure 2.1(a) shows such architecture. 

 
 
 
 
 
 
 
 

   Figure 2.1(a): Single Instruction Single Data architecture [12] 
 
In SISD architecture, there is one control unit, one processing unit and one memory.  An instruction is 
fetched from memory and is passed to the control unit, which then passes this instruction to the 
processing unit. The processing unit analyzes the instruction, fetches the required data from memory 
and then executes the instruction on the fetched data. This whole process is done serially. 
 

Single Instruction Single Data (SIMD) 
 
Single Instruction Multiple Data architecture executes same instruction on multiple data items. To 
execute instruction on multiple data simultaneously, SIMD architecture has more than one processing 
units. Hence SIMD architecture includes a single control unit, more than one processing units and a 
single memory unit. Such architecture is used to exploit data parallelism in an application, where 
processing on multiple data items are independent of each other. For example a for loop with 
independent iterations can be parallelized on SIMD architecture to speed up the application. All 
machines that have vector of instructions belong to SIMD architecture [13]. Figure 2.1(b) shows SIMD 
architecture. 
 

Multiple Instructions Single Data (MISD) 
 
In Multiple Instruction Single Data architecture, a single stream of data flows to multiple processing 
units where each processing unit executes a different instruction on this data. There is no such 
architecture exists in practice [13].  
 



4 

 

 
   Figure 2.1(b): Single Instruction Multiple Data architecture [13] 
 
Multiple Instructions Multiple Data (MIMD) 
 
Multiple Instructions Multiple Data architecture consists of many processors with each processor 
having its separate control unit. Thus MIMD architecture allows executing entirely different 
instructions on entirely different data simultaneously. MIMD can be used to exploit both data 
parallelism and task parallelism in applications, as it can leverage from separate control unit of each 
processor which can either execute same instruction or entirely different instruction on different data. 
Such task and data parallelism can either be synchronous or asynchronous [16]. Most of the current 
supercomputers fall into this category. 

 
Figure 2.1(c): Multiple Instructions Multiple Data Architecture [13] 

 

2.2 Parallel Computer Memory Architectures 
 
There are three major parallel computer memory architectures used in parallel computing. They are 
named according to the way the data is passed from one processor to another for coordination among 
them. These are Shared Memory, Distributed Memory and Distributed-Shared Memory architectures. 
 

2.2.1 Shared Memory Architecture 
 
In shared memory architecture multiple processors have access to a single global memory and thus all 
processors sight a single common global address space [14]. In such memory architecture, 
coordination among different processors is done by reading and writing to a common memory location 
in global address space. However there are certain precautions which need to be taken into 
consideration for assuring that the correct value is read by a processor, as multiple processors can 
modify the value stored at a particular memory location. Figure 2.2(a) shows shared memory 
architecture. 
 



5 

 

The major advantage of such memory architecture is that coordination among different processors 
does not require explicit communication. Coordination among processors is as easy as using a single 
assignment statement in a program which modifies the value of data at particular memory location. 
Any change in value of data at some particular memory location is visible to all processors [14]. Hence 
to share information with other processor, once one of the processors has modified the data at 
particular memory location; other processors can simply read that memory location afterwards.  
However to assure that correct value is read by one processor, certain synchronization mechanism 
needs to be taken into account. 
 

 
Figure 2.2(a): Shared Memory Architecture 

 
There are also few performance bottlenecks of shared memory architecture. These include 
synchronization of data to be accessed by multiple processors (more specifically when data can be 
modified by more than one processor), high data traffic on path between processor and shared 
memory, and cache coherence. In shared memory architecture, each processor has its own local cache; 
this can result in each processor's local cache having different value of the data of a particular memory 
location [15]. There is need for cache coherence mechanism which can assure that correct value is 
written back to memory location before any other processors reads it. So that other processors read 
the correct value whenever they attempt to do so. 
 
Shared memory architecture can be further divided into two categories depending on the time to 
access shared memory, namely Uniform Memory Access and Non-Uniform Memory access [16]. 

 
2.2.2 Distributed Memory Architecture 
 
In distributed shared memory architecture each processor has its own local memory, thus the concept 
of global address space does not apply to distributed memory architecture [16]. In distributed 
programming environment, each processor with its own local memory is referred as node. Such a 
memory architecture requires an interconnect network for coordination among different nodes.  As 
each node has its own local memory, any changes done to its local data is not visible to any other node 
unless a node explicitly coordinates this data with any other node. Hence, the issue of cache coherence 
does not appear in distributed memory architecture. As coordination among different nodes is done by 
absolutely sending or receiving messages in a program, this parallel computer architecture is also 
termed as Message Passing Multiprocessors. Figure 2.2(b) shows   distributed memory architecture 
with communication between different nodes. 
 
Though it seems like the need of explicit communication can result in performance bottleneck of 
distributed memory architecture, as now each node needs to coordinate its data (if required) to other 
node(s). But message passing is considered as irrefutable conqueror in terms of performance and 
scalability [1]. The most convenient feature of Distributed Memory architecture is that there is high 
scalability of memory with number of processors, unlike shared memory architecture where addition 
of more number of processors can result in high traffic on path between shared memory and 

Shared Memory 
 

P1 

P2 

P4 

P3 



6 

 

processors [16]. 
 
Addition of more processors can result in increasing probability of cache coherence issues in shared 
memory architecture, as now more processors will share the local memory. And therefore 
 
 
 
 
 
 
 
 
 
 
 
 
   Figure 2.2(b): Distributed Memory Architecture 
 
there are more chances of different cached value for each processor in shared memory system. 
Distribute Memory Architecture benefits from the fact that it does not face any overhead of 
maintaining a single value of data due to cache coherence issues. Hence Distributed memory 
architecture can scale without any such barrier of cache coherence.  
 
2.2.3 Distributed-Shared Memory Architecture 
 
Distributed-shared memory architecture acknowledges the advantages of both shared-memory and 
distributed memory architectures. DSM architecture provides an abstraction of shared memory model 
on top of distributed memory architecture, where each node can have multiprocessors communicating 
through shared memory [17]. It achieves such an abstraction by providing uniform address space for 
distributed system, such that the remote accesses are hidden from the programmer. Accessing a 
remote memory location in DSM architecture is as easy as in shared memory architecture, by simply 
using an assignment statement. Apart from leveraging from the ease of programming of shared 
memory architecture, it also enjoys the scalability of distributed memory architecture. 
 
         NODE 1         NODE 3 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
         NODE 2         NODE 4 

Figure 2.2(c): Distributed-Shared Memory Architecture 

High Speed Interconnect 

Local 
Memory 

 
CPU 1 

Local 
Memory 

 
CPU 3 

Local 
Memory 

 
CPU 2 

Shared 
Memory 

CPU1 

CPU4 

CPU3 

CPU2 

Shared 
Memory 

Shared 
Memory 

Shared 
Memory 

CPU4 CPU2 

CPU3 CPU3 

CPU4 CPU2 

CPU1 CPU1 

CPU1 

CPU2 

CPU3 

CPU4 

High Speed Interconnect 



7 

 

DSM architecture consists of multiple nodes connected by some high speed interconnection network. 
Each of these nodes has their own local memory and one or more processors (with each of them 
having its own local cache). The local memory of each node is mapped either fully or partially to global 
address space of distributed shared memory architecture [17], hence providing a uniform address 
space hiding local or remote access. It is then the responsibility of programmer to efficiently exploit the 
underlying shared (for processors on a same node) and distributed memories for communication 
bound and compute intensive problems respectively. A DSM also maintains a global table for keeping 
information about current state and location of each data [17], which helps in distinguishing between 
local and remote accesses.  
 
Figure 2.2(c) shows distributed-shared memory architecture.  There are total four nodes, each having 
four processors and a local shared memory.  All nodes are interconnected using a high speed 
interconnect network. An abstraction of global shared memory is formed by mapping part of local 
shared memory of each node to global address space of DSM architecture. 
 

2.3 Parallel Programming Models 
 
There are several parallel programming models available currently. We have chosen three of these 
parallel programming models which are most commonly used and address parallel computer 
architectures discussed in section 2.2. 
 

2.3.1 OpenMP 
 
Parallel programming in shared memory architecture had always faced the scalability and portability 
issues, unlike message passing interface which provides good scalability as well as portability for 
applications on distributed memory architecture [14]. Though the development of Scalable Shared 
Memory Multiprocessors (SMPP) resolved the problem of scalability on shared memory architecture 
(with their scalable hardware support for cache coherence) [18], the issue of portability still 
confronted the use of shared memory parallel programming model. On the other hand, message 
passing interface lacks the ability to benefit from the shared memory architecture and also an 
application code is needed to be rewritten for MPI in order to divide the data structures and their 
processing among various nodes. 
 

Serial Program OpenMP Program 
void print_total_items (int items[], int array_length) 
{ 
int total_items = 0; 
int i; 
 
 
 
for (i = 0; i < array_length; i++ ) 
     total_items += items[i]; 
 
printf (“Total Items: %d”, total_items);  
} 
 

void print_total_items (int items [], int 
array_length){ 
int total_items = 0; 
int i; 
 
#pragma omp parallel for shared(items, length) 
private(i) reduction(+:total_items) 
for (i = 0; i < array_length; i++) 
     total_items += items[i]; 
 
printf (“Total Items: %d”, total_items); 
} 

Figure 2.3(a): Comparison of Serial and OpenMP code 
 

OpenMP is an easy to use shared memory programming model, which resolves the issue of portability 
which other shared memory programming models lacked [18]. It is based on simple compiler 
directives, environment variable and library routines which make an application quite easy to 
parallelize. It parallelizes the application by simply using compiler directives and environment 
variables, which can be ignored by compiler and run-time system when the application is not compiled 
with OpenMP support. It is an industry standard API for shared memory parallel programming and has 



8 

 

support for C/C++ and FORTRAN. Portability is achieved by the use of compiler directives, as when the 
application is ported from multiprocessor to single processor environment, the compiler directives are 
simply ignored by the compiler and vice versa [14].  
 

Figure 2.3(b): Thread Execution in OpenMP program of Figure 2.3(a) 
 
Pthreads is another widely used shared memory parallel programming model but it is not intended for 
High Performance Computing applications, as it is based on task parallelism and has very little support 
for data parallelism unlike OpenMP which has great support for data parallelism [14]. 
 
Figure 2.3(a) shows a comparison of serial program with an OpenMP program, showing that very little 
effort is required to parallelize a serial code with OpenMP. The compiler directive in OpenMP version 
(starting with #pragma omp) informs the compiler that following for loop is to be parallelized. By 
default loop iterations are divided among number of processors available on machine, however a 
programmer can specify the number of threads using environment variable OMP_NUM_THREADS. 
Figure 2.3(b) represents the creation of threads in an OpenMP program shown in Figure 2.3(a). 
 

2.3.2 Message Passing Interface 
 
Message passing is an abstraction for parallel programming in distributed memory architecture. 
Message passing interface provides the standard library specifications for message passing 
programming. The data is coordinated between processors on different nodes by explicitly calling send 
and receive routines in a program. There are also certain extensions to conventional message passing 
model are provided in form of collective routines, parallel I/O, remote memory access and dynamic 
process creation [20]. MPI is not a message passing implementation itself; there are certain 
implementations of MPI like OpenMPI, MPICH, Intel MPI etc. 
 
MPI provides a way in which different processors can communicate with each other. It does not 
depend on underlying memory architecture, meaning MPI can also be used on shared memory 
architecture as well as on distributed memory architecture. Of course on shared memory architecture, 
message passing can utilize shared memory for fast communication between processes [21]. 
 
MPI provides a rich set of library function calls. An MPI program needs to call these routines explicitly, 
there is no implicit parallelism provided by MPI, like OpenMP. A programmer has to divide the data 
structure and tasks among different processes and provide coordination of different processes 
explicitly using MPI library routines. Though it seems unsatisfactory to call MPI routines explicitly in a 
program and divide the work among processes manually, MPI provides very high scalability of Parallel 
applications [21]. Figure 2.3(c) shows a simple MPI program with each node printing its rank or node 
ID. 
 
 

Thread Creation OpenMP Program 
Only one thread  before any 
Compiler directive is encountered. 
 
 
-------------------------------------------------------------- 
Creation of threads when a OMP 
Compiler directive is encountered. 
Number of iterations are divided  
among threads (array_length/4 
per thread). 
-------------------------------------------------------------- 

void print_total_items (int items [], int 
array_length){ 
int total_items = 0; 
int i; 
 
#pragma omp parallel for shared(items, length) 
private(i) reduction(+:total_items) 
for (i = 0; i < array_length; i++) 
     total_items += items[i]; 
 
printf (“Total Items: %d”, total_items); 
} 
 



9 

 

#include <stdio.h> 
#include <mpi.h> 
main(int argc, char **argv) { 
   int rank; 
    
   MPI_Init(&argc,&argv); /* Initialize the MPI environment */ 
   MPI_Comm_rank(MPI_COMM_WORLD, &rank); /*Assign a unique ID to each node*/ 
      
   printf("Hi from Node %d\n",rank); /*Each node prints its ID*/ 
             
   MPI_Finalize(); 
} 
 

Figure 2.3(c): Simple MPI Program 
 

2.3.3 Unified Parallel C 
 
Unified Parallel C is a locality-aware distributed shared memory parallel programming extension of 
ANSI C and is based on Partitioned Global Address Space (PGAS). As the name suggest, unified parallel 
C provides an abstract view of unified global address space to a programmer in which remote access is 
very similar to a local access [1]. However access to an element in remote memory has an overhead as 
compared to a local memory access. 
 
UPC achieves a global view of distributed shared memory by providing a source to source compiler. A 
source to source compiler translates a UPC code to a rudimentary C code with additional code for 
communication to access remote memories (which are hidden to user) [1]. The UPC-to-C translation 
allows the sequential C compiler to use available optimizations and produce an optimal machine 
language code [1]. 
 
UPC attracts HPC programmers due to its productivity. It has very simple syntax which makes it quite 
easy to program, like a single assignment statement can be used to access a remote memory location 
and domain decomposition can be achieved  by simply replacing the predominant C language for loop 
with UPC version of for loop [4]. UPC has also very little set of extensions to C language, which are 
quite easy to remember, thus it gains the attention of comprehensive number of parallel programming 
users. UPC makes data distribution among threads straightforwardly using distributed arrays, which 
allow programmers to keep data close to the threads that will compute on them [4]. Hence, UPC is a 
very productive and easy to use parallel extension of C language. Figure 2.3(d) compares a serial 
version of C code with UPC code. It is quite reflective from this figure that with only few logical steps, 
UPC achieves parallelism in a distributed shared memory environment. 
 

Serial Program UPC Program 
 
 
void square_items (int items[], int array_length) 
{ 
int i; 
 
for (i = 0; i < array_length; i++ ) 
     items[i] *= items[i]; 
} 
 

#include<upc.h> 
 
void square_items (shared int * items, int 
array_length){ 
int i; 
 
upc_forall (i = 0; i < array_length; i++; &items[i]) 
     items[i] *= items[i]; 
} 
 

Figure 2.3(d): Comparison of Serial C code with UPC code 
 
In the next chapter the core concepts and features of Unified Parallel C are elaborated. This can help 
users in understanding our ported MD code to UPC.  



10 

 

3 Unified Parallel C 
 
This chapter provides detailed explanation of parallel programming model Unified Parallel C. The 
major goal of this chapter is to introduce the users with ease of programming that UPC brings with its 
powerful extensions to ANSI C99 standard. 
 
UPC is based on Partitioned Address Global Space and enjoys both the ease of programming in shared 
memory paradigm and scalability of distributed memory paradigm. UPC provides an abstraction of 
global address space which is divided equally among threads. To exploit the locality, UPC 
accommodates several constructs which allow placing data near the threads which compute on it 
[7][8]. Due to flat address space, any thread can access any memory location in shared address space 
irrespective of the fact that whether that memory location actually resides in local or remote memory. 
A user can access both local and remote memory locations in a similar manner, the low level 
communication to access remote memory location is hidden from users. However a user can explicitly 
check for affinity of a memory location to minimize the remote accesses. 
 
UPC allows setting the number of parallel threads either at compile time with compiler flag –THREADS 
or at program start time by specifying argument to upcrun command. A UPC program runs in a SPMD 
fashion, where all threads executes the main function but can follow different execution paths to work 
on different data using available UPC constructs [5]. UPC threads run independently of each other, the 
only implied synchronization is at the beginning and termination of main function [5]. Hence it is the 
responsibility of the programmer to take care of necessary synchronization while accessing shared 
data by more than on threads. UPC is a derivative of distributed shared memory model. Apart from 
providing global shared address space, UPC also provides private address space for each thread which 
is only accessible by the thread who is owner of this private address space. This allows programmers 
to intelligently allocate the data in private and shared address spaces, such that only a data which has 
to be accessed excessively by one thread and rarely by other thread(s) needs to be allocated on region 
of shared address space (which has affinity to thread which computes intensively on this data) [5]. A 
data which remains local to a thread throughout the program execution should be allocated on private 
address space.  
 

 
Figure 3: Memory Layout of UPC 

 
Figure 4 shows memory layout provided by UPC. Each thread has its private address space which can 
only be accessed by thread who owns it, this is shown be rectangles around the circle in this figure. The 
circle in center shows a shared address space which is divided among all executing threads, each 
thread can access shared region which has affinity to it as well as shared region of any other thread. A 

•Private 
Address Space 
Thread n 

•Private 
Address Space 
Thread 2 

•Private 
Address Space 
Thread 1 

•Private 
Address Space 
Thread 0 

Shared 
Space 
Thread 0 

Shared 
Space 
Thread 1 

Shared 
Space 
Thread n 

Shared 
Space 
Thread 2 



11 

 

thread and data that has affinity to it are then placed on the same physical node by UPC run-time 
system. Hence, programmers can exploit locality by distributing the data cleverly among threads [1]. 
 

3.1 UPC Constants and Data Types 
 
UPC provides constants to identify total number of threads at run-time and thread ID of each thread. 
The constant THREAD is a global constant which can be used at run-time in allocation of certain data 
structures and algorithms which requires knowledge of total number of threads. The global constant 
THREAD is visible to all threads. Whereas each thread has private copy of constant MYTHREAD, which 
stores unique thread ID for each thread. The constant MYTHREAD can be used to control the flow of 
execution of each thread, such that allowing each thread to follow a distinct execution path. 
 
UPC provides extension to the ANSI C data types which apart from the type of the data also annotates 
where the data resides, private address space or shared address space. A memory can be allocated on 
shared address space by simply adding the prefix shared to the data type declaration. Whereas the 
traditional C data type declaration results in allocation of data in private address space [5]. Declaration 
of data as shared results in single copy of data which can be accessed by all threads, though this data 
would have affinity to certain thread(s). While conventional C data declaration will produce multiple 
copies of data, each thread having its own local copy of data residing in the private address space of 
thread. Figure 4.1(a) shows few examples of allocation of data in either private or shared address 
space in UPC. 
 

Data Declaration Location of Data Number of Copies of Data 

int a; Private Address Space Equals to number of 
threads. Each thread has 
its own local copy of 

variable a. 
shared int b; Shared Address Space One copy which resides in 

shared region having 
affinity to thread 0. 

Figure 3.1(a): Allocation of Data in Private or Shared Address Space 
 
In Figure 3.1(a), the reason for variable b to have affinity to thread 0 is to conform the fact that first 
element of a shared array always has affinity to thread 0. Shared arrays are discussed later in section 
3.2.  
 

Function/Structure Declaration Restrictions 
struct dataset { 
            int a; 
            shared int b; 
            int *c; 
            shared int *d; 
} 

Declaration of variable b is illegal as private 
structure cannot have a shared value. 
However a structure can contain a private 
pointer which points to some shared region. 
This is done in last statement where d is a 
private pointer to shared region. UPC 
pointers are discussed in detail later. 

void illegalFuncDefinition() { 
            int a; 
            shared int b; 
            static shared int c; 
            shared int *d; 
} 

Declarations of b and d are illegal. 

Figure 3.1(b): Restrictions on shared variables declaration inside a block 
 
Local variables of a function cannot be declared as shared due to the fact that local variables of a 
function have automatic storage duration. Local variables of a function have the lifetime limited to the 
duration of execution of the function call. After the function is returned, all its local variables are 



12 

 

destroyed and their storage is reoccupied automatically. To give some freedom, UPC accommodates 
declaration of static shared variables inside a function [5]. Static variables have their lifetime equal to 
the execution of complete program but their scope is limited to the function having its declaration. 
Furthermore, a private structure cannot contain any variable whose allocation is to be done on shared 
address space [5]. Figure 3.1(b) shows some restrictions on declaration of shared variables in a 
function definition and in a structure. 
 

3.2 Distributed or Shared Arrays in UPC 
 
UPC provides uncomplicated way of distributing data among multiple threads to aid exploitation of 
locality. This is achieved using shared arrays available in UPC.  The elements of a shared array are 
distributed among threads in a round-robin fashion in chunks of consecutive elements enumerated by 
BLOCK_SIZE in the declaration of shared array. Below is the standard declaration of a shared array in 
UPC. 
 
  shared [BLOCK_SIZE] data_type array_name[array_length]; 
 
Consider an example in Figure 3.2(a) which shows distribution of array elements among three threads 
with a BLOCK_SIZE of 4. 
 

Declaration: shared [THREADS] int data [13];  

     
 
 
 

SHARED ADDRESS SPACE 
 

Figure 3.2(a): Distribution of shared array’s elements 
 
There are also few variants of shared array declaration. These are: 

1) Allocates all elements of shared array in shared space of thread 0, using infinite BLOCK_SIZE. 
 
shared [ ] data_type array_name[array_length]; // using empty layout qualifier 
 
OR 
 
shared [0] data_type array_name[array_length]; // using BLOCK_SIZE equal to 0 
 

2) Divides elements of shared array among threads with adjacent elements allocated in shared 
space of same thread. Thus it allows exploiting locality where frequent access to neighbor 
elements of shared array is required. 
 
shared [*] data_type array_name[array_length]; // using BLOCK_SIZE equal to *  

3) Divides elements of shared array with default BLOCK_SIZE of 1. 

Thread 0 

data[0] 

data[1] 

data[2] 

data[3] 

data[12] 

Thread 1 

data[4] 

data[5] 

data[6] 

data[7] 

Thread 2 

data[8] 

data[9] 

data[10] 

data[11] 



13 

 

shared data_type array_name[array_length]; // Not using any block qualifier 
 
There are certain restrictions on declaration of shared arrays statically if the UPC program is not 
compiled with static number of threads (using flag -THREADS). Compiling a UPC program for pre-
known number of threads aids the UPC compiler with the opportunity to optimize the UPC code. But it 
does not seem a good idea to compile a UPC program with the fix number of threads if the program is 
to be executed several times with each run-time environment containing different number of threads. 
The specification of total number of threads at run-time places some restrictions on the shared array 
declarations or distribution of data among threads using shared arrays [5]. In general, below are the 
restrictions if a UPC program is not compiled for static number of threads. 
 

1) A shared array with definite layout qualifier must have length of exactly one of the 
dimensions of array equals to scalar multiple of total number of threads (use of static global 
constant THREADS in array dimension) [19]. Below are the examples obeying and violating 
this restriction. 
 
shared int data[2*THREADS]; // legal – (i) 
shared int data[5][THREADS]; // legal – (ii) 
shared int data[THREADS][5]; // legal – (iii) 
shared [2] int data[THREADS]; // legal – (iv) 
shared int data[20]; // illegal – (v) 
shared int data[THREADS][THREADS]; – (vi)   
shared int data[THREADS+4]; //illegal – (vii) 
 

2) A shared array with indefinite layout qualifier cannot have any dimension of array depending 
on total number of threads (THREADS). Below are the examples obeying and violating this 
restriction. 
 
shared [] int data[4]; // legal – (viii) 
shared [] int data[2*THREADS]; //illegal – (ix) 
shared [] int data[THREADS+4]; //illegal – (x) 

 
In general, when a UPC program is translated to dynamic threads environment, number of shared 
array elements to be distributed to each thread should be constant (i.e. varying number of threads 
should not result in different number of elements to be allocated to each thread). In above examples, 
statements (v), (vii) and (viii) are illegal because these statements allocate different number of 
elements to each thread when executed with different number of threads. For example, when 
statement (v) is executed with THREADS equals to 4, it allocates 5 elements to each thread. Whereas 
when the same statement (v) is executed with THREADS equals to 2, it allocates 10 elements to each 
thread. Thus elements per thread do not remain constant with varying number of threads, which is not 
allowed in UPC’s dynamic threads environment. 
 

3.3 UPC Pointers 
 
UPC provides four distinct pointers classified according to the address space where these pointers 
reside and the address space which is pointed by these pointers.  These four distinct pointer divisions 
are [5]: 
 

i. Private Pointer directing towards Private Space 
ii. Private Pointer directing towards Shared Space 

iii. Shared Pointer directing towards Private Space 
iv. Shared Pointer directing towards Shared Space 

 
Figure 3.3(a) shows two pointer variants of UPC which have the property that they reside in one 
address space and point to other address space. These are Private Pointer to Shared Address Space 



14 

 

(PS) which resides in Private Address Space and Shared Pointer to Private Address Space (SP) that 
resides in Shared Address Space. The other two variants have the property that they reside in the same 
address space to which they point. These are Private Pointer to Private Address Space (PP) and Shared 
Pointer to Shared Address Space (SS). 

Figure 3.3(a): Location and target space of two UPC Pointer variants (PS and SP) 
 
Figure 3.3(b) shows few examples of UPC pointer declarations to have a better practical understanding 
of these pointers. The use of shared keyword relative to the position of asterisk (*) in the UPC pointer 
declarations is important, as the position of asterisk distinguishes between different variants of UPC 
pointers. If the shared keyword appears after (or on the right side of) the asterisk in pointer 
declaration, then the declared pointer is shared and it has affinity to thread 0. Whereas if there is not 
any shared keyword after (or on the right side of) the asterisk in pointer declaration then the declared 
pointer is private and each thread has a local copy of this pointer. It is worthwhile to note here that the 
right side of asterisk identifies pointer type (either it is a private or shared pointer) while left side of 
asterisk identifies the type of pointer (integer, float or any other type) and the target address space 
(private or shared space). It is recommended not to use shared pointer to private space, as it allows to 
access private space of other thread, which obliterate the principal of private space of each thread 
visible only to itself [5]. 
 

No. 
Pointer Declaration 

Statement 
Type of Pointer 

Carries additional 
information than 
address of target 

memory location? 
1 int * pointerA; Private Pointer to Private Space No 

2 shared int * pointerB; Private pointer to Shared Space 
Yes. (i) Thread 

information, (ii) Virtual 
Address and (iii) Phase 

3 int * shared pointerC; Shared Pointer to Private Space 
Yes. (i) Thread 

information, (ii) Virtual 
Address and (iii) Phase 

4 shared int * shared pointerD; Shared Pointer to Shared Space 
Yes. (i) Thread 

information, (ii) Virtual 
Address and (iii) Phase 

 
Figure 3.3(b): UPC Pointer Examples 

 
 
 



15 

 

 
 
 

Figure 3.3(c): UPC Pointer Locations and their Target Address Space(s) 
 
Figure 3.3(c) shows location of the pointers and their ability to point to one or both UPC address 
spaces for pointer examples of Figure 3.3(b). It should be clear from this figure that each thread has its 
own local copy of private pointers (pointerA and pointerB), whereas there is single copy each of shared 
pointers (pointerC and pointerD). As explained earlier, pointerA can only point to private space hence 
it doesn’t contain any additional information about thread affinity, phase and virtual address of 
memory location it points to. Pointer pointerB is private pointer to shared address space and it can 
point to any memory location in shared space regardless of affinity of a memory location to any thread. 
Pointer pointerC is a shared pointer to private address space and hence it is discouraged to use it as it 
violates the fundamental basis of UPC address spaces. Pointer pointerD is a shared pointer to shared 
space. There is only one instance of pointerD which has affinity to thread 0 and it can point to any 
location in the shared space. Pointers to shared space (pointerB, pointerC and pointerD) store the 
additional information about thread affinity, virtual address and phase of memory locations they store. 
 
Inherited from ANSI C, pointers to shared space can also be used to traverse shared arrays by 
advancing these pointers. Shared arrays in UPC comprise the blocking factor BLOCK_SIZE for 
distribution of consecutive elements to the same thread. Pointers to shared arrays are also required to 
be declared with blocking factor if they are advanced to go through elements of a blocked shared array. 
But one should be very careful while applying arithmetic to a pointer to shared array. To pass through 
the elements of a shared array correctly, the blocking factors of shared array and pointer to shared 
array must be equal; otherwise it can result in improper traversing of shared array elements [5]. Figure 
3.3(d) shows an example program which highlights incorrect traversing of shared array due to 
dissimilar blocking factors of pointer and its target shared array. Figure 3.3(e) illustrates distributed 
array and its traversing for the program in Figure 3.3(d). 
 
/* Traverse shared array using shared pointers – Program compiled for 3 threads */ 
#define BLOCK_SIZE 4 
shared [BLOCK_SIZE] int array[14]; // declaration of shared array with blocking factor of 4 
shared [BLOCK_SIZE] int * ps1; // declaration of pointer to shared space with blocking factor of 4 
shared int * ps2; // declaration of pointer to shared space with default blocking factor of 1 
 
ps1 = array; // Statement 1 -- ps1 point to starting address of shared array 
ps1 = ps1 + 3; // Statement 2 -- results in correct traversing 
ps2 = ps1 + 2; // Statement 3 -- results in correct traversing 
ps3 = ps1 + 2; // Statement 4 -- results in incorrect traversing 
 
 

Figure 3.3(d): Program for traversing a shared array using pointers 
 
 
 

 pointerD   
 pointerC 

pointerB 
pointerA 

pointerB 
pointerA 

pointerB 
pointerA 

pointerB 
pointerA 

Shared Space 

Private Spaces 

T
0 

T
1 

T
2 

T
3 



16 

 

 
 

Figure 3.3(e): Illustration of traversing shared array for the program in Figure 3.3(d) 
 
In figure 3.3(e), ps1 points to the fourth element of shared array as it was expected after execution of 
statements 1 and 2 in figure 3.3(d). Pointer ps2 points to sixth element of shared array as it was 
supposed to after the execution of statement 3 in figure 3.3(d). On the other hand, pointer ps3 points to 
ninth element of shared array, whereas it was expected to point to the sixth element like ps2. But due 
to default BLOCK_SIZE of 1 for ps3, it views the shared array as it has blocking factor of 1. Hence when 
incremented ps3 by 2 in statement 4 (of figure 3.3(d)), it traverses shared array in the pattern of fourth 
element to fifth and then eighth of shared array. 
 
UPC permits casting among its pointer types [5]. This is useful as shared data which is local to a thread 
can also be accessed using a local pointer. Traversing of local shared data can also be done using 
arithmetic on local pointers in a normal way; this is so as local shared data is allocated adjacently in 
memory. Shared pointers carry additional information as compared to local pointers. This additional 
information is comprised of thread affinity, block address and phase (location of data within the block) 
of the data pointed by the shared pointer. Hence, casting a shared pointer to a local pointer will result 
in loss of this additional information that shared pointer carries. Whereas casting of a local pointer to 
shared pointer is not recommended [5] as it would give rise to wrong results. It is important to note 
here that when accessing a local shared data using local pointer, its programmer’s responsibility to 
take care of lower and upper bounds of local shared data. Figure 3.3(f) shows an example of a program 
which shows how local pointers can be used to traverse local shared data. 
 
/* Traverse local shared data using local pointers – Program compiled for 3 threads */ 
#define BLOCK_SIZE 4 
shared [BLOCK_SIZE] int array[14]; // declaration of shared array with blocking factor of 4 
shared [BLOCK_SIZE] int * ps; // declaration of pointer to shared space with blocking factor of 4 
int * p; // declaration of local pointer 
 
ps = &array[BLOCK_SIZE*MYTHREAD]; // ps point to starting address of local shared data at 
             // each thread 
p = (int *) ps; // casting of shared pointer to local pointer 
p = p + 1; // points to second element of local shared data 
p = p + 3; // crosses the upper bound of local shared data at thread 2 and thread 3 -- error 
 

Figure 3.3(f): Example of traversing local shared data using local pointers 
 
Figure 3.3(g) illustrates the error condition due to crossing the upper bound of local shared data when 
traversing local shared data using local pointers. Here thread 0 has enough number of elements that 
even after incrementing local pointer p in the last statement of figure 3.3(f), p still does not go beyond 
the upper limit of shared data elements of thread 0. However for threads 1 and 2, pointer p crosses the 
limit of total number of local shared data elements for these threads, which might result in erroneous 
results.  

Thread 0 

array[0] 

array[1] 

array[2] 

array[3] 

array[12] 

array[13] 

Thread 1 

array[4] 

array[5] 

array[6] 

array[7] 

Thread 2 

array[8] 

array[9] 

array[10] 

array[11] 

ps1 

ps3 

ps2 



17 

 

 

 
Figure 3.3(g): Traversing local shared data using local pointers for the program in Fig 3.3(f) 

 
UPC facilitates with some very useful library routines which help in obtaining the information from the 
shared pointer that a shared pointer carries additionally as compared to a local pointer. This 
information can then be used to control the flow of execution of a program – different execution path 
for each thread, and also for manipulation of the shared data astutely. Among these library functions, 
the most commonly used are [5]: 
 
Function: size_t upc_threadof(shared void * ps) 
Explanation: This function returns the thread ID which has affinity to the shared data pointed by ps 
(pointer to shared space).  
 
Function: size_t upc_phaseof(shared void * ps) 
Explanation: This function returns the phase of the shared data pointed by ps (pointer to shared 
space).. 
 
Function: size_t upc_addrfieldof(shared void * ps) 
Explanation: This function returns the local address of the shared data pointed by ps (pointer to 
shared space).  
 

3.4 Domain Decomposition in UPC 
 
Domain decomposition in parallel programming involves dividing the data in chunks [16], such that 
each thread or process may then work on the chunk of data it has been compelled to compute on. UPC 
programs executes in SPMD fashion [1], where each thread computes on a portion of the total data. To 
divide the job among threads, it is necessary that a thread can identify itself and all other threads in the 
environment which are working on the same job [5]. This ability of each thread to recognize itself and 
other threads allows efficiently controlling the flow of execution for each thread and associating each 
thread with a particular chunk of data to compute on.  
 
UPC is very powerful extension of C, which provides variable declaration semantics that associate a 
data with particular thread by providing affinity of the data to some thread. Knowing the affinity of the 
data, a programmer can then cleverly divide the job among threads by compelling each thread to 
compute on data that each thread has the affinity to. This in turn also reduces the remote memory 
accesses significantly in distributed memory architecture as UPC compilers map a thread and its 
associated data to the same physical node [5]. UPC also provides local and global constants, 
MYTHREAD and THREADS respectively, which empowers each thread with the ability of identifying 
itself and other threads in the UPC run-time environment. These constants help a programmer to 
manage the workload among the threads.  
 
 

Thread 0 

 

array[0] 

array[1] 

array[2] 

array[3] 

array[12] 

array[13] 

Thread 1 

 

array[4] 

array[5] 

array[6] 

array[7] 

Thread 2 

 

array[8] 

array[9] 

array[10] 

array[11] 

ps p ps p ps p 



18 

 

Figure 3.4(a) shows an example program for basic domain decomposition and workload division 
among threads using UPC variable declaration semantics and constants, MYTHREAD and THREADS. 
This program calculates the sum of squares two vectors of length THREADS each in a parallel fashion, 
where each thread calculates the sum of the elements of these vectors which has affinity to this thread. 
Statements 1,2 and 3 in program decompose the domain and assign each thread one element of each of 
vectors v1,v2 and result to compute on. Statement 4 in program uses the local constant of each thread, 
MYTHREAD, to compute on data which has affinity to it. Finally thread 0 prints the sum of the squares 
of two vectors, v1 and v2. Figure 3.4(b) visualizes the example presented in Figure 3.4(a). 
 
#include <upc.h> 
 
shared int v1[THREADS]; // statement 1 
shared int v2[THREADS]; // statement 2 
shared int result[THREADS]; // statement 3 
 
int main (void) { 
 /* Initialized shared arrays*/ 
 result[MYTHREAD] = v1[MYTHREAD] * v1[MYTHREAD] +  
    v2[MYTHREAD]*v2[MYTHREAD];  // statement 4 
  
 upc_barrier; // wait for other threads to finish 
  
 if(0 == MYTHREAD) 
  for(int i = 0; i < THREADS; i++) 
   printf(“Sum of ith element=%d\n”, result[i]); 
 return 0; 
} 

 
Figure 3.4(a): Example of basic domain decomposition and work division 

 

 
 

Figure 3.4(b): Visualization of example in Figure 4.4(a) 
 
In addition to variable declaration semantics and constants that allow efficient domain decomposition 
and workload division among threads, UPC provides a dominant upc_forall work sharing iteration 
statement which is a UPC version of ANSI C for loop. It allows to distribute the loop iterations among 
threads, treating each loop iteration as an independent unit of job [5]. However this is a programmer’s 
responsibility to make sure that there is no data dependency among the loop iterations, so they can be 
executed in parallel without producing wrong results. 
The upc_forall statement is quite similar to the conventional for loop of C language. It has first three 
arguments similar to the ANSI C for loop, whereas it has one additional argument that decides which 
thread is responsible for the execution of a particular iteration. Given below is the syntax of upc_forall 
statement: 
 
upc_forall(initialization_expression; loop_condition; increment_expression; affinity) 
 
The fourth argument, affinity, can either be a pointer to shared address space or an integer value. In 
case the fourth argument is a pointer to shared space, a particular iteration is executed by the thread 
which has affinity to the shared data pointed by the pointer used as fourth argument. When the fourth 

result = v12 + v22; 

THREAD 0 
 

result[0]=v1[0]2+v2[0]2; 

THREAD 1 
 

result[1]=v1[1]2+v2[1]2; 

THREAD 2 
 

result[2]=v1[2]2+v2[2]2; 
..... 

THREAD n 
 

result[n]=v1[n]2+v2[n]2; 



19 

 

argument is an integer value, a particular iteration is executed by the thread having the value of its 
local constant MYTHREAD equals to the ‘given integer value modulo THREADS (global constant)’. Each 
thread can execute more than one iteration; however each iteration must only be executed by one 
particular thread [5]. Consider an example in figure 3.4(c), which is bit modified version of example in 
figure 3.4(a). Here each thread calculates the sum of the squares of three elements of vectors v1 and 
v2. The work distribution here is achieved using upc_forall statement with its fourth parameter being a 
pointer to shared region. Each thread executes three iterations of the upc_forall statement, whereas 
each iteration is executed by only one thread. 
 
#include <upc.h> 
 
shared int v1[3*THREADS]; // statement 1 
shared int v2[3*THREADS]; // statement 2 
shared int result[3*THREADS]; // statement 3 
 
int main (void) { 
 /* Initialized shared arrays*/ 
 upc_forall(int i = 0, i < 3*THREADS; i++; &result[i]) 
  result[i] = v1[i]*v1[i] + v2[i]*v2[i];  // statement 4 
  
 upc_barrier; // wait for other threads to finish 
  
 if(0 == MYTHREAD) 
  for(int i = 0; i < 3*THREADS; i++) 
   printf(“Sum of ith element=%d\n”, result[i]); 
 return 0; 
} 
 

Figure 3.4(c): Work division using upc_forall statement with affinity argument of shared pointer 
 
Figure 3.4(d) shows the example presented in Figure 3.4(c) but with fourth argument of upc_forall 
statement being an integer value. Here ith iteration is executed by a thread whose value  of MYTHREAD 
equals i%THREADS. This results in round robin distribution of iterations among UPC threads. 
 
#include <upc.h> 
 
shared int v1[3*THREADS]; // statement 1 
shared int v2[3*THREADS]; // statement 2 
shared int result[3*THREADS]; // statement 3 
 
int main (void) { 
 /* Initialized shared arrays*/ 
 upc_forall(int i = 0, i < 3*THREADS; i++; i) 
  result[i] = v1[i]*v1[i] + v2[i]*v2[i];  // statement 4 
  
 upc_barrier; // wait for other threads to finish 
  
 if(0 == MYTHREAD) 
  for(int i = 0; i < 3*THREADS; i++) 
   printf(“Sum of ith element=%d\n”, result[i]); 
 return 0; 
} 
 

Figure 3.4(d): Work division using upc_forall statement with affinity argument of integer value 
 



20 

 

Apart from having an integer value or pointer to shared as a fourth argument of upc_forall statement, 
the fourth argument of upc_forall statement can also be a continue statement or an empty field [19]. In 
case the fourth argument is a continue statement or an empty field, all iterations of upc_forall 
statement are executed by all threads. UPC also allows nesting of upc_forall statements. Nevertheless in 
nested upc_forall statements, the outermost upc_forall statement determines the work distribution 
among threads [19], whereas the inner upc_forall statements act as having their fourth argument of 
affinity being a continue statement or an empty field. This results in all iterations of inner upc_forall 
statements in nested hierarchy to be executed by all threads, such that they are not divided among 
threads.  
 

3.5 Dynamic Shared Memory Allocation 
 
There are certain scenarios in programs when the amount of memory required for data is not known 
before the run-time. Such requests for capturing the memory are fulfilled by allocating memory on the 
heap at run-time, known as dynamic memory allocation. Dynamic memory allocation also provides the 
advantage of reusing the allocated memory during the course of a program. It is especially very useful 
when large memory is acquired during the run-time [5], this large chunk of memory can be released 
when it is not required by the program anymore and later can be used for further memory allocation 
requests. 
 
Dynamic memory allocation in the private address space of UPC is achieved by using the inherited 
ANSI C routines, e.g. malloc(). However for dynamic memory allocation in shared address space, UPC 
provides exclusive functions [8]. There are two major function variants of dynamic shared memory 
allocation in UPC, collective and non-collective. A collective function for dynamic shared memory 
allocation needs to be called by all threads for the allocation of required shared memory, whereas a 
non-collective function for dynamic shared memory allocation is only required to be called by a single 
thread to acquire the required memory on shared address space [5]. UPC provides three functions for 
allocating the memory dynamically on its shared address space, while it provides only a single function 
for releasing the memory allocated on shared space [8][19]. The functions for dynamic shared memory 
allocation are upc_all_alloc, upc_global_alloc and upc_alloc. Each of these functions covers a vast detail 
and needs to be discussed separately. 
 
upc_all_alloc(): 
 
upc_all_alloc is a collective function call for dynamic memory allocation on shared space and hence it 
must be called by all threads in a program with the same argument values. Below is the function 
definition of upc_all_alloc:  
 

shared void * upc_all_alloc(size_t NUM_BLOCKS, size_t BLOCK_SIZE) 
 
This function returns a single pointer to allocated memory in the shared space, which is suitably 
aligned and can be assigned to any type of pointer to shared [19]. The allocated shared memory is 
distributed among threads in a round robin fashion in the chunks of BLOCK_SIZE. The BLOCK_SIZE is 
determined using second argument of this routine, which mentions total number of bytes in each 
block. Whereas the total number of blocks which sum up to total shared memory is determined using 
first argument of this routine. The total number of bytes allocated in shared memory is therefore 
NUM_BLOCKS times BLOCK_SIZE. 
 
The shared memory allocated dynamically with the above mentioned upc_all_alloc function is similar 
to shared array allocated statically in following way [5]: 
 

shared [BLOCK_SIZE] char [BLOCK_SIZE * NUM_BLOCKS]; 
 
If the memory is allocated successfully using upc_all_alloc function, an identical pointer value is 
returned at all threads. However if memory could not be allocated, a NULL pointer to shared space is 



21 

 

returned [5]. The memory allocated using upc_all_alloc function needs to be deallocated explicitly if not 
required by the program anymore. 
 
Figure 3.5(a) shows an example of dynamic shared memory allocation using function upc_all_alloc. 
Statement 1 declares a private pointer to shared space ‘ps’ with the blocking factor of 2, thus each 
thread has a private copy of this pointer. Statement 2 allocates memory dynamically on the shared 
space and returns a pointer pointing at the start of allocated memory. Hence, ps of each thread points 
to the start of allocated shared memory. This can be seen in Figure 3.5(b) which illustrates the example 
in Figure 3.5(a) when executed with four threads. With statement 3, each thread initializes its local 
shared portion of the allocated shared memory. Finally, using statement 4 each thread prints the values 
of elements of shared array which have affinity to it. 
 
#include <upc.h> 
#define BS 2 
int main (void) { 
  
 shared [BS] int * ps; // statement 1 
  
 ps = (shared [BS] int *) upc_all_alloc(THREADS, BS * sizeof(int)); // statement 2 
 
 upc_forall(int i = 0, i < BS*THREADS; i++; &ps[i]) 
  ps[i] = MYTHREAD;  // statement 3 
  
 upc_forall(int i = 0, i < BS*THREADS; i++; &ps[i]) 
  printf(“THREAD[%d] ps[%d] = %d”, MYTHREAD, i, ps[i]);  // statement 4 
 
 return 0; 
} 
 

Figure 3.5(a): Example program dynamic shared memory allocation using upc_all_alloc 
 

 
 
 

 
Figure 3.5(b): Dynamic memory allocation for the example in Figure 3.5(a) executed with 4 threads 

 
upc_global_alloc(): 
 
upc_global_alloc is a non-collective function call for dynamic memory allocation on shared space and 
hence each thread can call this routine independently of any other thread and with different 
arguments compared to other threads. Below is the function definition of upc_global_alloc:  
 

 ps[0] ps[1]      ps[2] ps[3]      ps[4] ps[5]      ps[6] ps[7] 

ps ps ps ps 

Shared Space 

Private Spaces 

T
0 

T
1 

T
2 

T
3 



22 

 

shared void * upc_global_alloc(size_t NUM_BLOCKS, size_t BLOCK_SIZE) 
 
If the memory is allocated successfully on shared space, a pointer to shared space which points to 
allocated memory is returned, otherwise a NULL pointer to shared space is returned. The allocated 
shared memory is distributed among threads in a round robin fashion in the chunks of BLOCK_SIZE. 
The BLOCK_SIZE is determined using second argument of this routine, which mentions total number of 
bytes in each block. Whereas the total number of blocks which sum up to total shared memory is 
determined using first argument of this routine. The total number of bytes allocated in shared memory 
is therefore NUM_BLOCKS times BLOCK_SIZE. 
 
It is critical to highlight the major difference between upc_all_alloc  and upc_global_alloc routines. If 
upc_global_alloc is called by several threads, each of these threads gets a different memory allocated in 
shared address space and each thread gets a pointer to shared which points to the start of memory 
allocated for it. Whereas a call to upc_all_alloc results in a single memory space allocated in shared 
address space and all threads get identical pointers which point to the start of this allocated memory. 
The shared memory allocated dynamically by calling upc_global_alloc function is similar to the shared 
array allocated statically in following way [5]: 
 

shared [BLOCK_SIZE] char [BLOCK_SIZE * NUM_BLOCKS]; 
 
#include <upc.h> 
#define BS 2 
int main (void) { 
  
 shared [BS] int * ps; // statement 1 
  
 ps = (shared [BS] int *) upc_global_alloc(THREADS, BS * sizeof(int)); // statement 2 
 
 upc_forall(int i = 0, i < BS*THREADS; i++; MYTHREAD) 
  ps[i] = MYTHREAD;  // statement 3 
  
 upc_forall(int i = 0, i < BS*THREADS; i++; MYTHREAD) 
  printf(“THREAD[%d] ps[%d] = %d”, MYTHREAD, i, ps[i]);  // statement 4 
 
 return 0; 
} 
 

Figure 3.5(c): Example program dynamic shared memory allocation using upc_global_alloc 
 
Figure 3.5(c) shows an example of dynamic shared memory allocation using function upc_global_alloc. 
Statement 1 declares a private pointer to shared space ‘ps’ with the blocking factor of 2, thus each 
thread has a private copy of this pointer. Statement 2 results in the allocation of separate dynamic 
memory on shared space for each thread. Each thread gets a pointer to shared which points at the start 
of memory allocated to it. This can be seen in Figure 3.5(d) which illustrates the example in Figure 
3.5(c) when executed with four threads. With statement 3, each thread alone initializes its allocated 
shared memory completely. Finally, using statement 4 each thread prints the values of elements of 
shared array allocated in result of its call to upc_global_alloc. 



23 

 

 

 
 

 
Figure 3.5(d): Dynamic memory allocation for the example in Figure 3.5(c) executed with 4 threads 

 
upc_alloc(): 
 
UPC also facilitates with the ability for each thread to dynamically allocate memory on its local shared 
portion of global shared address space. This can be quite convenient in certain scenarios in a program 
where each thread has to work alone on some data and it is unaware of size of this data before run-
time. So each thread can dynamically allocate memory on its local portion of shared space and hence 
effectively exploit the locality. This suits the intent if the shared data is not to be accessed by a thread 
other than the thread that has this data in its local portion of shared space, so there will only be local 
accesses to this data. Nevertheless this data can also be accessed by other threads if desired. Below is 
the function definition of upc_alloc:  
 

shared void * upc_alloc(size_t BLOCK_SIZE) 
 
If the memory is allocated successfully on local shared portion of calling thread, a pointer to shared 
space which points to the allocated memory is returned, otherwise a NULL pointer to shared space is 
returned. As the function takes only one argument which is BLOCK_SIZE, the allocated memory has the 
size of BLOCK_SIZE bytes and it has affinity to thread which called upc_alloc function. 
 
Figure 3.5(e) shows an example of dynamic shared memory allocation using function upc_alloc. 
Statement 1 declares a private pointer to shared space ‘ps’ with indefinite blocking factor, thus each 
thread has a private copy of this pointer. Statement 2 results in the dynamic memory allocation on local 
shared portion of the thread which calls the function upc_alloc. Each thread gets a pointer to shared 
which points at the start of memory allocated on its local shared portion of the shared address space. 
This can be seen in Figure 3.5(f) which illustrates the example in Figure 3.5(e) when executed with 
four threads. With statement 3, each thread initializes its allocated shared memory. Finally, using 
statement 4 each thread prints the values of elements of shared array allocated in result of its call to 
upc_alloc. 
 
 
 
 
 

 
ps[0] ps[1]      ps[2] ps[3]      ps[4] ps[5]      ps[6] ps[7] 
 
ps[0] ps[1]      ps[2] ps[3]      ps[4] ps[5]      ps[6] ps[7] 
 
ps[0] ps[1]      ps[2] ps[3]      ps[4] ps[5]      ps[6] ps[7] 
 
ps[0] ps[1]      ps[2] ps[3]      ps[4] ps[5]      ps[6] ps[7] 

 

 

ps ps ps ps 

Shared Space 

Private Spaces 

T
0 

T
1 

T
2 

T
3 



24 

 

#include <upc.h> 
#define BS 2 
int main (void) { 
  
 shared [] int * ps; // statement 1 
  
 ps = (shared [] int *) upc_alloc(BS * sizeof(int)); // statement 2 
 
 upc_forall(int i = 0, i < BS; i++; MYTHREAD) 
  ps[i] = MYTHREAD;  // statement 3 
  
 upc_forall(int i = 0, i < BS; i++; MYTHREAD) 
  printf(“THREAD[%d] ps[%d] = %d”, MYTHREAD, i, ps[i]);  // statement 4 
 
 return 0; 
} 
 

Figure 3.5(e): Example program dynamic shared memory allocation using upc_alloc 
 

 
 
 
 
Figure 3.5(f): Dynamic memory allocation for the example in Figure 3.5(e) executed with 4 threads 

 
UPC provides only a single function for dynamic shared memory deallocation. upc_free releases the 
memory acquired by any of the routines upc_all_alloc, upc_global_alloc or upc_ alloc.  
 
upc_free(): 
 
upc_free releases the dynamically allocated memory on shared address space. This is quite useful in 
applications which work on large data sets; dynamically allocated memory which is not required 
anymore by the program can be released and made available for future allocation requests. UPC retains 
the ability of ANSI C to reuse a dynamically allocated memory by providing upc_free function which 
allows releasing dynamically allocated memory on the shared space. The memory allocated 
dynamically on the private space can be released by intrinsic ANSI C function free(). Below is the 
function definition of upc_free:  
 

void upc_free(shared void * ps) 
 
upc_free takes only one argument, which is pointer to shared space that points to the dynamically 
allocated memory on shared space that is to be released. If the pointer passed to this function points to 
the memory which has already been released or it does not point to any of the storages allocated 
dynamically on shared space, the behavior of this call is undefined [19].  Figure 3.5(g) shows an 

 ps[0] ps[1]      ps[0] ps[1]      ps[0] ps[1]      ps[0] ps[1] 

ps ps ps ps 

Shared Space 

Private Spaces 

T
0 

T
1 

T
2 

T
3 



25 

 

example of releasing a dynamically allocated shared memory. This is the same program as in Figure 
3.5(a) but it releases the allocated memory (at statement 5) once it is not required by program 
anymore. This can be seen in Figure 3.5(h) which illustrates the example in Figure 3.5(g) after the 
execution of statement 5. 
 
#include <upc.h> 
#define BS 2 
int main (void) { 
  
 shared [BS] int * ps; // statement 1 
  
 ps = (shared [BS] int *) upc_all_alloc(THREADS, BS * sizeof(int)); // statement 2 
 
 upc_forall(int i = 0, i < BS*THREADS; i++; &ps[i]) 
  ps[i] = MYTHREAD;  // statement 3 
  
 upc_forall(int i = 0, i < BS*THREADS; i++; &ps[i]) 
  printf(“THREAD[%d] ps[%d] = %d”, MYTHREAD, i, ps[i]);  // statement 4 
 
 upc_barrier; // wait fot other threads 
  
 upc_free(ps); // statement 5 
 
 return 0; 
} 

 
Figure 3.5(g): Example program for releasing dynamically allocated shared memory using upc_free 

 

 
 
 
 

Figure 3.5(h): Illustration of example in Figure 3.5(g) after execution of statement 5 
 

3.6 Synchronization and Memory Consistency 
 
Synchronization is the fundamental and one of the most troublesome issues in parallel programming 
[23]. In our most of daily routines we need to synchronize for our certain actions, for example 
synchronizing for the time to use a shower when there is only one shower and there is more than one 
person who needs to use the shower [23]. Similarly in parallel programs when a data is to be modified 
by more than on thread or process, it requires appropriate synchronization among threads or 
processes to avoid corruption of the data. To be more precise, synchronization in parallel programs 
guarantees to produce the same result as if the program is executed serially [5], such that the part of 
the total work that each thread does is coordinated accurately with the other threads. However one 

 ps[0] ps[1]      ps[2] ps[3]      ps[4] ps[5]      ps[6] ps[7] 

ps ps ps ps 

Shared Space 

Private Spaces 

T
0 

T
1 

T
2 

T
3 



26 

 

should not use excessive synchronization as it would result in high execution time of the application 
and the overall goal to speed up the application will be affected. UPC categorizes its synchronization 
constructs into two significant classes, control and data [5].  
 
Control synchronization deals with allowing a thread to progress, such that whether a thread should 
proceed executing after a certain point in program or wait there for other threads to finish their job. 
This defines a scenario when the data modified by one thread can be used later by some other thread. 
Similarly whether a thread should execute a region in code atomically or not comes under the division 
of control synchronization. UPC accommodates with two control synchronization constructs, barrier 
synchronization and locks, which addresses above issues.  
 
Data Synchronization deals with the order of modification of the data by different threads and the 
instance at which a data should become visible to other threads after being modified by a thread [5]. 
UPC also accommodates with data synchronization constructs; these are fences and memory 
consistency qualifiers. 
 

Barrier Synchronization 
 
Barrier synchronization is the simplest synchronization mechanism in parallel programming.  Barrier 
synchronization enables multiple threads to coordinate their arrival at a particular point in program 
during its execution [24]. No thread can proceed further unless all threads arrive at this point of 
execution. When all threads reach at this point, only then any thread can proceed further. Barrier 
synchronization can be used in scenarios when the data being modified by one of the threads can later 
be used by one or multiple auxiliary threads. It confirms that all the data has been modified which can 
be used by other threads, so all threads can now proceed in doing their tasks. Barrier synchronization 
is commodious in a situation where one phase of program must be completed by all threads before the 
next phase starts [24]. 
 
UPC provides two variants of barrier synchronization, blocking and non-blocking (or split-phase) 
barrier synchronization.   In blocking barrier synchronization, a thread cannot proceed executing after 
arriving at particular synchronization point in the program unless all threads arrive at that point. 
Following is the syntax for blocking barrier synchronization [5]: 
 

upc_barrier <expression>; 
 
The <expression> in semantic of upc_barrier is optional and is an integer expression. This integer 
expression can be used to tag different synchronization phases of program with distinct integer values, 
providing ease of debugging when an error occurs during a particular phase in the program. It also 
enables to activate one barrier per group of threads where different group of threads calls upc_barrier 
with different integer values, and hence also makes it easy to debug the program in such cases. Figure 
3.6(a) shows an example of using blocking barriers. This example is the modified version of example in 
Figure 3.4(d). Here thread 0 initializes the two vectors and later each thread calculates the sum of 
squares of the elements of the shared array which has affinity to this thread. Hence all threads must 
wait for the initialization of the vectors v1 and v2, which is achieved using upc_barrier call in program 
at statement 4. Similarly thread 0 also waits for other threads for completion of their part of 
computation at statement 5 before printing the result. Figure 3.6(b) illustrates the behavior of each 
thread after executing the upc_barrier call at statement 4 in program of Figure 3.6(a). 
 
In non-blocking or split-phase barrier synchronization, a thread can proceed executing after arriving at 
particular synchronization point in the program and wait for other threads at later point in program. 
Hence it divides a synchronization phase in two synchronization points.  At first it notifies all threads 
after arriving at particular point in program, and then proceeds with some computation which does 
not affect other threads. At the second synchronization point, this thread waits for other threads and 
cannot proceed unless all other threads have reached the first synchronization point. This enables 
overlapping of computation and communication among threads, unlike blocking barrier 



27 

 

#include <upc.h> 
 
shared int v1[3*THREADS]; // statement 1 
shared int v2[3*THREADS]; // statement 2 
shared int result[3*THREADS]; // statement 3 
 
int main (void) { 
 if(MYTHREAD == 0) 
  for (int i = 0; i < 3*THREADS; i++) { 
   v1[i] = i; 
   v2[i] = i; 
  } 
 
 upc_barrier; // statement 4 
 upc_forall(int i = 0, i < 3*THREADS; i++; i) 
  result[i] = v1[i]*v1[i] + v2[i]*v2[i];  // statement 5 
  
 upc_barrier; // statement 6 
  
 if(0 == MYTHREAD) 
  for(int i = 0; i < 3*THREADS; i++) 
   printf(“Sum of ith element=%d\n”, result[i]); 
 return 0; 
} 
 

Figure 3.6(a): Example program using blocking barrier 
 
 
 
 
 
 
 
                                                                                                        …………… 
 
 
   <Initialization 
   Of vectors v1 
                  upc_barrier;    and v2>  
 
     Wait unless all threads arrive 
 

Figure 3.6(b): Behavior of each thread after executing the upc_barrier call 
 
synchronization where all threads must wait for other threads after reaching a single synchronization 
point. Therefore it saves machine cycles from being wasted by not waiting for other threads, instead it 
can utilize those machine cycles for its local computation or the computation that does not affect any 
other thread. However it must wait for other threads before starting next part of computation that 
affects other threads. Following is the syntax for non-blocking or split phase barrier synchronization 
[5]: 

upc_notify <expression>; 
upc_wait<expression>; 

 
When a thread reaches at first synchronization point, it calls upc_notify to inform other threads about 
its arrival at that synchronization point. This thread then can continue doing its local computation 

Th
re

ad
 2

 

Th
re

ad
 1

 

Th
re

ad
 0

 

Th
re

ad
 n

 

P
ro

gr
am

 E
xe

cu
ti

o
n

 



28 

 

before entering the next phase of computation that affects other threads. Before starting next phase, 
this thread calls upc_wait which assures that all other threads have completed the current phase, such 
that all threads have called upc_notify for current phase. The <expression> in both upc_notify and 
upc_wait statements serves the same purpose as it does in blocking barrier synchronization. 
Nevertheless in a same phase, both upc_notify and upc_wait should use same integer value (if used) to 
match each other for one particular phase, otherwise a run-time error is generated [5].  
 
#include <upc.h> 
shared int v1[3*THREADS]; // statement 1 
shared int v2[3*THREADS]; // statement 2 
shared int result[3*THREADS]; // statement 3 
 
int main (void) { 
 if(MYTHREAD == 0) 
  for (int i = 0; i < 3*THREADS; i++) { 
   v1[i] = i; 
   v2[i] = i; 
  } 
 
 upc_notify; // statement 4 
 
 /*Local Computation*/ 
 if(MYTHREAD != 0) 
  printf(“THREAD[%d] is doing local computation\n”, MYTHREAD); 
 
 upc_wait; // statement 5 
 
 upc_forall(int i = 0, i < 3*THREADS; i++; i) 
  result[i] = v1[i]*v1[i] + v2[i]*v2[i];  // statement 6 
  
 upc_barrier; // statement 7 
 if(0 == MYTHREAD) 
  for(int i = 0; i < 3*THREADS; i++) 
   printf(“Sum of ith element=%d\n”, result[i]); 
 return 0; 
} 
 

Figure 3.6(c): Example program using non-blocking barrier 
 

 
 
 
 
 
       ………. 
 
 
   upc_notify; 
 
              <Initialization     <- Local Computations 
              of vectors v1     <- by all threads except 
      upc_wait;    and v2>      <- thread 0 
 

 
Figure 3.6(d): Behavior of each thread after executing the upc_notify and upc_wait calls 

Th
re

ad
 n

 

Th
re

ad
 2

 

Th
re

ad
 1

 

Th
re

ad
 0

 

P
ro

gr
am

  E
xe

cu
ti

o
n

 



29 

 

Figure 3.6(c) shows an example of using non-blocking barriers. This example is the modified version of 
example in Figure 3.6(a). Here all threads call upc_notify after arriving at first synchronization point at 
statement 4 and then performs their local computation. Before each thread starts calculating sum of 
squares of the elements of the shared array which have affinity to it, it calls upc_wait so it can be 
assured that thread 0 has initialized the vectors v1 and v2. Figure 3.6(d) illustrates the behavior of 
each thread after executing the upc_notify and upc_wait calls at statements 4 and 5 respectively in 
program of Figure 3.6(c).  
 
The nesting of non-blocking barriers is not allowed, hence for each upc_notify call, the next call should 
be to its respective upc_wait call (i.e. with the same integer expression or no integer expression). Two 
successive upc_notify calls are not permitted. It is important to highlight the fact here that a call to 
upc_barrier function is similar to calling upc_notify and upc_wait functions back-to-back in the program 
[5]. Therefore using a sequence of calls upc_notify, upc_barrier and upc_wait is also not allowed as it 
leads to nesting of non-blocking barrier calls as well. 
 
Locks 
 
Locks are used to permit access to the critical section of the program in a one-thread at a time manner.  
While one thread is inside the critical section, no other thread can enter the critical section. Lock is a 
data structure which has two states, locked and unlocked [5], which are changed atomically. Hence, 
allowing only a single thread to modify the state of the lock without any race condition. When a thread 
needs to access critical section, which must be executed by only single thread at a time, it must acquire 
lock for the critical section. And when a thread has acquired a lock, the other threads trying to access 
the critical section are not able to acquire the lock unless the occupier thread of the lock releases it 
exclusively at the end of critical section.  
 
In UPC, a lock can be declared as a variable of type upc_lock_t [19]. The type upc_lock_t is non-
transparent as it varies for different implementations. Hence a UPC lock can only be accessed using a 
pointer to lock [5]. A variable declared of type upc_lock_t is a private pointer-to-shared lock object. 
However using functions upc_phaseof, upc_threadof and upc_addrfield of on the variable declared as 
upc_lock_t results in undefined behavior so they should be avoided [19].  Locks are allocated by threads 
dynamically either in a collective or non-collective manner. The collective function for allocating a lock 
is: 

upc_lock_t  * upc_all_lock_alloc(); 
 
The function upc_all_lock_alloc takes no argument and returns a pointer-to-shared to the allocated 
lock. All threads in the UPC environment must call this routine for the allocation of the lock, and as a 
result a pointer-to-shared is returned to each thread which points to a same single lock allocated by 
calling this routine. The initial state of a lock is unlocked which can be changed by a separate routine 
discussed later, upc_lock. 
 
The non-collective function for allocating a lock is: 
 

upc_lock_t  * upc_global_lock_alloc(); 
 
The function upc_global_lock_alloc takes no argument and returns a pointer-to-shared to the allocated 
lock. Each thread which calls this function gets a different instance of lock.  Hence when called by all 
threads or more than on thread in a program, each thread gets a different pointer-to-shared to a 
distinct lock instance. 
 
A lock allocated dynamically either collectively or non-collectively by a UPC thread can be deallocated 
when it is not required in program anymore.  The routine for deallocation of a lock is: 
 

void upc_lock_free (upc_lock_t  * ps_lock); 
 



30 

 

The function upc_lock_free  takes only one argument which is pointer-to-shared to a lock. If the passed 
pointer does not point to any lock which is allocated in program by either upc_all_lock_alloc  and 
upc_global_lock_alloc functions,  the behavior of the function is undefined [19]. And if the passed 
pointer is a NULL pointer, nothing happens as a result to the call upc_lock_free [19]. It is important to 
mention that if a lock is allocated in a collective manner, only a single thread should deallocate this 
lock.  The routine for deallocating a lock is non-collective and hence if called by many threads to 
release the same lock, it would result in undefined behavior. 
 
UPC provides two functions to change the state of a lock from unlocked to locked or to acquire a lock, 
blocking and non-blocking.  The blocking function for acquiring a lock is: 
 

void upc_lock (upc_lock_t  * ps_lock); 
 
The function upc_lock takes only one argument which is pointer-to-shared to a lock.  It changes the 
state of the lock from unlocked to locked, pointed by the passed pointer-to-shared of type upc_lock_t. If 
the lock is already occupied by some other thread in UPC environment, a thread making call to routine 
upc_lock is blocked or cannot proceed further in program unless the lock is released by the thread who 
occupies it by changing its state from locked to unlocked [5][19]. Nevertheless if the call to upc_lock  is 
made by a thread to acquire a lock which is already occupied by this thread, the behavior is undefined 
[19].  The blocking nature of function upc_lock results in wastage of machine cycles when a lock is not 
available to be locked [5]. The non-blocking function to change the state of the lock from unlocked to 
locked is: 
 

int upc_lock_attempt (upc_lock_t  * ps_lock); 
 
The function upc_lock_attempt takes only one argument which is pointer-to-shared to a lock.  It returns 
an integer value of either 1 or 0 depending upon if the lock is acquired or not. Like upc_lock, it also 
changes the state of the lock from unlocked to locked, pointed by the passed pointer-to-shared of type 
upc_lock_t. However if the lock is already in locked state (or occupied) by some other thread, a thread 
making call to routine upc_lock_attempt is never blocked and gets the return value of 0. And if the lock 
is available to be locked, a thread making call to routine upc_lock_attempt changes state of the lock 
from unlocked to locked and gets the return value of 1. The non-blocking nature of function 
upc_lock_attempt makes it possible to overlap the process of acquiring a lock and some computation to 
utilize the machine cycles efficiently unlike the function upc_lock [5]. When a thread already occupies a 
lock and calls the function upc_lock_attempt, the behavior is not known [19].  
 
UPC facilitates with the function upc_unlock to release the lock or to change the state of a lock from 
locked to unlocked. This same function can be used to release a lock occupied by either a call to 
upc_lock or upc_lock_attempt. The definition of the function upc_unlock is: 
 

void upc_unlock (upc_lock_t  * ps_lock); 
 
The function upc_unlock takes only one argument which is pointer-to-shared to a lock.  It changes the 
state of the lock to unlocked from locked, pointed by the passed pointer-to-shared of type upc_lock_t. 
If the lock is not occupied by a thread who calls the function upc_unlock, the behavior is undefined. 
Similarly if a lock is already in the unlocked state, the behavior of a call to function upc_unlock is 
undefined.  
 
Figure 3.6(e) shows the program of Figure 3.6(a) with some additions to calculate the sum of all 
components of result vector. Thread 0 initializes the two vectors and later each thread calculates the 
sum of squares of the elements of the shared array which has affinity to this thread. Each thread needs 
to access the critical region which is protected by using a lock, declared in statement 2 and allocated 
collectively by all threads in statement 3. Inside critical region, a thread modifies a shared variable 
global_sum (declared in statement 1) which is used to calculate the sum of all components of result 
vector (Statement 5). Once a thread has completed its access to critical region, it releases the lock (in 



31 

 

statement 6) so other threads can acquire the lock to access critical region. 
 
#include <upc.h> 
 
shared int v1[3*THREADS];  
shared int v2[3*THREADS];  
shared int result[3*THREADS];  
shared int global_sum = 0; // statement 1 
upc_lock_t * sum_lock; // statement 2 
 
int main (void) { 
 sum_lock = upc_all_lock_alloc(); //statement 3 
  
 if(MYTHREAD == 0) 
  for (int i = 0; i < 3*THREADS; i++) { 
   v1[i] = i; 
   v2[i] = i; 
  } 
 
 upc_barrier;  
 
 upc_forall(int i = 0, i < 3*THREADS; i++; i) 
  result[i] = v1[i]*v1[i] + v2[i]*v2[i];  
  
 upc_lock(sum_lock); // statement 4 
  
 /*Critical Region*/ 
 global_sum += result[MYTHREAD]; // statement5 
  
 upc_unlock(sum_lock); // statement 6 
 
 upc_barrier;  
  
 if(0 == MYTHREAD) 
  for(int i = 0; i < 3*THREADS; i++) 
   printf(“Sum of ith element=%d\n”, result[i]); 
 return 0; 
} 
 

Figure 3.6(e): Use of lock function 
 

Memory Consistency Modes and Fence 
 
UPC provides two constructs for data synchronization, which deal with the order of modification of the 
data by different threads and the time at which a data should become visible to other threads after 
being modified by a thread [5]. These constructs are memory consistency mode and fence. 
 
Memory consistency mode is provided either to allow or disallow the compiler to reorder the memory 
references. Compilers might use its inherent optimization capabilities to reorder the memory 
references in a program which do not affect the final result of a program and result in an optimized 
code [5].  UPC provides two memory consistency modes, relaxed and strict. The default memory 
consistency mode is relaxed. The relaxed consistency mode allows the compiler to reorder the memory 
references to produce an optimized code. Strict memory consistency mode prevents compiler to 
reorder the memory references and also enables preceding modifications to data visible to all threads. 
 



32 

 

Memory consistency modes can be applied at various levels in program, a particular variable or array, a 
section of program, or the complete program. To apply a strict memory consistency mode to a variable, 
the variable MUST be declared as shared and with the strict reference-qualifier [5][19], as shown 
below: 
 

strict shared double sum; 
 
If a strict reference-qualifier is not used with shared variable declaration, the default memory 
consistency mode is used for accesses to such variable which is relaxed. UPC provides pragmas to 
apply a particular memory consistency mode to a section of program. The syntax of memory 
consistency pragma is: 
 

#pragma upc [relaxed | restrict] 
 
If the pragma appears outside a section of the code (enclosed by curly brackets), the memory 
consistency mode specified in pragma applies till the use of next pragma or till the end of program if no 
pragma is used later in program to specify a particular memory consistency mode.  And if the pragma 
is used inside a section of code, the memory consistency mode specified in pragma applies only to that 
section of code [19]. This is shown below. The left side shows the application of relaxed memory 
consistency mode only to a section whereas right side shows its application unless next pragma is 
encountered in the program or till the end of the program. 
 
{ // Section begins    #pragma upc relaxed 
#pragma upc relaxed  OR  { // Section begins 
.       . 
.       . 
} // Section ends    } // Section ends 
 
 
For a memory consistency mode to be effective in complete program, UPC provides two header files, 
whose inclusion identifies a particular memory consistency in the complete program. These header 
files are upc_relaxed.h and upc_strict.h.  In scenario when different memory consistency modes are 
applied at different levels in program, the priority of memory consistency mode at a particular level 
prevails. The application of memory consistency mode at variable level has highest priority, then the 
memory consistency mode at section level has mid-priority and the memory consistency mode at 
program level has the lowest priority [5][19]. 
 
Fence is another powerful construct for memory consistency provided by UPC. It asserts that all the 
references to shared objects are completed before the use of fence statement in program, upc_fence. 
Therefore all the changes made to shared data before the fence statement are visible to all threads in 
UPC environment after the call to upc_fence returns. Hence it also makes sure that no access to a shared 
data which appears after upc_fence statement in program is done before the call to upc_fence statement 
[5], i.e. providing restrictions for compiler optimizations to reorder the statements. 
 

3.7 UPC Collectives 
 
There are certain requirements in programs where multiple threads need to coordinate their work 
with each other to have global view of the total work done. UPC provides collective library for such 
requirements in programs, which allows to exploit data locality effectively i.e. each thread computes on 
portion of the total data which has affinity to it and later all threads coordinate their work with other 
threads to have a final computed value on complete data. The standard header file for UPC collective 
library is upc_collective.h. 
 
A UPC collective function is completed in three phases, which are action, notification and wait.  In 
action phase, all threads compute the result depending upon the operation specified in a collective call. 



33 

 

A thread enters a notification phase once it has completed the computation it was responsible for and 
hence it notifies other threads in system about it. Finally a thread enters a wait phase, it which a thread 
can either wait for receiving notifications from other threads about completion their work or can 
proceed further in program. UPC provides the power to control synchronization in these phases by 
providing a flag argument of type upc_flag_t in all UPC collective functions [19]. UPC provides 
constants which can be used to form the value to be passed as argument of type upc_flag_t in collective 
functions. These constants are of two types, IN and OUT. The IN constants control when a UPC 
collective function can start reading or writing the shared data once it is called. Similarly, the OUT 
constants control when a call to UPC collective function should return. The syntax of IN constants is 
described below: 
 
Syntax: UPC_IN_XSYNC 
where X can be NO, MY or ALL as explained below. 
 
NO – The collective function can start reading or writing the shared data when the first thread has 
entered the collective call. 
MY – The collective function can only read or write the shared data that has affinity to threads which 
have already called the collective function. 
ALL – The collective function can only start reading or writing the shared data once all threads in UPC 
environment have called the collective function. It assures that all threads read the same data as if any 
thread is still manipulating shared data which is to be used by other threads, the collective function 
does not begin reading or writing the shared data [19].  
 
The syntax of OUT constants is described below: 
 
Syntax: UPC_OUT_XSYNC 
where X can be NO, MY or ALL as explained below. 
 
NO – The collective function can read or write shared data unless atleast one thread is not returned 
from collective call. 
MY – The collective function can return in a thread when all read and writes to shared data which has 
affinity to this thread has been completed. 
ALL – The collective function cannot return unless all reads and writes of shared data irrespective of 
affinity to any thread have been completed. This asserts that once a thread returns from the collective 
call, it will not read any earlier value of output shared data [19]. However it does not imply barrier 
synchronization at the end of the collective call. Hence if a single thread enters the collective call and is 
able to begin read or write data without waiting for other threads, it is possible that this single thread 
returns from the collective function if no other thread has yet called the collective function [19]. 
Therefore for cases where it is required to make sure that all threads return from the collective call 
before proceeding further in the program, an explicit barrier synchronization statement is required in 
program. 
 
There are two major types of UPC collective functions based on the functionality of operation specified 
in UPC collective calls. These are Relocalization and Computation collective functions [5]. The 
relocalization collective functions deal with the movement of the data between threads whereas 
computation collective functions deal with the application of various mathematical and logical 
operations on data distributed among threads.  
 
In our work we have used computation collectives, so we will only discus one or two computation 
collective routines in our report. First we need to explain computation operations used in these 
collective functions. The computation operations have type upc_op_t   and some of these are described 
below [19]: 
 
UPC_ADD:  Addition of shared data distributed among threads 
UPC_MULT: Multiplication of shared data distributed among threads 



34 

 

UPC_AND: Bitwise AND operation of shared data distributed among threads (undefined behavior 
for floating values) 

UPC_OR: Bitwise OR operation of shared data distributed among threads (undefined behavior 
for floating values) 

UPC_XOR: Bitwise XOR operation of shared data distributed among threads (undefined behavior 
for floating values) 

UPC_LOGAND: Bitwise Logical AND operation of shared data distributed among threads 
UPC_LOGOR: Bitwise Logical OR operation of shared data distributed among threads 
UPC_MAX: Operation to find maximum value among shared data distributed among threads 
UPC_MIN: Operation to find minimum value among shared data distributed among threads 
 
 
Computation Reduction Operations 
 
The most commonly used computation collective function is a Reduction function. A reduction function 
simply applies the operation specified in one of its arguments to the distributed shared data among 
threads.  The syntax of a reduction collective function is [19]: 
 
void upc_all_reduce_T(shared void * destination, shared const void * source, upc_op_t operation, size_t 

numElements, size_t BLOCK_SIZE, TYPE (*func) (TYPE,TYPE), upc_flag_t 
synMode) 

 
The bold letter T in the definition of reduction function is replaced by a particular string which 
represents a specific data type of source and destination data. The letter T in function definition can 
have following values [19][5]: 
 

Value of T Corresponding data type Value of T Corresponding data type 
C signed char L signed long 
UC unsigned char UL unsigned long 
S signed short F float 
US unsigned short D double 
I integer LD long double 
UI unsigned integer   

 
The arguments of reduction function are explained below: 
 

1. shared void * destination – private pointer to shared destination buffer 
2. shared const void * source – private pointer to shared source buffer 
3. upc_op_t operation – reduction operation (UPC_ADD etc.) 
4. size_t numElements – Number of elements in source buffer 
5. size_t BLOCK_SIZE – Blocking factor of source buffer  
6. TYPE (*func) (TYPE,TYPE) – NULL 
7. upc_flag_t synMode – Synchronization mode controlled  by passing a constant formed by OR-

ing UPC_IN_XSYNC and UPC_OUT_XSYNC constants 
 
When a call to the reduction function returns, the value in destination buffer is the result of operation 
(specified in third argument of function) applied to all elements of shared source array. For example, 
for a UPC_ADD operation the value in destination buffer after reduction function returns is: 
 
destination = source[0] + source[1] + …… + source[numElements-1] 
 
If the BLOCK_SIZE specified in fifth argument of reduction operation has a value greater than 0, the 
reduction operation view the source pointer as it points to a shared memory having total elements 
equal to numElements and blocking factor of BLOCK_SIZE [5]. For example, for a value of T being I, it 
view the source shared array pointed by source pointer as following static shared array declaration: 



35 

 

 
shared [BLOCK_SIZE] int [numElements] 

 
However if the BLOCK_SIZE specified in fifth argument of reduction operation has a value of 0, the 
reduction operation view the source pointer as it points to a shared memory having total elements 
equal to numElements and blocking factor equals to indefinite layout qualifier. It means that all 
elements of the shared source array have affinity to a single thread, i.e. the elements of source shared 
array are not distributed among threads. For example, for a value of T being I, it view the source shared 
array pointed by source pointer as following static shared array declaration: 
 

shared [] int [numElements] 
 
#include <upc.h> 
 
shared int v1[3*THREADS];  
shared int v2[3*THREADS];  
shared int result[3*THREADS];  
shared int global_sum = 0; // statement 1 
 
int main (void) { 
  
 if(MYTHREAD == 0) 
  for (int i = 0; i < 3*THREADS; i++) { 
   v1[i] = i; 
   v2[i] = i; 
  } 
 
 upc_barrier;  
 upc_forall(int i = 0, i < 3*THREADS; i++; i) 
  result[i] = v1[i]*v1[i] + v2[i]*v2[i];  
  
 upc_barrier; 
 upc_all_reduceI( &global_sum, &result, UPC_ADD, 3*THREADS, 1, NULL, UPC_IN_NOSYNC |  
   UPC_OUT_NOSYNC ); // statement2 
 upc_barrier; 
  
 if(0 == MYTHREAD) 
  for(int i = 0; i < 3*THREADS; i++) 
   printf(“Sum of ith element=%d\n”, result[i]); 
 return 0; 
} 
 

Figure 3.7: Use of reduction function 
 
Figure 3.7 shows the program of Figure 3.6(e) with a modification that it now utilizes upc_all_reduceI 
function to calculate the sum of all components of result vector instead of calculating it using critical 
section surrounded by a lock.  
 
The other computation reduction function which is quite similar to the upc_all_reduceT function is 
upc_all_prefix_reduceT. The only different in the later from former is that the destination buffer has the 
same layout as the source buffer and along with final the intermediate results are also saved in 
elements of destination buffer in following way:  

destination[i] = ∑ source[i]

𝑖

𝑘=0

 



36 

 

 
The other computation reduction function upc_all_sort which sorts a shared array using a user-defined 
function specified in one of its arguments. 
 

3.8 Shared Data Movement Functions in UPC 
 
UPC inherits the ANSI C string handling function memcpy for the movement of data when both source 
and destination buffers are in private address space of a thread.  However for the movement of data 
when atleast one of the source or destination buffers in located in shared memory, UPC facilitates with 
string handling functions for shared data. These are upc_memcpy, upc_memget and upc_memput.  
 
The upc_memcpy function is used to copy data when both source and destination buffers are allocated 
in shared memory. The syntax of upc_memcpy function is: 
 

void upc_memcpy(shared void * destination, shared const void * source, size_t numElements); 
 
 It view source and destination buffers similar to the following static shared array declaration: 
 

shared [] char array[numElements]; 
 
Hence it is employed to move shared data which has affinity to one thread to same or other thread in 
UPC environment [19].  
 
The upc_memget function is used to copy data when the source buffer is allocated in shared space and 
destination buffer is allocated in private space of a thread who calls this function. The syntax of 
upc_memcpy function is: 
 

void upc_memget(void * destination, shared const void * source, size_t numElements); 
 
It views source buffer similar to the following static shared array declaration: 
 

shared [] char array[numElements]; 
 
whereas it views the destination buffer as conventional ANSI C declared array, as shown below: 
 

char array[numElements]; 
 

The upc_memput function is used to copy data when the source buffer is allocated in private space of a 
thread who calls this function and destination buffer is allocated in shared space. The syntax of 
upc_memput function is: 
 

void upc_memput(shared void * destination, const void * source, size_t numElements); 
 
It views the source buffer as conventional ANSI C declared array, as shown below: 
 

char array[numElements]; 
 
whereas it views destination buffer similar to the following static shared array declaration: 
 

shared [] char array[numElements]; 
 
In the next chapter we will explain that how we have ported out CMD code to UPC which involves 
design of new algorithms and data structures under UPC utilizing the features of UPC discussed in this 
chapter. We will also highlight performance tuning and optimization techniques that we implemented 
for developing our algorithms.  



37 

 

3.9 Performance Tuning and Optimization of UPC Programs 
 
There are various general techniques to improve the performance of parallel programs which include 
efficient use of inter-process communication, synchronization techniques, techniques for balancing 
work load among threads and techniques to avoid redundant computations. However even after 
utilizing these techniques efficiently, there are some important aspects to consider which can further 
enhance the performance of a UPC program. These include UPC compiler optimizations, UPC run-time 
system’s proactive behavior, and manual optimizations to be done in UPC programs by the 
programmers [5].  
 
A UPC compiler translates a UPC code to ANSI C code independent of particular system architecture, 
which is then compiled with the ANSI C compiler and linked to the UPC run-time system.  UPC run-time 
system is responsible for creation of threads, distribution of shared data among threads and execution 
of code in parallel fashion [2][5]. The ANSI C compiler is free to optimize the translated C code to 
achieve efficient execution of a UPC program. However it is the responsibility of UPC-to-C translator to 
pass sufficient information to the backend ANSI C compiler for optimizations. The UPC run-time 
system can examine the shared data accesses and perform communication optimizations [2]. UPC 
programmers can employ manual optimization techniques to aid compiler and UPC run-time system 
optimizations. UPC compilers are still in processes of integrating many useful optimization techniques 
in it; therefore manual optimizations are required for achieving better performance of a UPC program 
[5].  
 
The most instrumental manual optimization that can aid both UPC-to-C translator and UPC run-time 
system is to explicitly distinguish a local and remote shared data access. UPC provides construct which 
can be utilized for investigating the locality of a shared data and hence enables to explicitly express a 
remote or local shared data access. The manual optimization techniques are discussed below: 
 
Design of locality aware algorithms 
Designing of locality aware algorithms can result in huge performance boost of a UPC application. This 
can be achieved by architecting an algorithm in such a way that each thread majorly computes on local 
portion of the distributed data allocated in shared address space. This results in very less or no access 
to remote shared data which has an access overhead compare to the local shared data access. Hence 
locality aware algorithms allow UPC programmers to distribute the total data among all threads and 
then each thread works on the portion of data which has affinity to it [5]. We have developed locality 
aware algorithms for most of the functions in our CMD code.  
 
Pointer Optimizations 
 
Pointer optimization is a technique to access local portion of shared space by a thread using local 
pointer instead of point-to-shared. This can be done by checking for the affinity of data pointed by 
shared pointer and casting this shared pointer to local pointer if the data lies in the local portion of 
shared space of a thread. Accessing a memory using shared pointer involves overhead as compared to 
accessing it using local pointer. 
 
Efficient Use of UPC locks and Barrier Synchronization  
 
Locks are used to allow access to the critical section of the program in a mutually exclusive manner. 
While on thread has acquired a lock for a particular section of code, no other thread can execute that 
section of code unless the thread which occupies the lock releases the lock explicitly. Synchronization 
barriers are used when the next section of program cannot be started unless the previous section of 
program has been completed by all threads. Such that each thread waits after the completion of one 
section and can only continue proceeding further in program once all threads have completed the 
previous section. It is very necessary to use these synchronization constructs very carefully in 
program, while inefficient use of locks can lead to deadlock among threads, the barrier synchronization 
results in excessive synchronization as it results in providing barrier to the progression of each thread. 



38 

 

Hence it is necessary to use these constructs effectively to avoid excessive synchronization as well as 
deadlock among threads. UPC also provides a very useful non-blocking variant of barrier 
synchronization, called split-phase barrier. This non-blocking variant can be used to overlap the 
computation and communication among threads. It allows each thread to do its local computations 
while waiting for other threads to finish the previous section of a program. Hence it is suggested to use 
split-phase barrier wherever it is possible for a thread to do local computation in parallel to waiting for 
other threads to finish the previous section of program. 
 
Bulk Data Transfer Techniques 
 
UPC provides different string handling functions depending on the residence of source and destination 
buffers in either private or shared address space. These functions are upc_memcpy, upc_memget, 
upc_memput and memcpy. Programmers can employ techniques in a program such as a thread copies 
the bulk data from a remote memory location and then operate on it locally as compared to accessing 
the remote memory location immoderately. It is the most basic optimization technique, where a thread 
copies a remote data to its local buffer to avoid excessive remote memory accesses [5]. This can result 
in coarse-grained communication compared to fine-grained communication in program.  It is 
especially very useful when a function takes shared variable as an input argument and it does not 
modify it. So by copying the value of this shared variable to a local variable, a thread can avoid 
accessing remote memory location very frequently [5].  
 
Load Balancing 
 
UPC provides constructs that allow each thread to compute on data it has affinity to. To achieve an 
equal work load distribution among threads, UPC provides the concept of shared arrays.  The 
programmer can efficiently distribute the data among threads that avoids wasting the machine cycles 
by leaving a thread idle in a function or program. Programmers can then use the execution path control 
semantics for threads to direct each thread to work on data it is designated for.  Hence an efficient load 
balancing can result in productive use of machine cycles. 
 
We have now covered some very core concepts of UPC. We will now move on to next chapter where the 
explanation about UPC compilers is provided.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



39 

 

4 UPC Compilers 
 
There are various commercial and open source compilers for programs written in UPC. They generally 
are comprised of a source to source translator and a run-time system. We have used three variants of 
UPC compilers. Each of these is discussed in subsequent sections of this chapter. These UPC compilers 
are: 

1. Berkley UPC Compiler 
2. GNU UPC Compiler 
3. Cray UPC Compiler 

 

4.1 Berkley UPC Compiler 
 
Berkley UPC is an open source portable compiler for UPC programs unlike other commercially 
available UPC compilers which are system dependent. Few examples of these commercial UPC 
compilers are HP UPC compiler, SGI UPC compiler and Cray UPC compiler. It has been observed that the 
performance of a UPC program compiled with HPC compiler and executed on HPC Alpha server is 
comparable to that of a UPC [2]. Therefore it was required to develop an open source as well as a 
portable UPC compiler that matches the performance achieved using commercial UPC compilers. 

Figure 4.1(a): Berkley UPC Compiler architecture [2] 
 
There are three components that make up a Berkley UPC compiler. These are source-to-source 
translator, run-time system and a communication system based on GASNet. GASNet is a network 
independent low level networking layer that is targeted for PGAS languages. The process of 
compilation starts by invoking the Berkley UPC compiler, which uses its source-to-source translator to 
convert a program written in UPC to a conventional ANSI C program augmented with calls to UPC run-
time library routines [2]. Once the UPC code is translated to traditional ANSI C code, it is compiled by 
available C compiler on the target system and all the UPC run-time library routines are linked to UPC’s 
run-time system. The UPC’s run-time system is responsible for the allocation of data on shared space, 
calls to UPC routines, shared address resolution and executing program in parallel fashion [2]. All the 
communication for accessing shared space is handled by GASNet communication system.  
 
A UPC program can be compiled by invoking Berkley UPC compilation command upcc. A regular .c file 
can also contain the UPC code as shown in compilation example below: 
 
upcc –o main file1.upc file2.c   
 
There are few important compilation options provided with upcc command. These are: 
 

i. Specifying number of threads at compile time using option –T=numThreads 
ii. Specifying default amount of shared memory in megabytes per UPC thread using option -



40 

 

shared-heap=sharedMemoryPerThread 
 
An example of compiling a program for 4 threads with each thread requiring an amount of shared 
memory equals to 256MB is shown below: 
 
upcc -T=4 -shared-heap=256 -o main file1.upc file2.c  
 
A program compiled with Berkley UPC compiler can be executed using upcrun command.  A UPC 
program compiled with BUPC without static threads, can be executed using following command: 
 
uprun –n 16 ./main 
 
where –n option specified number of dynamic threads to be spawned.  
 

4.2 GNU UPC Compiler 
 
The GNU UPC system consists of a GCC UPC compiler and a run-time system. Like Berkley UPC, it is also 
an open source UPC compiler. GCC UPC inherits the functionality of conventional GCC compiler and 
provides additionally the compilation support for UPC programs.  GNU UPC is available for various 
Linux distributions and has support of various Intel architectures including several Cray platforms. 
UPC programs can be compiled using GNU UPC compiler by invoking gupc command, as shown below: 
 
gupc main.upc -o main 
 
GUPC also provides support for compiling a UPC program for fixed number of threads by using -fupc-
threads-N option, where N represents the number of threads. An example of compiling a program for 4 
threads using GCC UPC is shown below: 
 
gupc -fupc-threads-4 program.upc -o main 
 
A program compiled using GNU UPC compiler can be executed similar to a serial C program compiled 
using gcc. However it provides option to specify number of threads at run-time using –n argument 
when a program is not compiled for static number of threads. A program compiled with GNU UPC 
compiler for dynamic number of threads is executed with 16 threads by following command:  
 
./main –n 16  
 

4.3 Cray UPC Compiler 
 
Cray systems also provide support for UPC in its compiler. To compile a UPC program using Cray 
compiler, specific programming environment module is required to be loaded on Cray machine.  A UPC 
program can be compiled using Cray’s C compiler by specifying -h upc option, as shown below: 
 
cc -h upc -o main main.c 
 
Cray compiler also allows specifying number of threads at compiler time using -X option. An example 
of compiling a program for 4 threads using Cray UPC compiler is shown below: 
 
cc -h upc -X 4 -o main main.c 
 
A program compiled with Cray UPC compiler can be executed using aprun command available on Cray 
machines.  However for executing a program compiled for static number of threads using Cray UPC 
compiler, same number of threads must be specified to the aprun command. 
 
 



41 

 

5 Porting CMD Code to Unified Parallel C 
 

5.1 Introduction 
 
Molecular Dynamics simulates interaction between molecules placed at different positions in a system.  
In our CMD code, the system of molecules is named phasespace. The phasespace is a bin which 
contains a large molecule container. The molecule container is divided into cells where each cell 
contains number of molecules. The relationship between the phasespace, molecule container and 
molecule cells is shown in figure 5.1(a): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.1(a):  Hierarchy of Phasespace, Molecule Container and Molecule Cells 
 
Our CMD simulation code is comprised of nine major steps, as shown in figure 5.1(b). These steps 
include:  
  

1. Reading input parameters 
2. Phase-Space Initialization 
3. Grid Generator 
4. Calculation of Initial Ensemble Values 
5. Reset Forces and Momenta 
6. Pre-Force Integration 
7. Lennard-Jones Force and Potential Calculation 
8. Post-Force Integration 
9. Calculation of Ensemble Values 

 
The pre simulation setup involves steps 1 through 4, while the main simulation loop incorporates steps 
5 through 9.  The pre simulation setup includes allocation of fix number of molecules to the molecule 
cells in the phasespace and then initializing the positions and velocities of these molecules. The main 
loop complies with the core simulation of our CMD code.  It involves computation of forces acting on all 
molecules in the system and then Netwton’s equations of motion are integrated to advance the 
simulation. The main loop is repeated until the time evolution of phasespace for the desired length of 
simulation time is being computed. All of these steps are discussed in detail in later sections of this 
chapter. 
 
 
 
 
 

Molecule 
Cell 

Molecule 
Container 

Phasespace 



42 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   NO    YES 
 
 
 
 

Figure 5.1(b): Flow of CMD Application 

Grid Generator  

Input 
Paramet-

ers 

Phase space 
Initialization  

Calculate Initial 
Ensemble Values  

Reset Forces and 
Momenta  

Pre-Force 
Integration  

Force 
Calculation  

Apply 
Thermostat and 

Calculate 
Ensemble Values  

Simulation 
Finsihed 

Result 

Post-Force 
Integration 



43 

 

5.2 Reading Input Parameters 
   
This step involves reading values which are mandatory to start the simulation. These values are 
provided to the program as run-time arguments and include cutoff radius, domain type, main loop 
control parameters, mass of a molecule and initial ensemble values (and few more). The purpose of 
these values is defined below: 
 

Cutoff Radius: Cutoff radius is used to calculate the interactions between the molecules. If two 
molecules have a distance between them less than the cutoff radius, only then the interaction 
among these molecules is computed. The interaction among molecules is composed of Lennard 
Jones interaction force calculation.  
 
Domain type: It is a string and can either have a value of Rectangle or Cube. According to the 
selected domain type, the initial positions and velocities of molecules are determined in the 
phasespace.  
 
Main loop control parameters: These include simulation start and end times, and time-step 
length. They are used to control the duration or number of iterations of main loop along with 
time-step length. 
 
Mass of molecule: It is a constant value and used to calculate the global momentum, global mass 
and acceleration of each molecule (which is then used to compute the velocities and positions 
of the molecules). 
 
Initial Ensemble values: Ensemble values are core components of our simulation. They are 
required and computed throughout the simulation. These values include number of molecules 
in system, volume, energy, total kinetic energy and potential energy of interaction of molecules 
etc.  
 
Number of Threads: This parameter is used by UPC’s run-time system to create specific number 
of threads to execute the program in a SPMD fashion.  

 

5.3 Phase Space Initialization 
  
Phase space initialization involves allocation of memory dynamically on shared space for molecules 
and cells, distribution of cells among threads in a spatially coherent manner, and defining neighbors for 
each cell. 

 
In our CMD code, phasespace, molecule container and molecule cells are declared as structures. The 
structure of phase space has only one element which is pointer to the structure of molecule container.  
The molecule container holds the molecules which are distributed among molecule cells. Both phase 
space and molecule container are allocated in private space in UPC’s global address space. Hence each 
thread has private copy of these structures. The structure of molecule container beside other 
parameters contains private pointers to shared space, cells and molecules, which point to dynamically 
allocated memory on shared space for molecule cells and molecules respectively.  The structure of 
molecule cell contains an array of private pointers to shared space for accessing neighbor cells by a 
thread. It also contains a local pointer and a private pointer to shared space, both of which point to the 
memory area belonging to the molecules of this cell.  The purpose of both of these pointers to point to 
same memory area is when a thread which has affinity to a cell it can access its molecules using a local 
pointer whereas when a thread does not has affinity to a cell, it needs to access its molecules using 
pointer to shared space. The structure of cell also contains a lock which is required to be acquired by a 
thread when this thread needs to access the cell. The structures of molecule container and molecule 
cells are shown in figure 5.3(a) and 5.3(b) respectively. 
 
 



44 

 

Molecule Container Structure 
typedef struct molecule_container_t { 
    real cutoff_radius; 
    long num_cells; 
    long num_cells_per_dim[3]; 
    real cell_size[3]; 
    shared [BLOCK_QUALIFIER] molecule_cell_t *cells; /* Pointer to molecule cells to be  
       allocated dynamically on shared space */ 
    shared [BLOCK_SIZE * BLOCK_QUALIFIER] real *molecules;  /* Pointer to molecules to be  
       allocated dynamically on shared space */ 
 
} molecule_container_t; 

Figure 5.3(a): Structure of Molecule Container 
 

Molecule Cell Structure 
typedef struct molecule_cell_t molecule_cell_t; 
struct molecule_cell_t { 
 long id_neighbour[13]; 
 
     /* Private pointers to shared space to access neighboring cells */ 
     shared [BLOCK_QUALIFIER] molecule_cell_t *neighbours[13]; 
 
     /* Local Pointer to access molecules on local portion of shared space */ 
     real *data; 
 
     /* Private Pointer to shared space to access remote molecules on shared space */ 
     shared [BLOCK_SIZE * BLOCK_QUALIFIER] real *sdata; 
 
     /* Lock of Cell */ 
 upc_lock_t * lock_mycell; 
}; 

Figure 5.3(b): Structure of Molecule Cell 
 
When the phasespace initialization routine (psp_init) is called from the main function, it follows the 
sequence of function calls as shown in figure 5.3(c). The routine of psp_init only calls the routine 
mc_init inside it and does nothing else.  The function mc_init dynamically allocates the memory on 
shared space for molecules and cells, and set the private pointers to shared space (inside the structure 
of molecule container) to point to these allocated memory areas. The mc_init routine is shown in figure 
5.3(d). 

 
Figure 5.3(c): Sequence of calls for Phase Space initialization 

 
The allocation of cells is done with the blocking factor of BLOCK_QUALIFIER. Hence each thread blocks 
the BLOCK_QUALIFIER number of cells on its local shared portion of the distributed shared space, as 
shown in figure 5.3(e). Similarly the allocation of molecules is done with the blocking factor of 
BLOCK_SIZE times BLOCK_QUALIFIER. Therefore each thread blocks the BLOCK_SIZE times 
BLOCK_QUALIFIER number of molecules on its local shared portion of the distributed shared space, as 
shown in figure 5.3(f).  Here BLOCK_SIZE represents the maximum number of molecules that can be 
filled inside one molecule cell.  
 
 
 

psp_init mc_init mcell_alloc molecule_block_alloc 



45 

 

 
0 1 … BQ-1 BQ BQ+1 .. 2BQ-1 2BQ 2BQ+1 … … num_cells-1 

 
 Thread 0   Thread 1   Thread 2   …. 

 
Figure 5.3(e): Allocation of molecule cells on shared space and their affinity to each thread 

 
0 1 .. BQ*BS-1 BQ*BS BQ*BS+1 .. 2BQ*BS-1 2BQ*BS 2BQ*BS+1 .. .. totalBlocks 
 
 
           Thread 0                          Thread 1                  Thread 2   …. 
 

Figure 5.3(f): Allocation of molecules on shared space and their affinity to each thread 
 

Phase Space or Molecule container initialization 
void mc_init(ensemble_t *ensemble, molecule_container_t *mc) { 
 int totalBlocks; 
 int minBlocks; 
 real box_length = pow(ensemble->V, 1./3.); 
     mc->num_cells = 1; 
 assert(mc->cutoff_radius > 0); 
     int d; 
     for(d = 0; d < 3; d++) { 
          domain.L[d] = box_length; 
          mc->num_cells_per_dim[d] = floor(domain.L[d] / mc->cutoff_radius) + 2; /* 2 more  
    cells in  each direction to handle boundary conditions and halo */ 
          assert(mc->num_cells_per_dim[d] > 2); 
          mc->num_cells *= mc->num_cells_per_dim[d]; 
          mc->cell_size[d] = domain.L[d] / (mc->num_cells_per_dim[d] - 2); 
          assert(mc->cell_size[d] <= domain.L[d]); 
     } 
     assert(mc->num_cells>0); 
 
    /* Considering the worst case of filling only one molecule in each molecule block except the last one, 
     * THEN there is need of more number of molecule blocks to fill total molecules. Below equation 
     * considers the worst case */ 
     
 minBlocks = mc->num_cells; 
     totalBlocks = (mc->num_cells - 1) + ceil((ensemble->N + 1 - mc->num_cells)/CELL_CAPACITY); 
     if(totalBlocks < minBlocks) 
      totalBlocks = minBlocks; 
 
    /* Allocating memory for molecule blocks and cells -- each cell contains ONLY 1 molecule block 
     * Number of Blocks = number of Cells*/ 
     
  mc->molecules = (shared [BLOCK_SIZE * BLOCK_QUALIFIER] real *)  upc_all_alloc(ceil(  
  totalBlocks/BLOCK_QUALIFIER), BLOCK_SIZE * BLOCK_QUALIFIER *  sizeof(real)); 
     mc->cells = (shared [BLOCK_QUALIFIER] molecule_cell_t *) upc_all_alloc(mc->num_cells /  
  BLOCK_QUALIFIER, BLOCK_QUALIFIER * sizeof(molecule_cell_t)); 
     assert(mc->molecules != NULL); 
     assert(mc->cells != NULL); 
 
 
 
     long i, j, k; 



46 

 

         for(i = 0; i < mc->num_cells_per_dim[0]; i++) { 
                for(j = 0; j < mc->num_cells_per_dim[1]; j++) { 
                         for(k = 0; k < mc->num_cells_per_dim[2]; k++) { 
                             long cell_id; 
                                cell_id = get_cell_id( i, j, k ,mc); 
 
                                /* If the CELL has affinity to current thread, then cast the shared pointer to local                  
                        pointer */ 
                               if(MYTHREAD == upc_threadof(&mc->cells[cell_id])) { 
                                 molecule_cell_t * cell = (molecule_cell_t *) &mc->cells[cell_id]; 
                     mcell_alloc(cell, mc->molecules); /* Pass pointer to shared memory*/ 
                     cell->lock_mycell = upc_global_lock_alloc(); /*Initialize lock */ 
        
  /* Setting neighbor cells for each cell not shown here*/ 
             } 
            } 
        } 
    } 
} 
 

Figure 5.3(d): mc_init routine 
 
After allocation of cells and molecules on shared space, the mc_init routine calls mcell_alloc routine and 
passes to it the pointer to cell that has affinity to the calling thread. The mcell_alloc routine is 
responsible for setting pointers of a cell, local and shared, such that they point to the same molecule 
block which lies in the local portion of the shared space of calling thread. A molecule block is the 
memory area for a single molecule cell to hold the fix number of molecules. Each thread can have many 
cells which lie in its local portion of shared space and these cells point to the molecule blocks that also 
reside in its local portion of the shared space. Hence each thread calls the mcell_alloc routine for the 
cells it has affinity to and initializes the pointers of those cells to point to the molecule blocks that also 
have affinity to this thread, as shown in figure 5.3(g). This is achieved by calling the 
molecule_block_alloc routine inside mcell_alloc routine, shown in figure 5.3(h).  
 

 
Figure 5.3(g): Each thread initializes pointers in cell structure to point to local portion of molecules 

(molecule block) allocated on shared space 
 
The routine of get_cell_id called inside the routine mc_init is responsible for distribution of cells among 
threads in a spatially coherent manner. It generates a unique cell ID for blocking the spatially coherent 
cells in the local portion of shared space for each thread. The get_cell_id routine is shown in figure 
5.3(j). The number of spatially coherent cells is determined using constants blockDimx, blockDimy and 
blockDimz. The get_cell_id routine utilizes these constants intelligently to generate consecutive IDs for 
spatially coherent cells and then these consecutive cell IDs are blocked by a thread. Given the 3D 
coordinates, it generates the successive integer IDs for spatially coherent cells, as shown in figure 5.3(i) 
for four threads. The function get_cell_id can be viewed as a mapping function which maps the cell 
coordinate values to a unique ID. 
 
 

Thread 0 

molecule 
block 

molecule 
cell 

Thread 1 

molecule 
block 

molecule 
cell 

Thread 2 

molecule 
block 

molecule 
cell 

... Thread n 

molecule 
block 

molecule 
cell 

Shared 
Space 

Local 
Portion of 
Thread 0 



47 

 

Definition of Constants to be used in  molecule_block_alloc routine (molecule_block.h) 
#define blockDimx 3 
#define blockDimy 3 
#define blockDimz 3 
#define BLOCK_SIZE (CELL_CAPACITY * 14 + 1) /* Size of a single molecule block */ 
#define BLOCK_QUALIFIER (blockDimx*blockDimy*blockDimz)  /* Consecutive molecule cells per  
         thread*/ 
#define START_OFFSET (MYTHREAD * BLOCK_SIZE * BLOCK_QUALIFIER) /*Start offset for each  
      thread for the allocation of molecules to its cells*/ 

molecule_block_alloc Routine (molecule_block.c) 
int block_offset = 0; /* Offset for current molecule block within block qualifier */ 
int block_position = 0; /* Position of molecule block relative to starting address of shared space which 
         has affinity to MYTHREAD */ 
int allocated_blocks = 0; 
int offset = 0; 
 
/* Called ONLY by a thread which has affinity to this block or cell */ 
void molecule_block_alloc(real **block, shared [BLOCK_SIZE * BLOCK_QUALIFIER] real **sblock, 
shared [BLOCK_SIZE * BLOCK_QUALIFIER] real * pointer) { 
 /* Identify molecule block position */ 
 if(block_offset == BLOCK_QUALIFIER){ 
  offset++; 
  block_offset=0; 
 } 
 block_position = block_offset * BLOCK_SIZE + offset * (THREADS * BLOCK_SIZE *   
    BLOCK_QUALIFIER); /* Position within consecutive blocks per thread */ 
 block_offset++; 
 
 /* Point to the next molecule block current thread has affinity to */ 
 shared [BLOCK_SIZE * BLOCK_QUALIFIER] real * next_block = &pointer[START_OFFSET +  
           block_position]; 
 
 /* If next block has affinity to current thread, then cast shared to private Pointer */ 
 if (MYTHREAD == upc_threadof(next_block)) { 
  (*sblock) = next_block; // pointer to shared 
  (*block) = (real *) next_block; //cast shared to private 
 
  /* Set flags to zero of newly allocated block */ 
      memset((*block), 0, CELL_CAPACITY * sizeof(real)); 
      allocated_blocks++; // count total allocated blocks 
 } 
} 

Figure 5.3(h): Molecule block allocation 
 
The mc_init routine is also responsible for allocation of lock for each cell dynamically on shared space 
and setting the neighbors of each cell. It controls the execution path for each thread, such that every 
thread works on the data it has affinity to. The selection of different execution path for each thread is 
achieved using UPC’s built in function upc_threadof  inside the if statement. Each thread calls the 
upc_global_lock_alloc routine for the cells allocated on its local portion of shared space to allocate a 
separate lock for each of its cells. Similarly each thread sets the neighbors of the cells it has affinity to.  

 
 
 
 

 



48 

 

 
 
 

 
 
 
 
  Thread 0 

 
  Thread 1 

 
  Thread 2 

 
  Thread 3 

 
 
 
 
 
 
Figure 5.3(i): Consecutive integer cell ID generation for spatially coherent cells by routine get_cell_id 

 
Routine for consecutive IDs generation for spatially coherent cells 

static long get_block_number(long blockIdx, long blockIdY, long blockIdZ, molecule_container_t *mc) { 
 long block_number = mc->num_cells_per_dim[1] * mc>num_cells_per_dim[2] /  
    (blockDimy*blockDimz) * blockIdx  + mc->num_cells_per_dim[2] /  
    blockDimz * blockIdY + blockIdZ; 
 return block_number; 
} 
 
static void get_block_parameters(long x, long y, long z, long block_id[3], long block_indices[3]) { 
 block_id[0] = x / blockDimx; 
 block_id[1] = y / blockDimy; 
 block_id[2] = z / blockDimz; 
 block_indices[0] = x % blockDimx; 
 block_indices[1] = y % blockDimy; 
 block_indices[2] = z % blockDimz; 
} 
 
static long get_cell_id(long ix, long iy, long iz, molecule_container_t *mc) { 
 long block_id[3], block_indices[3]; 
 long block_number; 
 long index; 
 
 if (ix < 0) 
  ix += mc->num_cells_per_dim[0]; 
 else if (ix >= mc->num_cells_per_dim[0]) 
  ix -= mc->num_cells_per_dim[0]; 
 if (iy < 0) 
  iy += mc->num_cells_per_dim[1]; 
 else if (iy >= mc->num_cells_per_dim[1]) 
  iy -= mc->num_cells_per_dim[1]; 
 if (iz < 0) 
  iz += mc->num_cells_per_dim[2]; 
 else if (iz >= mc->num_cells_per_dim[2]) 

8 

3 11 

16 17 25 24 

1 9 

10 

19 27 26 

0 

2 

18 

    

    

 

 

 

 



49 

 

  iz -= mc->num_cells_per_dim[2]; 
 
 assert(mc->num_cells_per_dim[0]%blockDimx == 0 && mc->num_cells_per_dim[1] %  
  blockDimy == 0 && mc->num_cells_per_dim[2]%blockDimz == 0); 
 
 get_block_parameters(ix, iy, iz, block_id, block_indices); 
 
 /* For 2D Block: 
  * 1. block_size is blockDimy*blockDimz */ 
// block_number = get_block_number(ix, block_id[1], block_id[2], mc); 
// index = block_number*blockSize+ blockDimz*block_indices[1]+block_indices[2];  
  
 /*For 3D block: 
  * 1. ix is now changed to block_id[0]=ix/blockDimx to get correct block number 
  * 2. block_size is blockDimx*blockDimy*blockDimz 
  * 3. Index calculation is summation of number of cells covered in: 
  *  block_number*blockSize = blocks before current block 
  *  blockDimy*blockDimz*block_indices[0] = current block but on DIFFERENT layer(s) 
  *  blockDimz*block_indices[1] + block_indices[2] = current block on SAME layer 
  *  */ 
 
 block_number = get_block_number(block_id[0], block_id[1], block_id[2], mc); 
 index = block_number*blockSize + blockDimy*blockDimz*block_indices[0] +  
  blockDimz*block_indices[1] + block_indices[2]; 
 
     return index; 
} 
 

Figure 5.3(j): get_cell_id routine 
 

5.4 Grid Generation 
 
Grid generation involves initialization of positions and velocities of the molecules and adding them to 
the phasespace. The process of grid generation is initiated by call to the function grid_generator inside 
main. The call to grid_generator routine follows a sequence of calls for the addition of molecules to 
cells. This sequence of calls is shown in figure 5.4(a). The grid_generator routine calls the routine 
psp_add_molecule and passes to it pointers to the molecule container and the molecule (with initialized 
position and velocity) to be added. The psp_add_molecule routine simply calls the mc_add_molecule 
routine with the same arguments. Inside mc_add_molecule routine, the different flow of execution for 
each thread is controlled in such a way that each thread is responsible for adding the molecules to the 
cells it has affinity to. Each thread cast the pointer-to-shared to a local pointer to access these cells, and 
hence calls the routine mcell_add_molecule_local passing to it local pointer to the cell located in its local 
portion of shared space. This in turn avoids access overhead due to use of pointer to shared space 
[1][2] which can be avoided by using local pointer in this case. The routine of mc_add_molecule is 
shown in figure 5.4(b). 
 

 
Figure 5.4(a): Sequence of calls for addition of molecules to cells 

 
 
 
 
 

grid_generator psp_add_molecule  mc_add_molecule mcell_add_molecule_local 



50 

 

void mc_add_molecule(molecule_t *m, molecule_container_t *mc){ 
    long cell_id = get_cell_index_from_coordinate(m->r[0], m->r[1], m->r[2], mc); 
    if(MYTHREAD == upc_threadof(&mc->cells[cell_id])) { 
     molecule_cell_t *cell = (molecule_cell_t *)&mc->cells[cell_id]; 
     mcell_add_molecule_local(m, cell); 
    } 
} 
 

Figure 5.4(b): mc_add_molecule routine 
 
We have developed locality aware algorithms for most of the functions in our CMD code. These 
functions will be explained in the following sections. 
 

5.5 Reset Forces and Momenta 
 
This is the first step of main loop in CMD simulation, shown in figure 5.5 (a). The cycle of routines 
called in main loop is shown in figure 5.5(b). The process of resetting forces is initiated by call to 
routine psp_reset_forces inside main loop. Once the routine psp_reset_forces is called, it follows a 
sequence of calls shown in Figure 5.5(c). The routine of mc_reset_forces_and_momenta implements a 
locality-aware algorithm for resetting the forces of molecules in phasespace, as shown in figure 5.5(d). 
This is done by directing each thread to a different execution path such that each thread only reset 
forces of molecules inside the cells it has affinity to. Remember that the phasespace contains a 
molecule container which is divided into cells of molecules and these cells are distributed among 
threads in the phase space initialization step. For resetting the forces, each thread access its cells using 
local pointers to eliminate the access overhead introduced by pointers to shared space, as shown in 
figure 5.5(e). Please note that we introduced both local and shared pointers in the structure of 
molecule cell to point to same molecule block. This was done so that when a thread which has affinity 
to a cell, it can access its molecules using local pointer, whereas a thread which does not has affinity to 
a cell must access the molecules of this cell using pointer to shared space. 
 
start_timer = timer(); 
// Start of main loop 
for(stime = simulation.start_time; stime < simulation.end_time; stime += simulation.dt) { 
        upcfprintf(stdout, "Current simulation time: %"PRIreal"\n", stime ); 
        psp_reset_forces_and_momenta(psp); 
 
        upcfprintf(stdout, "Starting pre force integration step.\n" ); 
        psp_integrate_pref(psp, &simulation); 
 
        /********************************** SYNC_POINT1 **********************************/ 
        upc_notify SYNC_POINT1; 
 
        upcfprintf(stdout, "Starting force calculation.\n" ); 
        psp_calc_forces(psp, &ensemble); 
 
        upcfprintf(stdout, "Starting post force integration step.\n" ); 
        psp_integrate_postf(psp, &simulation, &domain, &ensemble); 
 
        psp_calc_ensemble_values(psp, &ensemble); 
        psp_apply_thermostat(psp, &ensemble); 
        psp_calc_ensemble_values(psp, &ensemble); 
        ensemble_print_info(&ensemble); 
 
        if( ENABLED == config.ascii_output) { 
            upc_barrier SYNC_POINT7; 



51 

 

            if(MYTHREAD == 0 ) { 
                FILE *fh; 
                char filename[256]; 
                snprintf(filename,255, "psp-%"PRIreal".dat", stime); 
                fh = fopen(filename, "w+"); 
                mc_print_ascii(psp->mc, fh); 
                fclose(fh); 
            } 
            upc_barrier SYNC_POINT8; 
        } 
        timesteps++; 
 } // end of main loop 
 
end_timer = timer(); 
 

Figure 5.5(a): Main Simulation Loop 
 
 

 
 

Figure 5.5(b): Cycle of routines called inside main simulation loop 
 

 
Figure 5.5(c): Sequence of calls for resetting forces of molecules inside phase space 

 
void mc_reset_forces_and_momenta(molecule_container_t *mc) { 
    long i, j, k; 
    for(i = 1; i < mc->num_cells_per_dim[0] - 1; i++) { 
        for(j = 1; j < mc->num_cells_per_dim[1] - 1; j++) { 
            for(k = 1; k < mc->num_cells_per_dim[2] - 1; k++) { 
                long cell_id; 
                cell_id = get_cell_id( i, j, k ,mc); 
                if(MYTHREAD == upc_threadof(&mc->cells[cell_id])) { 
                    molecule_cell_t * cell = (molecule_cell_t *) &mc->cells[cell_id]; 

1. Reset 
Forces and 
Momenta 

2. Pre-Force 
Integration 

3. Force 
Calculation 

4. Post-
Force 

Integration 

5. Apply 
Thermostat 

and 
Calculate 
Ensemble 

Values 

psp_reset_forces_and_momenta 
mc_reset_forces_and_mo

menta  
mcell_reset_forces_and_

momenta 
molecule_block_reset_for

ces_and_momenta 



52 

 

                    mcell_reset_forces_and_momenta(cell); 
                } 
            } 
        } 
    } 
} 

Figure 5.5(d): mc_reset_forces_and_momenta routine 
 
/* Called ONLY by a thread which has affinity to this block or cell */ 
void molecule_block_reset_forces_and_momenta(real *block) { 
     real *F = &block[4*CELL_CAPACITY]; 
    memset(F, 0, CELL_CAPACITY * 3 * sizeof(real)); 
} 

Figure 5.5(e): molecule_block_reset_forces_and_momenta routine 
 

5.6 Pre-Force Integration 
 
Pre-force integration is the second step in main simulation loop.  The process of pre-force integration 
is initiated by call to routine psp_integrate_pref inside main loop. Once the routine psp_integrate_pref is 
called, it follows a sequence of calls shown in Figure 5.6(a). The routine of mc_integrate_pref  also 
implements a locality-aware algorithm for picking out different execution path for each thread, as 
shown in figure 5.6(b). Finally the routine molecule_block_integrate_pref evaluates the velocities and 
positions of molecules  in phasespace. The routine molecule_block_integrate_pref  is aided with cache 
optimizations by providing information to the compiler about pointer aliasing using the restrict 
keyword in ANSI C, shown in figure 5.6(c). This helps is not loading the value of ‘F’ twice in cache, by 
instructing the compiler that pointers ‘F’ and ‘V’ do not point to the same memory location. 

 
Figure 5.6(a): Sequence of calls for pre-force integration 

 
void mc_integrate_pref(molecule_container_t *mc, simulation_t *simulation) { 
    long i, j, k; 
    for(i = 1; i < mc->num_cells_per_dim[0] - 1; i++) { 
        for(j = 1; j < mc->num_cells_per_dim[1] - 1; j++) { 
            for(k = 1; k < mc->num_cells_per_dim[2] - 1; k++) { 
                long cell_id; 
                cell_id = get_cell_id( i, j, k ,mc); 
                if(MYTHREAD == upc_threadof(&mc->cells[cell_id])) { 
                    molecule_cell_t * cell = (molecule_cell_t *) &mc->cells[cell_id]; 
                    mcell_integrate_pref(simulation, cell); 
                } 
            } 
        } 
    } 
} 

Figure 5.6(b): mc_integrate_pref routine 
 
 
/* Called ONLY by a thread which has affinity to this block or cell */ 
void molecule_block_integrate_pref(simulation_t *simulation, real *block) { 
    int d, i; 
    real *restrict flags = block; 
    real *restrict r = flags + CELL_CAPACITY; 

psp_integrate_pref mc_integrate_pref  mcell_integrate_pref molecule_block_integrate_pref 



53 

 

    real *restrict F = r + 3 * CELL_CAPACITY; 
    real *restrict v = F + 3 * CELL_CAPACITY; 
    real a = 0.5 * simulation->dt / config.m; 
 for(d = 0; d < 3; d++) { 
  for(i = 0; i < CELL_CAPACITY; i++) { 
       v[3*i+d] += flags[i] * a * F[3*i+d]; 
       r[3*i+d] += simulation->dt * (v[3*i+d] + 0.5/config.m * F[3*i+d] * simulation->dt); 
  } 
 } 
} 

Figure 5.6(c): molecule_block_integrate_pref routine 

 
5.7 Lennard-Jones Force Calculation and Potential Integration 
 
This is the third and most compute intensive step of simulation.  In this step the forces acting upon 
each molecule in the phasespace is being computed.  If any two molecules in the phasespace have 
distance among them less than the cut-off radius, provided as input parameter to simulation, then 
interaction among these molecules is computed.  Each thread calculates the interaction of molecules 
residing in cells it has affinity to and integrates the lennard-jones potential for each interaction. The 
coordination among threads to calculate the global value of potential energy is done using reduction 
function available in collective library of UPC.  There are three distributed shared arrays allocated 
statically with the blocking factor of 1 and having total number of elements equal to total number of 
threads, such that each thread has one element of this shared array which is allocated in its local 
portion of shared space. The purpose of these shared arrays is to store the number of computed 
interactions, potential energy and energy integrated by each thread for the molecules residing in cells 
each thread has affinity to. These shared arrays are named compute_interact, ensembleUPot and 
ensembleE respectively.  
 

 
Figure 5.7(a): Hierarchy of calls for computation of molecules interactions 

 
The process of Lennard-Jones Force calculation and potential integration is initiated with the call to 
psp_calc_forces routine from the main loop. It follows a hierarchy of calls shown in figure 5.7(a). In pre-
force integration process, all threads calculate values of positions and velocities for molecules residing 
in cells located in their local portion of shared space respectively. The values of positions of molecules  

psp_calc_forces 

mc_calc_forces 

mcell_calc_forces 

mcell_calc_inter_f
orces 

lj_basic_block_cal
c_remote 

lj_basic_block_cal
c_local 

mcell_calc_intra_f
orces 

j_basic_diagblock_
calc 



54 

 

shared [1] long compute_interact[THREADS]; 
shared [1] real ensembleUPot[THREADS]; 
shared [1] real ensembleE[THREADS]; 
long shared total_interact = 0; 
shared real E_final; 
shared real UPot_final; 
 
void mc_calc_forces(molecule_container_t *mc, ensemble_t *ensemble) { 
    long i; 
    ensemble->E = 0.0; 
    ensemble->U_pot = 0.0; 
    ensemble->E_kin = 0.0; 
    config.count=0; 
    compute_interact[MYTHREAD] = 0; 
    ensembleE[MYTHREAD] = 0; 
    ensembleUPot[MYTHREAD] = 0; 
    upc_wait SYNC_POINT1; /* Wait for matching notify operation to be executed by all threads */ 
    mc_update_halo(mc); 
    for(i = 0; i < mc->num_cells; i++) { 
        if(MYTHREAD == upc_threadof(&mc->cells[i])) { 
         molecule_cell_t *cell = (molecule_cell_t *) &mc->cells[i]; 
         long * count_local = (long *) &compute_interact[MYTHREAD]; 
         real * U_Pot_local = (real *) &ensembleUPot[MYTHREAD]; 
         real * E_local = (real *) &ensembleE[MYTHREAD]; 
     mcell_calc_forces(cell, count_local, U_Pot_local, E_local); 
        } 
 } 
 /********************************** SYNC_POINT3 **********************************/ 
 upc_all_reduceD(&UPot_final, ensembleUPot, UPC_ADD, THREADS, 1, NULL, UPC_IN_MYSYNC | 
    UPC_OUT_ALLSYNC); 
 upc_all_reduceD(&E_final, ensembleE, UPC_ADD, THREADS, 1, NULL, UPC_IN_MYSYNC |  
    UPC_OUT_ALLSYNC); 
 upc_all_reduceL(&total_interact, compute_interact, UPC_ADD, THREADS, 1, NULL,   
    UPC_IN_MYSYNC | UPC_OUT_ALLSYNC); 
 if (MYTHREAD == 0) 
         printf("Global Sum of Number of computed interactions: %lu\n", total_interact); 
 ensemble->E = E_final; 
 ensemble->U_pot = UPot_final; 
} 
 

Figure 5.7(b): mc_calc_forces routine 
 
of neighbor cells are used in the force calculation process. Hence before starting process of force 
calculation, it must be assured that all threads have completed the pre-force integration process.  This 
is asserted by the use of split-phase barrier call in the main simulation loop. Each thread calls the 
function upc_notify once it has completed the pre-force integration process, and before calling the 
update halo routine inside mc_calc_forces routine (shown in figure 5.7(b)) each thread calls the 
upc_wait function to wait for other threads to finish the pre-force integration process. The 
mc_update_halo routine further calls the routines mc_update_corners, mc_update_edges and 
mc_update_surfaces.  These function copies the molecule cells and modifies the positions of their 
molecules. The update halo operation do not encounter a scenario where a cell which is used as 
destination in one copy operation can later also be used as source cell in another copy operation or 
vice versa. In such scenario, it must be assured that that one of these operations is completed before 
starting the other and also needs to take care of the sequence of these operations if it matters for final 
result. The CMD code has been tested for such scenarios and hence redundant synchronization is 



55 

 

avoided. Nevertheless, before actual force calculation is started it must be assured that process of 
update halo has been finished. This is achieved by providing a barrier synchronization using call to 
upc_barrier routine at the end of mc_update_halo routine, as shown in figure 5.7(c). 
 
void mc_update_halo(molecule_container_t *mc) { 
    /* copy cells to boundary to fullfill the periodic boundary condition. */ 
    /* we have 26 directions */ 
    /* 8 corners */  
    mc_update_corners(mc); 
    /* 12 edges */ 
    mc_update_edges(mc); 
    /* 6 lateral surfaces */ 
    mc_update_surfaces(mc); 
 
    /********************************** SYNC_POINT2 **********************************/ 
    upc_barrier SYNC_POINT2; 
} 
 

Figure 5.7(c): mc_update_halo routine 
 
Inside mc_calc_forces routine, a locality-aware algorithm is implemented to assign each thread the 
calculation of forces acting on the molecules situated inside cells it has affinity to. We have utilized 
Newton’s 3rd law of motion to avoid calculation of a force value twice. Newton’s 3rd law of motion states 
that when a force is acted on a particle A by particle B, particle A acts an equal and opposite force on 
particle B. Although the use of Newton’s 3rd law reduces the computation effort, it raises the 
synchronization requirement when accessing a molecule in the neighbor cell of a cell. This 
synchronization is provided by introducing a lock per cell instead of earlier used critical region 
synchronization by using a single atomic lock, as shown in the structure of molecule cell in Figure 
5.3(b). Hence when the routines mcell_calc_intra_forces and mcell_calc_inter_forces are called inside 
mcell_calc_forces routine, pointers to lock s corresponding to the cells are passed as arguments. The 
routine mcell_calc_forces is shown in figure 5.7(e). It calls the mcell_calc_intra_forces and 
mcell_calc_intra_forces routines for computation of forces acting on molecules of its cell due to 
molecules in the same cell and due to molecules in the neighbor cell respectively. The 
mcell_calc_intra_forces routine calls the routine lj_basic_diagblock_calc and passes to it local pointer to 
the molecule block of this cell instead of shared pointer to overcome access overhead due to use of 
shared pointer. The mcell_calc_inter_forces routine is called for all surrounding neighbor cells of a cell, 
as shown in figure 5.7(d). It further calls either the routine lj_basic_block_calc_local or 
lj_basic_block_calc_remote depending on the locality of the neighbor cells. If the neighbor cell has also 
affinity to the calling thread, it calls the routine lj_basic_block_calc_local, while if neighbor cell does not 
have affinity to the calling thread, it calls the routine lj_basic_block_calc_remote. Inside routine 
lj_basic_block_calc_local both cells are accessed using local pointers whereas in 
lj_basic_block_calc_remote routine, neighbor cell is accessed using pointer to shared space.  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5.7(d): Interaction among molecules of a cell and its neighbor cells lying within cutoff radius 



56 

 

* Called ONLY by a thread which has affinity to this cell */ 
void mcell_calc_forces(molecule_cell_t *cell, long * count_local, real * U_Pot_local, real * E_local) { 
    mcell_calc_intra_forces(cell, count_local, U_Pot_local, E_local); 
    shared [BLOCK_QUALIFIER] molecule_cell_t *neighbour_cell; 
    int i; 
    for (i = 0; i < 13; i++) { 
 neighbour_cell = cell->neighbours[i]; 
         assert(neighbour_cell != NULL); 
 mcell_calc_inter_forces(cell, neighbour_cell, count_local, U_Pot_local, E_local); 
    } 
} 
 
/* Called ONLY by a thread which has affinity to this cell */ 
void mcell_calc_intra_forces(molecule_cell_t *cell, long * count_local, real * U_Pot_local, real * E_local) { 
   real *block1; 
   block1 = cell->data; 
   lj_basic_diagblock_calc(block1, count_local, U_Pot_local, E_local, cell->lock_mycell); 
} 
 
/* Called ONLY by a thread which has affinity to the CELL 1 */ 
void mcell_calc_inter_forces(molecule_cell_t *cell1, shared [BLOCK_QUALIFIER] molecule_cell_t *cell2, 
long * count_local, real * U_Pot_local, real * E_local) { 
 
   real *block1; 
   block1 = cell1->data; 
 
   if(MYTHREAD == upc_threadof(cell2)) { 
 real *block2; 
 block2 = cell2->data; 
 lj_basic_block_calc_local(block1, block2, count_local, U_Pot_local, E_local, cell1->lock_mycell,  
          cell2->lock_mycell); 
   } 
   else { 
 shared [BLOCK_SIZE * BLOCK_QUALIFIER] real *block2; 
 block2 = cell2->sdata; 
 lj_basic_block_calc_remote(block1, block2, count_local, U_Pot_local, E_local, cell1->lock_mycell, 
          cell2->lock_mycell); 
 } 
} 
 

Figure 5.7(e): mcell_calc_forces, mcell_calc_intra_forces and mcell_calc_inter_forces routines 
 
Routines lj_basic_diagblock_calc, lj_basic_block_calc_local and lj_basic_block_calc_remote computes 
interaction among molecules only when the distance between two molecules is less than the cutoff 
radius. This is shown as a circle with center at the position of one molecule and having radius equals to 
cutoff radius in figure 5.7(d). As it can be seen in this figure that only three molecules lie in the range of 
cutoff radius of white molecule, the interaction of this molecule is only computed with these three 
molecules [9]. In routine lj_basic_diagblock_calc, a thread needs to acquire lock of the cell before 
modifying forces of its molecules. It simply calls the routine upc_lock passing pointer to the lock of this 
cell. In routines lj_basic_block_calc_local and lj_basic_block_calc_remote, a thread needs to acquire locks 
on both cells it has to calculate interaction among molecules of. It is important to highlight here a 
scenario when there is a cycle among threads waiting to acquire a lock. Consider a case when two 
threads need to access same two cells, one thread has acquired a lock on one cell and other thread has 
acquired a lock on other cell. Both of these threads will be blocked indefinitely if they try to acquire 
lock using blocking call upc_lock as they both will be waiting for other cell to release the lock. To avoid 



57 

 

such situations, we have utilized the non-blocking version of acquiring locks provided by upc, which is 
upc_lock_attempt. The routine acquire_locks acquires locks on both of the cells it needs to modify, if lock 
only on one of the cell is acquired it releases the acquired lock. Hence it prevents deadlock among 
threads. 
 
