Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Ansar, Syed Asif"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Elucidating the performance limitations of alkaline electrolyte membrane electrolysis : dominance of anion concentration in membrane electrode assembly
    (2020) Razmjooei, Fatemeh; Farooqui, Azharuddin; Reissner, Regine; Gago, Aldo Saul; Ansar, Syed Asif; Friedrich, Kaspar Andreas
    Anion exchange membrane water electrolyzers (AEMWEs) offer a cost‐effective technology for producing green hydrogen. Here, an AEMWE with atmospheric plasma spray non‐precious metal electrodes was tested in 0.1 to 1.0 M KOH solution, correlating performance with KOH concentration systematically. The highest cell performance was achieved at 1.0 M KOH (ca. 0.4 A cm-2 at 1.80 V), which was close to a traditional alkaline electrolysis cell with ≈6.0 M KOH. The cell exhibited 0.13 V improvement in the performance in 0.30 M KOH compared with 0.10 M KOH at 0.5 A cm−2. However, this improvement becomes more limited when further increasing the KOH concentration. Electrochemical impedance and numerical simulation results show that the ohmic resistance from the membrane was the most notable limiting factor to operate in low KOH concentration and the most sensitive to the changes in KOH concentration at 0.5 A cm-2. It is suggested that the effect of activation loss is more dominant at lower current densities; however, the ohmic loss is the most limiting factor at higher current densities, which is a current range of interest for industrial applications.
  • Thumbnail Image
    ItemOpen Access
    Hydroxyl-conductive 2D hexagonal boron nitrides for anion exchange membrane water electrolysis and sustainable hydrogen production
    (2025) Kaur, Jasneet; Schweinbenz, Matthew; Ho, Kane; Malekkhouyan, Adel; Ghotia, Kamal; Egert, Franz; Razmjooei, Fatemeh; Ansar, Syed Asif; Zarrin, Hadis
    In response to the urgent global call to transition from polluting fossil fuels to sustainable energy alternatives, hydrogen emerges as a promising and widely accessible energy source if it can be efficiently produced through water splitting and electrolysis. Anion exchange membrane (AEM) water electrolyzers (AEMWEs) have potential for large scale H2 production at a low cost. However, the development of alkaline membranes with high hydroxide conductivity, improved stability and better performance is a significant challenge for the commercial application of advanced AEMWEs. In this work, a novel structure for hydroxide-ion conductive membranes based on surface-engineered two-dimensional (2D) hexagonal boron nitrides (h-BN) is designed and validated in a highly active and durable AEMWE cell with non-precious metal Ni-based electrodes. Among two samples, the high-loaded 2D hBN nanocomposite membrane (M2) showed significantly high hydroxide-ion conductivity (190 mS cm-1) with improved electrochemical and mechanical stability. The AEMWE cell assembled with the M2 membrane exhibited superior cell performance, achieving 1.78 V at 0.5 A cm-2 compared to the cell utilizing the lower loading hBN nanocomposite membrane (M1). Additionally, its performance closely approached that of the cell employing a commercial membrane. During a long-term stability test conducted at a constant load of 0.5 A cm-2 for 250 hours, the M2 membrane maintained satisfactory electrolysis voltage without any notable failure. These findings demonstrate that 2D hBN nanocomposite membranes hold great promise for use in advanced AEMWEs.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart