Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Üffinger, Markus"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Advanced visualization techniques for flow simulations : from higher-order polynomial data to time-dependent topology
    (2013) Üffinger, Markus; Ertl, Thomas (Prof. Dr.)
    Computational Wuid dynamics (CFD) has become an important tool for predicting Fluid behavior in research and industry. Today, in the era of tera- and petascale computing, the complexity and the size of simulations have reached a state where an extremely large amount of data is generated that has to be stored and analyzed. An indispensable instrument for such analysis is provided by computational Wow visualization. It helps in gaining insight and understanding of the Wow and its underlying physics, which are subject to a complex spectrum of characteristic behavior, ranging from laminar to turbulent or even chaotic characteristics, all of these taking place on a wide range of length and time scales. The simulation side tries to address and control this vast complexity by developing new sophisticated models and adaptive discretization schemes, resulting in new types of data. Examples of such emerging simulations are generalized Vnite element methods or hp-adaptive discontinuous Galerkin schemes of high-order. This work addresses the direct visualization of the resulting higher-order Veld data, avoiding the traditional resampling approach to enable a more accurate visual analysis. The second major contribution of this thesis deals with the inherent complexity of Wuid dynamics. New feature-based and topology-based visualization algorithms for unsteady Wow are proposed to reduce the vast amounts of raw data to their essential structure. For the direct visualization pixel-accurate techniques are presented for 2D Veld data from generalized Vnite element simulations, which consist of a piecewise polynomial part of high order enriched with problem-dependent ansatz functions. Secondly, a direct volume rendering system for hp-adaptive Vnite elements, which combine an adaptive grid discretization with piecewise polynomial higher-order approximations, is presented. The parallel GPU implementation runs on single workstations, as well as on clusters, enabling a real-time generation of high quality images, and interactive exploration of the volumetric polynomial solution. Methods for visual debugging of these complex simulations are also important and presented. Direct Wow visualization is complemented by new feature and topology-based methods. A promising approach for analyzing the structure of time-dependent vector Velds is provided by Vnite-time Lyapunov exponent (FTLE) Velds. In this work, interactive methods are presented that help in understanding the cause of FTLE structures, and novel approaches to FTLE computation are developed to account for the linearization error made by traditional methods. Building on this, it is investigated under which circumstances FTLE ridges represent Lagrangian coherent structures (LCS)—the timedependent counterpart to separatrices of traditional “steady” vector Veld topology. As a major result, a novel time-dependent 3D vector Veld topology concept based on streak surfaces is proposed. Streak LCS oUer a higher quality than corresponding FTLE ridges, and animations of streak LCS can be computed at comparably low cost, alleviating the topological analysis of complex time-dependent Velds.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart