Browsing by Author "Bárdossy, András"
Now showing 1 - 18 of 18
- Results Per Page
- Sort Options
Item Open Access Assessing rainfall radar errors with an inverse stochastic modelling framework(2024) Green, Amy C.; Kilsby, Chris; Bárdossy, AndrásWeather radar is a crucial tool for rainfall observation and forecasting, providing high-resolution estimates in both space and time. Despite this, radar rainfall estimates are subject to many error sources - including attenuation, ground clutter, beam blockage and drop-size distribution - with the true rainfall field unknown. A flexible stochastic model for simulating errors relating to the radar rainfall estimation process is implemented, inverting standard weather radar processing methods and imposing path-integrated attenuation effects, a stochastic drop-size-distribution field, and sampling and random errors. This can provide realistic weather radar images, of which we know the true rainfall field and the corrected “best-guess” rainfall field which would be obtained if they were observed in a real-world case. The structure of these errors is then investigated, with a focus on the frequency and behaviour of “rainfall shadows”. Half of the simulated weather radar images have at least 3 % of their significant rainfall rates shadowed, and 25 % have at least 45 km 2 containing rainfall shadows, resulting in underestimation of the potential impacts of flooding. A model framework for investigating the behaviour of errors relating to the radar rainfall estimation process is demonstrated, with the flexible and efficient tool performing well in generating realistic weather radar images visually for a large range of event types.Item Open Access Changing correlations : a flexible definition of non-Gaussian multivariate dependence(2023) Bárdossy, AndrásDependencies between variables are often very complex, and may for high values, be different from that of the low values. As the normal distribution and the corresponding copula behave symmetrically for low and high values the frequent application of the normal copula for the description of the dependence may be inappropriate. In this contribution a new way of defining high dimensional multivariate distributions with changing correlations is presented. The method can also be used for a flexible definition of tail dependence. Examples of copulas with linear changing correlations illustrate the methodology. Parameter estimation methods and simulation procedures are discussed. A five dimensional example using groundwater quality data and another four dimensional one using air pollution data, are used to illustrate the methodology.Item Open Access Clustering simultaneous occurrences of the extreme floods in the Neckar catchment(2021) Modiri, Ehsan; Bárdossy, AndrásFlood protection is crucial for making socioeconomic policies due to the high losses of extreme floods. So far, the synchronous occurrences of flood events have not been deeply investigated. In this paper, multivariate analysis was implemented to reveal the interconnection between these floods in spatiotemporal resolution. The discharge measurements of 46 gauges with a continuous daily time series for 55 years were taken over the Neckar catchment. Initially, the simultaneous floods were identified. The Kendall correlation between the pair sets of peaks was determined to scrutinize the similarities between the simultaneous events. Agglomerative hierarchical clustering tree (AHCT) and multidimensional scaling (MDS) were employed, and obtained clusters were compared and evaluated with the Silhouette verification method. AHCT shows that the Average and Ward algorithms are appropriate to detect reasonable clusters. The Neckar catchment has been divided into three major clusters: the first cluster mainly covers the western part and is bounded by the Black Forest and Swabian Alps. The second cluster is mostly located in the eastern part of the upper Neckar. The third cluster contains the remaining lowland areas of the Neckar basin. The results illustrate that the clusters act relatively as a function of topography, geology, and anthropogenic alterations of the catchment.Item Open Access Development and parameter estimation of snowmelt models using spatial snow-cover observations from MODIS(2022) Gyawali, Dhiraj Raj; Bárdossy, AndrásGiven the importance of snow on different land and atmospheric processes, accurate representation of seasonal snow evolution, including distribution and melt volume, is highly imperative to any water resources development trajectories. The limitation of reliable snowmelt estimation in mountainous regions is, however, further exacerbated by data scarcity. This study attempts to develop relatively simple extended degree-day snow models driven by freely available snow-cover images. This approach offers relative simplicity and a plausible alternative to data-intensive models, as well as in situ measurements, and has a wide range of applicability, allowing for immediate verification with point measurements. The methodology employs readily available MODIS composite images to calibrate the snowmelt models on spatial snow distribution in contrast to the traditional snow-water-equivalent-based calibration. The spatial distribution of snow-cover is simulated using different extended degree-day models with parameters calibrated against individual MODIS snow-cover images for cloud-free days or a set of images representing a period within the snow season. The study was carried out in Baden-Württemberg (Germany) and in Switzerland. The simulated snow-cover data show very good agreement with MODIS snow-cover distribution, and the calibrated parameters exhibit relative stability across the time domain. Furthermore, different thresholds that demarcate snow and no-snow pixels for both observed and simulated snow cover were analyzed to evaluate these thresholds' influence on the model performance and identified for the study regions. The melt data from these calibrated snow models were used as standalone inputs to a modified Hydrologiska Byråns Vattenbalansavdelning (HBV) without the snow component in all the study catchments to assess the performance of the melt outputs in comparison to a calibrated standard HBV model. The results show an overall increase in Nash–Sutcliffe efficiency (NSE) performance and a reduction in uncertainty in terms of model performance. This can be attributed to the reduction in the number of parameters available for calibration in the modified HBV and an added reliability of the snow accumulation and melt processes inherent in the MODIS calibrated snow model output. This paper highlights that the calibration using readily available images used in this method allows for a flexible regional calibration of snow-cover distribution in mountainous areas with reasonably accurate precipitation and temperature data and globally available inputs. Likewise, the study concludes that simpler specific alterations to processes contributing to snowmelt can contribute to reliably identify the snow distribution and bring about improvements in hydrological simulations, owing to better representation of the snow processes in snow-dominated regimes.Item Open Access Grundlagenbericht Niederschlags-Simulator (NiedSim3)(Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2017) Müller, Thomas; Mosthaf, Tobias; Gunzenhauser, Sarah; Seidel, Jochen; Bárdossy, AndrásDas Programmsystem NiedSim3 (Niederschlags-Simulation) ist ein stochastischer Generator, mit dem für einen beliebigen, frei wählbaren Punkt in einer Modellregion Niederschlagszeitreihen erzeugt werden können, deren statistische Eigenschaften denen des natürlichen Niederschlags an diesem Ort entsprechen.Item Open Access Grundlagenbericht Niederschlags-Simulator (NiedSim3)(Stuttgart : Eigenverlag des Instituts für Wasser- und Umweltsystemmodellierung der Universität Stuttgart, 2017) Müller, Thomas; Mosthaf, Tobias; Gunzenhauser, Sarah; Seidel, Jochen; Bárdossy, AndrásItem Open Access Hochwasser – Staatsfeind Nr. 1(2002) Ehret, Uwe; Bárdossy, AndrásIn diesem Beitrag wird zusammen mit einer Erläuterung der Entstehung und der verschiedenen Arten von Hochwasser ein kurzer Überblick über die Arten des Hochwasserschutzes und der Hochwasservorhersage gegeben. Während sich die staatlichen Vorhersageinstitutionen momentan hauptsächlich auf große Flüsse wie Donau, Rhein und Neckar konzentrieren, wurde im Rahmen eines Forschungsprojekts am Institut für Wasserbau (IWS) ein Vorhersage- und Warnsystem für ein kleines Flusseinzugsgebiet, den Goldersbach bei Tübingen, entwickelt.Item Open Access Hydrological modelling in data sparse environment : inverse modelling of a historical flood event(2020) Bárdossy, András; Anwar, Faizan; Seidel, JochenWe dealt with a rather frequent and difficult situation while modelling extreme floods, namely, model output uncertainty in data sparse regions. A historical extreme flood event was chosen to illustrate the challenges involved. Our aim was to understand what the causes might have been and specifically to show how input and model parameter uncertainties affect the output. For this purpose, a conceptual model was calibrated and validated with recent data rich time period. Resulting model parameters were used to model the historical event which subsequently resulted in a rather poor hydrograph. Due to the bad model performance, a spatial simulation technique was used to invert the model for precipitation. Constraints, such as taking the precipitation values at historical observation locations in to account, with correct spatial structures and following the observed regional distributions were used to generate realistic precipitation fields. Results showed that the inverted precipitation improved the performance significantly even when using many different model parameters. We conclude that while modelling in data sparse conditions both model input and parameter uncertainties have to be dealt with simultaneously to obtain meaningful results.Item Open Access Indirect downscaling of hourly precipitation based on atmospheric circulation and temperature(2013) Beck, Ferdinand; Bárdossy, AndrásThe main source of information on future climate conditions are global circulation models (GCMs). While the various GCMs agree on an increase of surface temperature, the predictions for precipitation exhibit high spread among the models, especially in shorter-than-daily temporal resolution. This paper presents a method to predict regional distributions of the hourly rainfall depth based on daily mean sea level pressure and temperature data. It is an indirect downscaling method avoiding uncertain precipitation data from the GCM. It is based on a fuzzy logic classification of atmospheric circulation patterns (CPs) that is further subdivided by means of the average daily temperature. The observed empirical distributions at 30 rain gauges to each CP-temperature class are assumed as constant and used for projections of the hourly precipitation sums in the future. The method was applied to the CP-temperature sequence derived from the 20th-century run and the scenario A1B run of ECHAM5. For the study region in southwestern Germany ECHAM5 predicts that the summers will become progressively drier. Nevertheless, the frequency of the highest hourly precipitation sums will increase. According to the predictions, estival water stress and the risk of extreme hourly precipitation will both increase simultaneously during the next decades. However, the results are yet to be confirmed by further investigation based on other GCMs.Item Open Access Is precipitation responsible for the most hydrological model uncertainty?(2022) Bárdossy, András; Kilsby, Chris; Birkinshaw, Stephen; Wang, Ning; Anwar, FaizanRainfall-runoff modeling is highly uncertain for a number of different reasons. Hydrological processes are quite complex, and their simplifications in the models lead to inaccuracies. Model parameters themselves are uncertain-physical parameters because of their observations and conceptual parameters due to their limited identifiability. Furthermore, the main model input-precipitation is uncertain due to the limited number of available observations and the high spatio-temporal variability. The quantification of model output uncertainty is essential for their use. Most approaches used for the quantification of uncertainty in rainfall-runoff modeling assign the uncertainty to the model parameters. In this contribution, the role of precipitation uncertainty is investigated. Instead of a standard sensitivity analysis of the model output with respect to the input variations, it is investigated to what extent realistic precipitation fields could improve model performance. Realistic precipitation fields are defined as gridded realizations of precipitation which reproduce the observed values at the observation locations, with values which reproduce the distribution of the observed values and with spatial variability the same as the spatial variability of the observations. The above conditions apply to each observation time step. Through an inverse modeling approach based on Random Mixing precipitation fields fulfilling the above conditions and reproducing the discharge output better than using traditional interpolated observations can be obtained. These realizations show how much rainfall runoff models may profit from better precipitation input and how much remains for the parameter and model concept uncertainty. The methodology is applied using two hydrological models with a contrasting basis, SHETRAN and HBV, for three different mesoscale sub-catchments of the Neckar basin in Germany. Results show that up to 50% of the model error can be attributed to precipitation uncertainty. Further, inverting precipitation using hydrological models can improve model performance even in neighboring catchments which are not considered explicitly.Item Open Access A methodology to estimate flow duration curves at partially ungauged basins(2020) Ridolfi, Elena; Kumar, Hemendra; Bárdossy, AndrásThe flow duration curve (FDC) of streamflow at a specific site has a key role in the knowledge on the distribution and characteristics of streamflow at that site. The FDC gives information on the water regime, providing information to optimally manage the water resources of the river. In spite of its importance, because of the lack of streamflow gauging stations, the FDC construction can be a not straightforward task. In partially gauged basins, FDCs are usually built using regionalization among the other methods. In this paper we show that the FDC is not a characteristic of the basin only, but of both the basin and the weather. Different weather conditions lead to different FDCs for the same catchment. The differences can often be significant. Similarly, the FDC built at a site for a specific period cannot be used to retrieve the FDC at a different site for the same time window. In this paper, we propose a new methodology to estimate FDCs at partially gauged basins (i.e., target sites) using precipitation data gauged at another basin (i.e., donor site). The main idea is that it is possible to retrieve the FDC of a target period of time using the data gauged during a given donor time period for which data are available at both target and donor sites. To test the methodology, several donor and target time periods are analyzed and results are shown for different sites in the USA. The comparison between estimated and actually observed FDCs shows the reasonability of the approach, especially for intermediate percentiles.Item Open Access Probabilistic downscaling of EURO-CORDEX precipitation data for the assessment of future areal precipitation extremes for hourly to daily durations(2025) El Hachem, Abbas; Seidel, Jochen; Bárdossy, AndrásThis work presents a methodology to inspect the changing statistical properties of precipitation extremes with climate change. Data from regional climate models for the European continent (EURO-CORDEX 11) were used. The use of climate model data first requires an inspection of the data and a correction of the biases of the meteorological model. Corrections to the biases of the point precipitation data and those of the spatial structure were both performed. For this purpose, a quantile–quantile transformation of the point precipitation data and a spatial recorrelation method were used. Once corrected for bias, the data from the regional climate model were downscaled to a finer spatial scale using a stochastic method with equally probable outcomes. This allows for the assessment of the corresponding uncertainties. The downscaled fields were used to derive area–depth–duration–frequency (ADDF) curves and areal reduction factors (ARFs) for selected regions in Germany. The estimated curves were compared to those derived from a reference weather radar dataset. While the corrected and downscaled data show good agreement with the observed reference data over all temporal and spatial scales, the future climate simulations indicate an increase in the estimated areal rainfall depth for future periods. Moreover, the future ARFs for short durations and large spatial scales increase compared to the reference value, while for longer durations the difference is smaller.Item Open Access Regionalizing nonparametric models of precipitation amounts on different temporal scales(2017) Mosthaf, Tobias; Bárdossy, AndrásParametric distribution functions are commonly used to model precipitation amounts at gauged and ungauged locations. Nonparametric distributions offer a more flexible way to model precipitation amounts. However, the nonparametric models do not exhibit parameters that can be easily regionalized for application at ungauged locations. To overcome this deficiency, we present a new interpolation scheme for nonparametric models and evaluate the usage of daily gauges for sub-daily resolutions.Item Open Access Simultaneous calibration of hydrological models in geographical space(2016) Bárdossy, András; Huang, Yingchun; Wagener, ThorstenHydrological models are usually calibrated for selected catchments individually using specific performance criteria. This procedure assumes that the catchments show individual behavior. As a consequence, the transfer of model parameters to other ungauged catchments is problematic. In this paper, the possibility of transferring part of the model parameters was investigated. Three different conceptual hydrological models were considered. The models were restructured by introducing a new parameter η which exclusively controls water balances. This parameter was considered as individual to each catchment. All other parameters, which mainly control the dynamics of the discharge (dynamical parameters), were considered for spatial transfer. Three hydrological models combined with three different performance measures were used in three different numerical experiments to investigate this transferability. The first numerical experiment, involving individual calibration of the models for 15 selected MOPEX catchments, showed that it is difficult to identify which catchments share common dynamical parameters. In the second numerical experiment, a common spatial calibration strategy was used. It was explicitly assumed that the catchments share common dynamical parameters. In the third numerical experiment, the common calibration methodology was applied for 96 catchments. Another set of 96 catchments was used to test the transfer of common dynamical parameters. The results show that even a large number of catchments share similar dynamical parameters. The performance is worse than those obtained by individual calibration, but the transfer to ungauged catchments remains possible. The performance of the common parameters in the second experiment was better than in the third, indicating that the selection of the catchments for common calibration is important.Item Open Access Technical note: a guide to using three open-source quality control algorithms for rainfall data from personal weather stations(2024) El Hachem, Abbas; Seidel, Jochen; O'Hara, Tess; Villalobos Herrera, Roberto; Overeem, Aart; Uijlenhoet, Remko; Bárdossy, András; de Vos, LotteThe number of rainfall observations from personal weather stations (PWSs) has increased significantly over the past years; however, there are persistent questions about data quality. In this paper, we reflect on three quality control algorithms (PWSQC, PWS-pyQC, and GSDR-QC) designed for the quality control (QC) of rainfall data. Technical and operational guidelines are provided to help interested users in finding the most appropriate QC to apply for their use case. All three algorithms can be accessed within the OpenSense sandbox where users can run the code. The results show that all three algorithms improve PWS data quality when cross-referenced against a rain radar data product. The considered algorithms have different strengths and weaknesses depending on the PWS and official data availability, making it inadvisable to recommend one over another without carefully considering the specific setting. The authors highlight a need for further objective quantitative benchmarking of QC algorithms. This requires freely available test datasets representing a range of environments, gauge densities, and weather patterns.Item Open Access Technical note: Space-time statistical quality control of extreme precipitation observations(2022) El Hachem, Abbas; Seidel, Jochen; Imbery, Florian; Junghänel, Thomas; Bárdossy, AndrásInformation about precipitation extremes is of vital importance for many hydrological planning and design purposes. However, due to various sources of error, some of the observed extremes may be inaccurate or false. The purpose of this investigation is to present quality control of observed extremes using space–time statistical methods. To cope with the highly skewed rainfall distribution, a Box–Cox transformation with a suitable parameter was used. The value at the location of a potential outlier is estimated using the surrounding stations and the calculated spatial variogram and compared to the suspicious observation. If the difference exceeds the threshold of the test, the value is flagged as a possible outlier. The same procedure is repeated for different temporal aggregations in order to avoid singularities caused by convection. Detected outliers are subsequently compared to the corresponding radar and discharge observations, and finally, implausible extremes are removed. The procedure is demonstrated using observations of sub-daily and daily temporal resolution in Germany.Item Open Access The use of personal weather station observations to improve precipitation estimation and interpolation(2021) Bárdossy, András; Seidel, Jochen; El Hachem, AbbasIn this study, the applicability of data from private weather stations (PWS) for precipitation interpolation was investigated. Due to unknown errors and biases in these observations, a two-step filter was developed that uses indicator correlations and event-based spatial precipitation patterns. The procedure was tested and cross validated for the state of Baden-Württemberg (Germany). The biggest improvement is achieved for the shortest time aggregations.Item Open Access Why do our rainfall-runoff models keep underestimating the peak flows?(2023) Bárdossy, András; Anwar, FaizanIn this paper, the question of how the interpolation of precipitation in space by using various spatial gauge densities affects the rainfall-runoff model discharge if all other input variables are kept constant is investigated. The main focus was on the peak flows. This was done by using a physically based model as the reference with a reconstructed spatially variable precipitation model and a conceptual model calibrated to match the reference model's output as closely as possible. Both models were run with distributed and lumped inputs. Results showed that all considered interpolation methods resulted in the underestimation of the total precipitation volume and that the underestimation was directly proportional to the precipitation amount. More importantly, the underestimation of peaks was very severe for low observation densities and disappeared only for very high-density precipitation observation networks. This result was confirmed by using observed precipitation with different observation densities. Model runoffs showed worse performance for their highest discharges. Using lumped inputs for the models showed deteriorating performance for peak flows as well, even when using simulated precipitation.