Browsing by Author "Aken, Peter A. van"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Assembling metal organic layer composites for high‐performance electrocatalytic CO2 reduction to formate(2022) Liu, Hang; Wang, Hongguang; Song, Qian; Küster, Kathrin; Starke, Ulrich; Aken, Peter A. van; Klemm, Elias2D metal-organic-framework (MOF) based composites have emerged as promising candidates for electrocatalysis due to their high structural flexibility and fully exposed active sites. Herein, a freestanding metal-organic layer (MOL) with a 2D kgd (kagome dual) lattice was constructed with abundant surface oxygenate groups serving as anchoring sites to immobilize diverse guests. Taking Bi as an example, tetragonal Bi2O3 nanowires can be uniformly grown on MOLs after solvothermal treatment, the structural evolution of which was followed by ex situ electron microscopy. The as-prepared Bi2O3/MOL exhibits excellent CO2 electroreduction activity towards formate reaching a specific current of 2.3 A mgBi−1 and Faradaic efficiencies of over 85 % with a wide potential range from -0.87 to -1.17 V, far surpassing Bi2O3/UiO (a 3D Zr6-oxo based MOF) and Bi2O3/AB (Acetylene Black). Such a post-synthetic modification strategy can be flexibly extended to develop versatile MOL composites, highlighting the superiority of optimizing MOL-based composites for electrocatalysis.Item Open Access Interaction of edge exciton polaritons with engineered defects in the hyperbolic material Bi2Se3(2021) Lingstädt, Robin; Talebi, Nahid; Hentschel, Mario; Mashhadi, Soudabeh; Gompf, Bruno; Burghard, Marko; Giessen, Harald; Aken, Peter A. vanHyperbolic materials exhibit unique properties that enable intriguing applications in nanophotonics. The topological insulator Bi2Se3 represents a natural hyperbolic optical medium, both in the THz and visible range. Here, using cathodoluminescence spectroscopy and electron energy-loss spectroscopy, we demonstrate that Bi2Se3 supports room-temperature exciton polaritons and explore the behavior of hyperbolic edge exciton polaritons, which are hybrid modes resulting from the coupling of the polaritons bound to the upper and lower edges of Bi2Se3 nanoplatelets. We compare Fabry-Pérot-like resonances emerging in edge polariton propagation along pristine and artificially structured edges and experimentally demonstrate the possibility to steer edge polaritons by means of grooves and nanocavities. The observed scattering of edge polaritons by defect structures is found to be in good agreement with finite-difference time-domain simulations. Our findings reveal the extraordinary capability of hyperbolic polariton propagation to cope with the presence of defects, providing an excellent basis for applications such as nanooptical circuitry, nanoscale cloaking and nanoscopic quantum technology.Item Open Access Investigating the long-term kinetics of Pd nanoparticles prepared from microemulsions and the Lindlar catalyst for selective hydrogenation of 3-hexyn-1-ol(2024) Tari, Faeze; Hertle, Sebastian; Wang, Hongguang; Fischer, Julian; Aken, Peter A. van; Sottmann, Thomas; Klemm, Elias; Traa, YvonneThe effect of non-saturated corner and edge sites of Pd particles on the long-term selectivity of cis-3-hexen-1-ol in the hydrogenation of 3-hexyn-1-ol was studied in this work. Non-supported Pd agglomerates were synthesized through the microemulsion synthesis route and used at nalkynol/APdratios between 0.08 and 21 mol/m2for the catalytic conversion of 3-hexyn-1-ol for 20 h. The selectivity of the cis-hexenol product increased by reducing the quantity of Pd catalytic sites (increasing the nalkynol/APdratio) without introducing any modifier or doping agent to poison the nonselective sites. Then, Pd aggregates with fused primary particles and, thus, fewer corner and edge sites were produced through thermal sintering of the agglomerates at 473-723 K. By comparing the catalytic performance of the agglomerates and aggregates, it was observed that at a rather similar kinetic behavior (99.99% conversion and 85-89% selectivity to cis-hexenol), the sintered aggregates could stay selective despite a catalytic surface area about seven times larger. This emphasizes the role of low-coordinated edge and corner sites on the final selectivity of the cis product and demonstrates that thermal sintering allows the number of non-selective sites to be reduced without any need for toxic or organic doping agents or modifiers.Item Open Access Towards recycling of LLZO solid electrolyte exemplarily performed on LFP/LLZO/LTO cells(2022) Ali Nowroozi, Mohammad; Iqbal Waidha, Aamir; Jacob, Martine; Aken, Peter A. van; Predel, Felicitas; Ensinger, Wolfgang; Clemens, OliverAll‐solid‐state lithium ion batteries (ASS‐LIBs) are promising due to their safety and higher energy density as compared to that of conventional LIBs. Over the next few decades, tremendous amounts of spent ASS‐LIBs will reach the end of their cycle life and would require recycling in order to address the waste management issue along with reduced exploitation of rare elements. So far, only very limited studies have been conducted on recycling of ASS‐LIBS. Herein, we investigate the recycling of the Li7La3Zr2O12 (LLZO) solid‐state electrolyte in a LiFePO4/LLZO/Li4Ti5O12 system using a hydrometallurgical approach. Our results show that different concentration of the leaching solutions can significantly influence the final product of the recycling process. However, it was possible to recover relatively pure La2O3 and ZrO2 to re‐synthesize the cubic LLZO phase, whose high purity was confirmed by XRD measurements.