Once all threads have computed interactions of molecules of their respective local cells and stored the 
results in the local elements of shared arrays, a collective call is made to UPC’s reduction function 
upc_all_reduceD. With this reduction function, each thread coordinates to the other threads the results 
of its computation. A global sum of results of individual threads is stored by the reduction call in the 
shared variables (total_interact, E_final and UPot_final) to give the total computed interactions and 
integrated potential energies. The synchronization for reading or writing the shared space for 
reduction call is achieved by using appropriate synchronization flags as parameter to the reduction 
function. 
 
void lj_basic_block_calc_local(real *block1, real *block2, long *restrict count_local, real *restrict 
U_Pot_local, real *restrict E_local, upc_lock_t * lock_cell1, upc_lock_t * lock_cell2) { 
    long i; 
    real U_pot = 0.; 
 
    /* Pointers to molecule block residing in local portion of shared space */ 
    real *restrict flags1 = block1; 
    real *restrict r1 = flags1 + CELL_CAPACITY; 
    real *restrict F1 = r1+ 3 * CELL_CAPACITY; 
    real *restrict v1 = F1 + 3 * CELL_CAPACITY; 
  
   /* Pointers to neighbor molecule block residing in local portion of shared space */ 
    real *restrict flags2 = block2; 
    real *restrict r2 = flags2 + CELL_CAPACITY; 
    real *restrict F2 = r2 + 3 * CELL_CAPACITY; 
    real *restrict v2 = F2 + 3 * CELL_CAPACITY; 
 
    for(i = 0; i < CELL_CAPACITY; i++) { 
 if( flags1[i] == 0.) 
             continue; 
         long j; 
 for(j = 0; j < CELL_CAPACITY; j++) { 
                 if( flags2[j] == 0.) 
                    continue; 
 
     real dr[3]; 
     real dr2 = 0.; 
                 int d; 
     for( d = 0; d < 3; d++ ) { 
  dr[d] = r2[3*j+d] - r1[3*i+d]; 
  dr2 += dr[d] * dr[d]; 
     } 
     if( dr2 > config.cutoff_radius_sq ) 
                 continue; 
     real invdr2 = 1. / dr2; 
                config.count++; 
                (*count_local)++; 
 
     /* Lennard Jones interaction forces */ 
     real lj6 = sigma2 * invdr2; 
     lj6 = lj6 * lj6 * lj6; 



58 

 

     real lj12 = lj6 * lj6; 
     real lj12m6 = lj12 - lj6; 
     real u_pot  = epsilon24 * lj12m6; 
     real factor = epsilon24 * (lj12 + lj12m6) * invdr2; 
#ifndef NDEBUG 
            if(isnan(factor)) { 
                upcfprintf(stderr, "Blocks\n"); 
                upcfprintf(stderr, "i: %lu, j: %lu, dr2: %"PRIreal", invdr2: %"PRIreal"\n", i, j, dr2, invdr2); 
                molecule_block_print_ascii(block1, stderr); 
                molecule_block_print_ascii(block2, stderr); 
            } 
#endif 
 
                   /* Start of Critical Section*/ 
     acquire_locks(lock_cell1, lock_cell2); 
     for( d = 0; d < 3; d++ ) { 
     F1[3*i+d] -= factor * dr[d]; 
     F2[3*j+d] -= F1[3*i+d]; 
     } 
     upc_unlock(lock_cell1); 
     upc_unlock(lock_cell2); 
     /* End of Critical Section*/ 
     U_pot += u_pot; 
 } 
    } 
    *E_local += U_pot; 
    *U_Pot_local += U_pot; 
} 
 
void lj_basic_block_calc_remote(real *block1, shared [BLOCK_SIZE * BLOCK_QUALIFIER] real *block2, 
long *restrict count_local, real *restrict U_Pot_local, real *restrict E_local, upc_lock_t * lock_cell1, 
upc_lock_t * lock_cell2) { 
    long i; 
    real U_pot = 0.; 
 
    /* Local pointers to access molecule block of cell which has affinity to this thread */ 
    real *restrict flags1 = block1; 
    real *restrict r1 = flags1 + CELL_CAPACITY; 
    real *restrict F1 = r1+ 3 * CELL_CAPACITY; 
    real *restrict v1 = F1 + 3 * CELL_CAPACITY; 
 
    /* Pointers to shared space to access molecule block of neighbor cell */ 
    shared [BLOCK_SIZE * BLOCK_QUALIFIER] real *restrict flags2 = block2; 
    shared [BLOCK_SIZE * BLOCK_QUALIFIER] real *restrict r2 = flags2 + CELL_CAPACITY; 
    shared [BLOCK_SIZE * BLOCK_QUALIFIER] real *restrict F2 = r2 + 3 * CELL_CAPACITY; 
    shared [BLOCK_SIZE * BLOCK_QUALIFIER] real *restrict v2 = F2 + 3 * CELL_CAPACITY; 
 
    for(i = 0; i < CELL_CAPACITY; i++) { 
 if( flags1[i] == 0.) 
                 continue; 
         long j; 
 for(j = 0; j < CELL_CAPACITY; j++) { 
                 if( flags2[j] == 0.) 
                 continue; 
    



59 

 

     real dr[3]; 
     real dr2 = 0.; 
                 int d; 
                 for( d = 0; d < 3; d++ ) { 
  dr[d] = r2[3*j+d] - r1[3*i+d]; 
  dr2 += dr[d] * dr[d]; 
     } 
     if( dr2 > config.cutoff_radius_sq ) 
                 continue; 
     real invdr2 = 1. / dr2; 
                 config.count++; 
                  (*count_local)++; 
 
 
     /* Lennard Jones interaction forces */ 
            real lj6 = sigma2 * invdr2; 
     lj6 = lj6 * lj6 * lj6; 
     real lj12 = lj6 * lj6; 
     real lj12m6 = lj12 - lj6; 
     real u_pot  = epsilon24 * lj12m6; 
     real factor = epsilon24 * (lj12 + lj12m6) * invdr2; 
#ifndef NDEBUG 
            if(isnan(factor)) { 
                upcfprintf(stderr, "Blocks\n"); 
                upcfprintf(stderr, "i: %lu, j: %lu, dr2: %"PRIreal", invdr2: %"PRIreal"\n", i, j, dr2, invdr2); 
                molecule_block_print_ascii(block1, stderr); 
                molecule_block_print_ascii_shared(block2, stderr); 
            } 
#endif 
             /* Start of Critical Section*/ 
 acquire_locks(lock_cell1, lock_cell2); 
 for( d = 0; d < 3; d++ ) { 
     F1[3*i+d] -= factor * dr[d]; 
     F2[3*j+d] -= F1[3*i+d]; 
 } 
 upc_unlock(lock_cell1); 
 upc_unlock(lock_cell2); 
 /* End of Critical Section*/ 
 U_pot += u_pot; 
        } 
    }  
    *E_local += U_pot; 
    *U_Pot_local += U_pot; 
} 
 
void lj_basic_diagblock_calc(real *block, long *restrict count_local, real *restrict U_Pot_local, real 
*restrict  E_local, upc_lock_t * lock_cell) { 
    long i; 
    real U_pot = 0.; 
 
    /* Local pointers to access molecule block of cell which has affinity to this thread */ 
    real *restrict  flags = block; 
    real *restrict r = flags + CELL_CAPACITY; 
    real *restrict F = r + 3 * CELL_CAPACITY; 
    real *restrict v = F + 3 * CELL_CAPACITY; 



60 

 

 
    for(i = 0; i < CELL_CAPACITY; i++) { 
        if( flags[i] == 0.) 
            continue; 
        long j; 
        for(j = i + 1; j < CELL_CAPACITY; j++) { 
 if( flags[j] == 0.) 
                   continue; 
 real dr[3]; 
 real dr2 = 0.; 
             int d; 
 for( d = 0; d < 3; d++ ) { 
     dr[d] = r[3*j+d] - r[3*i+d]; 
     dr2 += dr[d] * dr[d]; 
 } 
 if( dr2 > config.cutoff_radius_sq ) 
                   continue; 
 real invdr2 = 1. / dr2; 
             config.count++; 
             (*count_local)++; 
 
 /* Lennard Jones interaction forces */ 
 real lj6 = sigma2 * invdr2; 
 lj6 = lj6 * lj6 * lj6; 
 real lj12 = lj6 * lj6; 
 real lj12m6 = lj12 - lj6; 
 real u_pot = epsilon24 * lj12m6; 
 real factor = epsilon24 * (lj12 + lj12m6) * invdr2; 
#ifndef NDEBUG 
            if(isnan(factor)) { 
                fprintf(stderr, "Diablock\n"); 
                fprintf(stderr, "i: %lu, j: %lu, dr2: %"PRIreal", invdr2: %"PRIreal"\n", i, j, dr2, invdr2); 
                molecule_block_print_ascii(block, stderr); 
            } 
#endif 
            /* Start of Critical Section*/ 
             upc_lock(lock_cell); 
 for( d = 0; d < 3; d++ ) { 
     F[3*i+d] -= factor * dr[d]; 
     F[3*j+d] -= F[3*i+d]; 
 } 
 upc_unlock(lock_cell); 
 /* End of Critical Section*/ 
 U_pot += u_pot; 
        } 
    } 
    *E_local += U_pot; 
    *U_Pot_local += U_pot; 
} 
 
void acquire_locks(upc_lock_t * lock_cell1, upc_lock_t * lock_cell2) { 
 int lock1_flag = 0; 
 int lock2_flag = 0; 
 while(TRUE) { 
     lock1_flag = upc_lock_attempt(lock_cell1); 



61 

 

     lock2_flag = upc_lock_attempt(lock_cell2); 
     /* If not acquired both locks, release any one lock if acquired */ 
     if(lock1_flag && lock2_flag) 
  break; 
     else { 
  if(lock1_flag) 
      upc_unlock(lock_cell1); 
  if(lock2_flag) 
      upc_unlock(lock_cell2); 
  } 
 } 
} 
 

Figure 5.7(e): Routines for calculating forces acting on each molecule and integrating LJ potential 
 

5.8 Post-Force Integration 
 
The process of post-force integration is initiated by call to psp_integrate_post routine from main. It 
follows a hierarchy of calls as shown in figure 5.8(a). The process of post-force integration involves 
computation of velocities of all molecules inside phasespace and integrating kinetic energy of all 
molecules inside phase space. This process of post-force integration is performed in parallel fashion, 
such that all threads calculate velocities and integrate kinetic energy for the molecules residing in cells 
these threads have affinity. Finally UPC’s reduction function is used to find the global integrated kinetic 
energy of the complete phasespace. The routines of psp_integrate_postf and mc_integrate_postf are 
shown in figures 5.8(b) and 5.8(c) respectively. 
 

 
Figure 5.8(a): Post-force integration hierarchy of calls 

 
After the global sum of integrated kinetic energy is computed, the psp_integrate_postf routine initiates 
the process of updating the phasespace. The process of updating phasespace involves removing the 
specific molecules from one cell and adding them to another cell. For this purpose each thread needs to 
acquire the locks on both source and destination cells. Once these specific molecules are moved from 
one cell to another, a thread having locked these cells releases the locks of these cells to allow other 
threads to acquire a lock on any of these cells if they need to do so. The routine mc_update can only 

psp_integrate_pref 

mc_integrate_postf 

mcell_integrate_postf 

molecule_block_integr
ate_postf 

mc_update 

mcell_add_molecule_l
ocal 

mcell_add_molecule_r
emote 

mc_update_halo 

mc_update_corners 

mc_update_edges 

mc_update_surfaces 



62 

 

result in a deadlock if two threads have locked a source cell each and these cells are destination for 
each other. Hence both threads will be waiting to acquire lock on cell which is locked by the other 
thread.  There is no such scenario observed in our case, however if in future such scenario occurs, it 
can be tacked by using the non-blocking routine for acquiring lock (upc_lock_attempt), as it is done in 
the inter-cell force calculation routines. The mc_update routine is shown in figure 5.8(d).  
 
After process of updating phasespace is completed, it is required to assure that no thread is still in the 
process of updating phasespace. This is achieved by using barrier synchronization after a call to 
mc_update routine.  Once all threads synchronize after updating the phase space in parallel fashion, a 
call to mc_update_halo routine is made inside psp_integrate_postf and with the completion of updating 
halo task, the complete process of post-force integration is finished. 
 
void psp_integrate_postf(phasespace_t *psp, simulation_t *simulation, domain_t *domain, ensemble_t 
*ensemble){ 
    mc_integrate_postf(psp->mc, simulation, ensemble); 
    mc_update(psp->mc, domain); 
    upc_barrier SYNC_POINT5; 
    mc_update_halo(psp->mc); 
} 
 

Figure 5.8(b): psp_integrate_postf routine 
 
shared [1] real e_kin_shared[THREADS]; 
shared real e_kin_final = 0; 
void mc_integrate_postf(molecule_container_t *mc, simulation_t *simulation, ensemble_t *ensemble) { 
 ensemble->E_kin = 0.0; 
 e_kin_shared[MYTHREAD] = 0; 
 long i, j, k; 
    for(i = 1; i < mc->num_cells_per_dim[0] - 1; i++) { 
        for(j = 1; j < mc->num_cells_per_dim[1] - 1; j++) { 
            for(k = 1; k < mc->num_cells_per_dim[2] - 1; k++) { 
                long cell_id; 
                cell_id = get_cell_id( i, j, k ,mc); 
                if(MYTHREAD == upc_threadof(&mc->cells[cell_id])) { 
                    molecule_cell_t * cell = (molecule_cell_t *) &mc->cells[cell_id]; 
                    real * e_kin_local = (real *) &e_kin_shared[MYTHREAD]; 
                    mcell_integrate_postf(simulation, cell, e_kin_local); 
                } 
 
            } 
        } 
    } 
    /********************************** SYNC_POINT4 **********************************/ 
    /* Below reduction routine provides barrier functionality as well as this collective routine 
     * will only return when all reads and writes of data are complete */ 
    upc_all_reduceD(&e_kin_final, e_kin_shared, UPC_ADD, THREADS, 1, NULL, UPC_IN_MYSYNC |  
    UPC_OUT_ALLSYNC); 
    ensemble->E_kin = e_kin_final; 
    ensemble->E = e_kin_final; 
} 
 

Figure 5.8(c): mc_integrate_postf routine 
 
void mc_update(molecule_container_t *mc, domain_t *domain) { 
    long i, j, k; 



63 

 

        for(i = 1; i < mc->num_cells_per_dim[0] - 1; i++) { 
            for(j = 1; j < mc->num_cells_per_dim[1] - 1; j++) { 
                for(k = 1; k < mc->num_cells_per_dim[2] - 1; k++) { 
                    long cell_id; 
                    cell_id = get_cell_id( i, j, k ,mc); 
                     
                    /* If the CELL has affinity to current thread */ 
                    if (MYTHREAD == upc_threadof(&mc->cells[cell_id])) { 
  molecule_cell_t * cell = (molecule_cell_t *) &mc->cells[cell_id]; 
  /*Acquire lock on source cell so its not being modified while its being copied*/ 
  upc_lock(cell->lock_mycell); 
 
  real *mblock = cell->data; 
  real *flags = mblock; 
  real *r = flags + CELL_CAPACITY; 
  real *F = r + 3 * CELL_CAPACITY; 
  real *v = F + 3 * CELL_CAPACITY; 
  real *id = v + 6 * CELL_CAPACITY; 
  real * size = id + CELL_CAPACITY; 
 
  int i; 
  for( i = 0; i < CELL_CAPACITY; i++) { 
      if(flags[i] != 0.) { 
          if( r[3*i+0] < 0.  ||  r[3*i+0] >= domain->L[0] || r[3*i+1] < 0.  ||  r[3*i+1] >=  
     domain->L[1] || r[3*i+2] < 0.  ||  r[3*i+2] >= domain->L[2] ) 
       { 
   /* save molecule data to struct */ 
   molecule_t m; 
   m.id   = id[i]; 
   m.r[0] = r[3*i+0]; 
   m.r[1] = r[3*i+1]; 
   m.r[2] = r[3*i+2]; 
   m.v[0] = v[3*i+0]; 
   m.v[1] = v[3*i+1]; 
   m.v[2] = v[3*i+2]; 
 
   /* apply periodic boundary condtions */ 
   int d; 
   for(d = 0; d < 3; d ++) { 
       if(m.r[d] < 0) m.r[d] += domain->L[d]; 
       else if (m.r[d] >= domain->L[d]) m.r[d] -= domain->L[d]; 
   } 
 
   /* Addition of molecule to shared space of other cell is surrounded by lock */ 
   /* calculate target cell and add molecule */ 
   long dest_cell_id = get_cell_index_from_coordinate(m.r[0], m.r[1], m.r[2], mc); 
         
   if (MYTHREAD == upc_threadof(&mc->cells[dest_cell_id])) { 
       molecule_cell_t *dest_cell = (molecule_cell_t *) &mc->cells[dest_cell_id]; 
       /* delete molecule */ 
       flags[i] = 0.; 
        (*size)-=1.; 
       upc_lock(dest_cell->lock_mycell); /*lock dest cell so it can no be used as  
        source unless molecule is added to it */ 
       mcell_add_molecule_local(&m, dest_cell); 



64 

 

       upc_unlock(dest_cell->lock_mycell); 
   } 
   else { 
       shared [BLOCK_QUALIFIER] molecule_cell_t *dest_cell =  
          &mc->cells[dest_cell_id]; 
   /* delete molecule */ 
   flags[i] = 0.; 
   (*size)-=1.; 
   long dest_thread = upc_threadof(&mc->cells[dest_cell_id]); 
   upc_lock(dest_cell->lock_mycell); /*lock dest cell so it can no be used as source 
         unless molecule is added to it */ 
   mcell_add_molecule_remote(&m, dest_cell); 
   upc_unlock(dest_cell->lock_mycell); 
   } 
      } 
  } 
         } 
         upc_unlock(cell->lock_mycell); 
 } 
            } 
        } 
    } 
} 
 

Figure 5.8(c): mc_update routine 
 

5.9 Calculation of Ensemble Values 
 
Ensemble values are the core elements of our simulation. The result of our simulation is extracted from 
ensemble values.  The computation of ensemble values is partially done in the force calculation and 
post-force integration routines, by integrating potential and kinetic energy for the molecules in 
phasespace. The other ensemble values which are required throughout the simulation are calculated 
by calling the routine psp_calc_ensemble_values from main function. This function finds the total 
number of molecules in phasespace in parallel manner and then the value of total number of molecules 
and integrated kinetic energy is used to find the value of temperature of phasespace. The routine for 
calculating the number of molecules in parallel fashion is shown in figure 5.9(a). Here each thread 
calculates the number of molecules in cells it has affinity to and finally a reduction call is made to 
calculate the global sum of number of molecules. 
 
shared long final_count = 0; 
shared [1] long count[THREADS]; // used to count number of molecules per thread 
 
long mc_get_num_molecules(molecule_container_t *mc) { 
    count[MYTHREAD] = 0; 
    long i, j, k; 
    for(i = 1; i < mc->num_cells_per_dim[0] - 1; i++) { 
        for(j = 1; j < mc->num_cells_per_dim[1] - 1; j++) { 
            for(k = 1; k < mc->num_cells_per_dim[2] - 1; k++) { 
                long cell_id; 
                long n; 
                cell_id = get_cell_id( i, j, k ,mc); 
                if(MYTHREAD == upc_threadof(&mc->cells[cell_id])) { 
                   molecule_cell_t * cell = (molecule_cell_t *) &mc->cells[cell_id]; 
                   n = mcell_get_num_molecules(cell); 
                   count[MYTHREAD] += n; 



65 

 

                } 
            } 
        } 
    } 
    /********************************** SYNC_POINT6 **********************************/ 
    upc_all_reduceL(&final_count, count, UPC_ADD, THREADS, 1, NULL, UPC_IN_ALLSYNC |   
   UPC_OUT_ALLSYNC); 
    return final_count; 
} 

Figure 5.9(a): mc_get_num_molecules routine 
 

5.10 Synchronization in Parallel CMD code 
 
There are various points of synchronization in our parallel version of CMD code. These 
synchronization points are assigned the integer value and are defined as global constants in one of the 
header files, as shown in figure 5.10(a). These synchronization points are explained below. 
 
#ifndef SYNC_H 
#define SYNC_H 
 
/* Define integer values for various barrier synchronization points */ 
#define SYNC_POINT0 0 
#define SYNC_POINT1 1 
#define SYNC_POINT2 2 
#define SYNC_POINT3 3 
#define SYNC_POINT4 4 
#define SYNC_POINT5 5 
#define SYNC_POINT6 6 
#define SYNC_POINT7 7 
#define SYNC_POINT8 8 
#define SYNC_POINT9 9 
#define SYNC_POINT10 10 
 
#endif /* SYNC_H */ 
 

Figure 5.10(a): Definition of synchronization constants 
 
Lock per Cell  
Location: Inside the structure of cell 
Definition: Lock of each cell is used to modify forces of and adding molecules to neighbor cells 
atomically. 
  
SYNC_POINT0 
Location: Before main loop (after printing stats and before writing ASCII Output) 
  
SYNC_POINT1 
Location: After pre-force integration step inside main loop. 
Definition: Makes sure that every thread has calculated values of r and v of its responsible molecule 
blocks, values of r are being later used by neighbor cells to calculate distance between molecules for 
force calculation. 
  
SYNC_POINT2 
Location: At the end inside Update Halo routine. 
Definition: Molecule blocks are being copied from one cell to another by thread which has affinity to 
destination cell. This barrier makes sure that NO cell of a thread is being currently used as source cell 



66 

 

before any thread starts manipulating its cells. 
  
SYNC_POINT3 
Location: At the end inside mc_calc_forces 
Definition: Need synchronization at this point as every thread is manipulating Forces of molecules of 
neighboring cells and neighbor cell calculates values of v and e_kin of its molecules depending on value 
of forces of its molecules. 
  
 SYNC_POINT4 
Location: At the end inside mc_integrate_postf 
Definition: Makes sure that every thread has calculated velocity of molecules of its cells before update 
routine is called 
  
SYNC_POINT5 
Location: Inside psp_integrate_postf routine after calling mc_update routine 
Definition: Makes sure that molecules have been moved between cells (inside mc_update routine) 
before copying cells (inside mc_update_halo  routine). 
  
SYNC_POINT6 
Location: At the end inside mc_get_num_molecules 
Definition: Makes sure that every thread has calculated its number of molecules before calculating 
global sum of molecules. 
 
SYNC_POINT7 
Location: Inside Main Loop before writing ASCII Output 
 Definition: Makes sure that all threads have done calculation before THREAD 0 starts writing output 
on file 
 
SYNC_POINT8 
Location: Inside Main Loop after writing ASCII Output 
Definition: Makes that no other thread start next iteration before THREAD 0 stops writing to file 
 
SYNC_POINT9 
Location: After main loop (after clearing Halo and before starting writing ASCII Output) 
 
SYNC_POINT10 
Location: After main loop (after writing ASCII Output and before printing stats) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



67 

 

6 Benchmarks 
 

6.1 Introduction 
 
We have executed our parallel CMD code on two clusters, Nehalem and Cray. The specifications of these 
clusters are important to know for understanding the benchmark results. Figure 6.1 shows the 
specifications of these platforms. 
 

NEC Nehalem Cluster Cray Hermit Cluster 
700 dual CPU compute nodes: 2x Intel Xeon 
X5560 "Gainestown" (5000 Sequence 
specifications) 

 4 cores, 8 threads 
 2.80 GHz (3.20 Ghz max. Turbo frequency) 
 8MB L3 Cache 
 1333 MHz Memory Interface, 6.4 GT/s QPI 

 
Network: InfiniBand Double Data Rate 
switches for interconnect: Voltaire Grid Director 
4036 with 36 QDR (40Gbps) ports (6 backbone 
switches) 

3552 compute nodes 
 2x AMD Opteron(tm) 6276 (Interlagos) 

processors with 16 Cores @ 2.3 GHz (with 
TurboCore up to 3.3 GHz) 

 32MB L2+L3 Cache, 16MB L3 Cache 
 HyperTransport HT3, 6.4GT/s=102.4 

GB/s 
 

Network: High Speed Network CRAY Gemini 

 
Figure 6.1: Specifications of benchmark platforms 

 
In the following sections we will discuss different benchmarks carried out on clusters just explained. 
 

6.2 Speed up on Different Clusters 
 
The first benchmark carried out after porting the CMD application to Unified Parallel C is shown in 
figure 6.2.  This benchmark does not utilize Newton’s 3rd law of motion; hence force computation is 
done twice for each pair of molecules in the phasespace fulfilling the cutoff radius threshold. On the 
other hand it relieves with necessary synchronization required every time the force of neighboring 
cell’s molecule is to be modified. Our CMD application is executed with two test cases of varying 
number of molecules, N=500 and N=5000. A very good speed up is observed on both Nehalem and 
Cray clusters after porting the CMD to Unified Parallel C utilizing new data structures and algorithms. 
However a sudden dip is observed in the speed up of application when executed on Nehalem cluster 
with more than 8 cores. This happens because the inter-node communication comes into action on 
Nehalem cluster when going beyond 8 cores. When inter-node communication is involved, the 
communication overhead surpasses the computation time, resulting in poor speed up of application. 
 

6.3 Slow Down Factor with Synchronization Variants 
 
Although the use of Newton’s 3rd law of motion reduces the computation effort in our simulation, it 
raises the urgency of synchronization. While porting the CMD to Unified Parallel C, we have employed 
two strategies for synchronization among threads, critical section synchronization and point to point 
synchronization. In critical section synchronization, each thread must acquire the lock of critical region 
where force of a neighbor cell’s molecule is modified. Hence, while one thread is modifying the force of 
molecule of one of its neighbor cell’s molecule, the other threads can only compute or modify the 
forces on molecules of its cell acting due to other molecules in the same cell. Hence only one thread can 
modify force of its neighbor cell’s molecule at a time even though different threads might need to 
access different neighbor cells. This results in excessive synchronization as a thread might need to 
modify force of a molecule in one of its neighbor cells that is not being modified by other thread yet it 
needs to wait for other thread to release the lock. For countering the superfluous synchronization 



68 

 

introduced by critical section synchronization mechanism, we employed another strategy by 
introducing a new data structure for a cell where each cell has its own lock. By using a lock per cell, we 
employed point to point synchronization mechanism where a thread only locks the cell it needs to 
modify the forces of molecules of this cell. Hence multiple threads can modify the forces of molecules 
of their neighbor cells simultaneously if they don’t have a neighbor cell in common. When two threads 
need to access a similar cell, they must wait for each other to acquire lock on this cell.  
 

 
 

Figure 6.2: Speed up on different clusters 
 

 
 

Figure 6.3: Slow Down Factor Due to Synchronization 

0

2

4

6

8

10

12

1 2 4 8 16 32

Sp
e

e
d

 u
p

 

Number of Processors 

Speed up on Different Clusters 

Nehalem (N=500)

Nehalem (N=5000)

Cray (N=500)

Cray (N=5000)

0

5

10

15

20

25

30

1 2 4 8 16 32 64 128

SD
 F

ac
to

r 

Number of Processors 

Slow Down Factor with Synchronization 

Critical Section
Synchronization

Point to Point
Synchronization



69 

 

Figure 6.3 shows the benchmark which demonstrates the slowdown in our CMD application due to the 
introduction of synchronization semantics using two techniques just discussed. It can be clearly seen 
in the benchmark that the introduction of critical section synchronization technique results in our 
CMD application to be 30 times slower as compared to the non-synchronization version of CMD. 
However, intelligent point to point synchronization results in a maximum slowdown factor of 5. Hence 
our CMD code implements the point to point synchronization in its final version. 
 

6.4 Execution Time with different Cells Distribution 
 
While porting our CMD application to UPC, we exercised two approaches for the distribution of 
molecule cells among threads, round-robin and spatially coherent cells distributions. In the round-
robin approach, cells are distributed among threads sequentially, as shown in figure 6.4(a). Whereas in 
spatially coherent cells distribution, spatially coherent cells are allocated to the same thread, as shown 
in figure 6.4(b). 
 
 
 
 
 
 
 
 
  Thread 0 

 
  Thread 1 

 
  Thread 2 

 
  Thread 3 

 
 
 
 
 
 

Figure 6.4(a): Round Robin cells distribution 
 
Figures 6.4(c), 6.4(d) and 6.4(d) show the benchmarks of execution time of CMD application on 
Nehalem cluster with total number of molecules in phase space equals to 1800, 3000 and 27000 
respectively. It can be clearly seen in all three benchmarks that the distribution of cells in a spatially 
coherent manner results in significantly less execution time of our application compared to round 
robin distribution of cells among threads. For the benchmarks shown in figures 6.4(c) and 6.4(d), the 
application is executed faster even after going beyond one node on Nehalem where inter-node 
communication comes into action. This is because spatially coherent cells distribution results in very 
less remote data access as compared to round robin cells distribution. Hence the locality of data is 
exploited more effectively when cells are distributed in spatially coherent manner. For very large 
number of molecules, in figure 6.4(e), spatially coherent cells distribution still performs better as 
compared to round-robin cells distribution. Recall that the molecules cells are distributed among 
threads in a three dimensional spatial coherence, blockDimx*blockDimy*blockDimz (a 3x3x3 cube of 
molecule cells belongs to the same thread). As we can see in figure 6.4(e), inter-node communication 
has an impact on performance with very large number of molecules even with distribution of cells in 
spatially coherent manner. This is because the number of cells is changed with number of molecules, 
and the relationship between number of cells and number of threads establishes how well the cells can 
be spatially decomposed. The ratio of surface to volume of the phasespace plays a significant role in 
scaling. 

2 

5 7 

8 9 11 10 

1 3 

6 

13 15 14 

0 

4 

12 

    

    

 

 

 

 



70 

 

 

 

 
 
 
Thread 0 
 
Thread 1 
 
Thread 2 
 
Thread 3 

 

 
 
 

Figure 6.4(b): Spatially coherent cells distribution 
 

 
 

Figure 6.4(c): Execution Time for different cell distributions and N=1800 molecules 
 

0

0.5

1

1.5

2

2.5

1 2 4 8 16 32 64 128

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
co

n
d

s)
 

Number of Processors 

Execution Time for N=1800 molecules 

RR (N=1800)

S (N=1800)

8 

3 11 

16 17 25 24 

1 9 

10 

19 27 26 

0 

2 

18 

    

    

 

 

 

 



71 

 

 
 

Figure 6.4(d): Execution Time for different cell distributions and N=3000 molecules 
 

 
 

Figure 6.4(e): Execution Time for different cell distributions and N=27000 molecules 
 

 
 
 
 
 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 4 8 16 32 64 128

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
co

n
d

s)
 

Number of Processors 

Execution Time for N=3000 molecules 

Round Robin

Spatial

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8 16 32 64 128

Ex
e

cu
ti

o
n

 T
im

e
 (

Se
co

n
d

s)
 

Number of Processors 

Execution Time for N=27000 molecules 

Round Robin

Spatial



72 

 

6.5 Execution Time with UPC pointer variants 
 
In earlier version of our ported CMD application, each thread accessed its neighbor cells using private 
pointers to shared region in the inter-cell force calculation routine whereas it accessed only the source 
cell using local pointer after checking the affinity of source cell. In such case there is the possibility that 
a cell and its neighbor cell are both located in the local portion of the shared address space. As for each 
cell, there are 13 neighbor cells, we implemented manual pointer optimizations where the affinity of 
neighbor cell is also checked and it is accessed using local pointer when it also resides in the local 
portion of a thread in the shared space. After executing our CMD application with manual pointer 
optimizations in place, we saw a significant reduction in execution time for all tested cases of varying 
number of molecules.  This is shown in figure 6.4. For all three test cases shown below, our application 
executed 10 times faster than the earlier version which did not utilize manual pointer optimizations 
for accessing neighbor cells in force calculation routine. This shows that the UPC compilers are still not 
mature enough to detect the data locality automatically and accessing the data using local pointers 
where it resides in local portion of shared space for a thread. 
 

– Test case 1 -- N=500 molecules, NumThreads = 1 
• RR Distribution with shared pointers = 0.27666 
• RR Distribution with local pointers = 0.027639 (10x faster) 

 
– Test case 2 -- N=3000 molecules, NumThreads = 1 

• RR Distribution with shared pointers = 0.437530 
• RR Distribution with local pointers = 0.042233 (10x faster) 

 
– Test case 3 -- N=27000 molecules, NumThreads = 1 

• RR Distribution with shared pointers = 1.946293 
• RR Distribution with local pointers = 0.195274 (10x faster) 

 
 

 
 

Figure 6.5: Execution Time with manual pointer optimizations 
 
 
In the next chapter we will discuss the performance bottlenecks of UPC we observed in this chapter 
and will suggest possible solutions. 

0

0.5

1

1.5

2

2.5

N=500 molecules N=3000 molecules N=27000 molecules

Ex
e

cu
ti

o
n

 T
im

e
 (

se
co

n
d

s)
 

Test Cases 

Execution Time with UPC pointer variants 

RR Distribution with
shared pointers

RR Distribution with
local pointers



73 

 

7 Bottlenecks and Solutions 
 
We observed two major performance bottlenecks while porting our application to UPC. These are 
discussed in this chapter with the possible solutions. 
 

7.1 Source to Source Translation Issues 
 
The most critical performance issue we observed while porting our CMD application to UPC is the 
source-to-source translation issue. We have observed that UPC compilers are still not aided with few 
major performance optimizations. UPC compilers require a programmer to manually cast a shared 
pointer to a private pointer when the data pointed by the shared pointer resides in the local portion of 
shared space of this thread. UPC compilers are to date not able to detect the data locality perfunctory 
and automatically accessing the local portion of shared space for a thread using a local pointer. This 
can result in severe performance degradation if UPC code is not optimized manually for pointers, as 
shown in the benchmark in figure 6.5. It is also recommended to inform the UPC compiler explicitly if 
pointers used in program do not alias, such that they do not point to same memory location [1]. It is 
recommended to analyze the program and use the ANSCI C99 restrict keyword to inform the UPC 
compiler if pointers do not alias. This can result in cache optimization by not loading a value 
repetitively due to compiler being unaware of the pointer aliasing [1]. By using the restrict keyword, 
the UPC source-to-source translator aids the back end ANSI C compiler with the information about 
pointer aliasing. Hence it is recommended to do manual optimizations in UPC code unless the UPC 
compilers become mature enough to do these optimizations automatically. 
 

7.2 Excessive Synchronization  
 
Although the use of synchronization in programs assures the correct data coordination among threads, 
it is challenging to have an optimal synchronization in a parallel program.  An inefficient use of 
synchronization constructs can result in unnecessary communication among threads and would result 
in wastage of machine cycles. This becomes even more important when the UPC’s synchronization 
constructs are employed in a program as they incur an implicit overhead due their global shared scope. 
This is the reason that the other major performance issue in a UPC program occurs due to inefficient 
use of the synchronization constructs. We have observed that unnecessary use of barrier 
synchronization or having the scope of a lock for large shared data can result in performance 
degradation. To achieve better performance of UPC programs it is suggested to only use barrier 
synchronization when it is really necessary for a thread to wait for all other threads. This happens 
when a thread needs to enter the next phase in a program and requires accessing a shared data which 
can be modified by all other threads or majority of threads. It is recommended to use non-blocking 
barrier synchronization in such scenarios by designing your program in a way that a thread can do 
local computation while waiting for other threads to reach at a point in program.  It is also suggested to 
optimize the scope of lock for shared data, such that it should result in as less collision among threads 
to acquire a lock as possible. This can be done by designating a lock for small data set as compared to 
large data set. On the other hand allocating so many locks in program can also result in data access 
overhead. Therefore an optimal value for number of locks should be selected. 
         
  
 
 
 
 
 
 
 
 



74 

 

8 Conclusion 
 
UPC would be a very productive language if in future UPC compilers aid the necessary optimizations 
which have significant impact on the performance of a program. UPC provides ease of programming 
due to its global address space abstraction and powerful parallel programming mechanisms with only 
few extensions to ANSI C language [4]. UPC provides support for both shared and distributed memory 
architectures and hence it can be used for hybrid parallelism conventionally provided by MPI and 
OpenMP combination. However UPC compilers are still not matured enough to encompass some major 
optimizations which a programmer need to do manually in program.  Currently it is essential for a 
programmer to pay special attention to all types of pitfalls which seriously attenuates the productivity 
and (if a programmer is unable to recognize all the issues) the performance. Therefore it is still not 
ready for the production code.  
 
While porting our CMD code we exercised different strategies for distribution of data among threads, 
algorithms and synchronization mechanism. The round robin cells distribution is the default data 
distribution strategy and hence it is essential to hunt for better data distribution methods. The spatial 
cells distribution strategy is one such initiative of achieving better data (or cells in our case) 
distribution. We found out that distribution of molecules cells among threads in spatially coherence 
manner reduces the remote accesses significantly and outperforms the round-robin cells distribution 
strategy. The spatially coherence distribution strategy also performed exceptionally well when our 
application is executed on more than one node and internode communication took place, unlike round 
robin distribution. In algorithms, we found out that designing locality aware algorithms for the 
compute intensive routines of force calculation with manual pointer optimizations results in our 
application to be executed really faster as UPC compilers were unable to detect the locality of data and 
access it using local pointers automatically in the earlier version which resulted in high execution time. 
Lastly, the intelligent point to point synchronization strategy has very significant impact on the 
execution time of our simulation, compared to earlier used critical section synchronization which had 
very high slow down factor which was directly proportional to number of nodes. It is recommended to 
utilize the synchronization mechanisms efficiently and not to exercise the code with excessive 
synchronization. For example, programmers should devise the strategy of using non-blocking barrier 
synchronization to overlap the computation and communication unlike blocking barriers which results 
in inefficient use of machine cycles. 
 
In future, we intend to investigate the larger simulations and more adaptive spatial decomposition 
methods.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



75 

 

9 References  
 
[1]  Cristian Coarfa , Yuri Dotsenko , John Mellor-Crummey , François Cantonnet , Tarek El-
 Ghazawi , Ashrujit Mohanti , Yiyi Yao , Daniel Chavarrí a-Miranda, An evaluation of global 
 address space languages: co-array fortran and unified parallel C, Proceedings of the tenth 
 ACM SIGPLAN symposium on Principles and practice of parallel programming, June 15-17, 
 2005, Chicago, IL, USA 
 
[2] Parry Husbands , Costin Iancu , Katherine Yelick, A performance analysis of the Berkeley UPC 

compiler, Proceedings of the 17th annual international conference on Supercomputing, June 
23-26, 2003, San Francisco, CA, USA 

 
[3] François Cantonnet , Yiyi Yao , Smita Annareddy , Ahmed S. Mohamed , Tarek A. El-Ghazawi, 

Performance Monitoring and Evaluation of a UPC Implementation on a NUMA Architecture, 
Proceedings of the 17th International Symposium on Parallel and Distributed Processing, 
p.274.2, April 22-26, 2003 

 
[4] F. Cantonnet, Y. Yao, M. Zahran, and T. El-Ghazawi. Productivity Analysis of the UPC Language. 

In IPDPS, 2004. 
 
[5] Tarek El-Ghazawi , William Carlson , Thomas Sterling , Katherine Yelick, UPC: Distributed 
 Shared Memory Programming, Wiley-Interscience, 2003 
 
[6] Katherine Yelick , Dan Bonachea , Wei-Yu Chen , Phillip Colella , Kaushik Datta , Jason 
 Duell , Susan L. Graham , Paul Hargrove , Paul Hilfinger , Parry Husbands , Costin Iancu , 
 Amir Kamil , Rajesh Nishtala , Jimmy Su , Michael Welcome , Tong Wen, Productivity and 
 performance using partitioned global address space languages, Proceedings of the 2007  

international workshop on Parallel symbolic computation, July 27-28, 2007, London, 
 Ontario, Canada 
 
[7] Z. Zhang and S. Seidel. Benchmark Measurements for Current UPC Platforms. In 
 Proceedings of IPDPS'05, 19th IEEE International Parallel and Distributed Processing 
 Symposium, Apr. 2005. 
 
[8] Tarek El-Ghazawi , Francois Cantonnet, UPC performance and potential: a NPB 
 experimental study, Proceedings of the 2002 ACM/IEEE conference on Supercomputing, 
 p.1-26, November 16, 2002, Baltimore, Maryland 
 
[9] M.P. Allen, Introduction to molecular dynamics simulation, in: Computational Soft Matter-
 From Synthetic Polymers to Proteins, NIC Series, vol.23, John von Neumann Institute for 
 Computing, 2004. 
 
[10] T.W Clark, R.v Hanxleden, J.A McCammon, L.R Scott 
 Parallelizing molecular dynamics using spatial decomposition 
 Proceedings, Scalable High-Performance Computing Conference (1994), pp. 95–102 
 
[11] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. Compiler transformations for high 
 performance computing. ACM Computing Surveys, 26(4):345{420, December 1994. 
 http://www.acm.org/pubs/toc/Abstracts/03600300/197406.html. 
 
[12] H. El-Rewini, M. Abd-El-Barr 
 Advanced Computer Architecture and Parallel Processing 
 Wiley (2005) ISBN 978-0-471-46740-  
 



76 

 

[13] Domenico Laforenza 
 Parallel computer architectures: state of the art and trends 
 CNUCE-Istituto del CNR, Reparto Calcolo Parallelo, Via S. Maria, 36, 1-56100 Pisa, Italy 
 Received September 12, 1990/Accepted November 13, 1990 
 
[14] Paul Graham , OpenMP A Parallel Programming Model for Shared Memory Architectures 
 Version  1.1 March 1999 
 Edinburgh Parallel Computing Centre, The University of Edinburgh 
 
[15] David J. Lilja, Cache coherence in large-scale shared-memory multiprocessors: issues and 
 comparisons, ACM Computing Surveys (CSUR), v.25 n.3, p.303-338, Sept. 1993 
 
[16] Barney B. Introduction to parallel computing. Lawrence Livermore National Laboratory, 
 2010 
 
[17] Jelica Protic , Milo Tomasevic , Veljko Milutinovic, Distributed Shared Memory: Concepts 
 and Systems, IEEE Parallel & Distributed Technology: Systems & Technology, v.4 n.2, p.63-
 79, June 1996 
 
[18] Leonardo Dagum , Ramesh Menon, OpenMP: An Industry-Standard API for Shared-Memory 

Programming, IEEE Computational Science & Engineering, v.5 n.1, p.46-55, January 1998 
 
[19] Tarek El-Ghazawi, William W. Carlson, and Jesse M. Draper. UPC Language Specification v1.1.1, 

October 2003 
 
[20] MPI: A Message-Passing Interface Standard Version 2.2 

Message Passing Interface Forum 
September 4, 2009 

 
[21] MPI (Message Passing Interface), High Performance Computing Virtual Laboratory Canada 

http://www.hpcvl.org/faqs/programming/mpi-message-passing-interface 
 
[22] Wei-Yu Chen, Costin Iancu, and Katherine Yelick.  Communication Optimizations for Fine-

grained UPC Applications. In Proceedings of the International Conference on Parallel 
Architecture and Compilation Techniques, 2005. 

 
[23] G. Taubenfeld. Shared memory synchronization. Bulletin of the European Association for 

Theoretical Computer Science, 96:80–, October 2008. Columns: Distributions 
 
[24] Synchronization Barriers – Microsoft Dev Center 
 Dev Center - Desktop > Docs > Windows Development Reference > System Services > 

Synchronization > About Synchronization > Synchronization Barriers 
 http://msdn.microsoft.com/en-us/library/windows/desktop/hh706897(v=vs.85).aspx 

 
 
 
 
 
 
 
 
 
 
 
 

http://www.hpcvl.org/faqs/programming/mpi-message-passing-interface


77 

 

Acknowledgment 
 
I would like to express my gratitude to all those who made it possible for me to complete this thesis 
and enabled me to achieve my goal. 
 
First of all, I am very indebted to my supervisor Dr. Colin Glass whose help, precious suggestions, 
comprehension, perspicacity and encouragement helped me in all the times of thesis. I am also really 
thankful to Christoph Niethammer, who really encouraged me for all the efforts I made and helped me 
with his invaluable knowledge on subject. 
 
I would also like to thank my supervisors Prof. Dr.-Ing. Sven Simon and Dipl.-Inf. Steffen Kieß for 
providing me with the opportunity to work with them and their entrustment on me for this thesis. 
 
Lastly but importantly, I am really very thankful to Prof. Dr. Rainer Keller who really encouraged me for 
my interest in Parallel Systems and providing me with the prospect of working with him in this field. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 





Hiermit versichere ich, diese Arbeit selbstständig verfasst und nur die angegebenen Quellen 
benutzt zu haben. 

Stuttgart, 17. Oktober 2012

Unterschrift:


