Browsing by Author "Badri-Spröwitz, Alexander"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Muscle preflex response to perturbations in locomotion : in vitro experiments and simulations with realistic boundary conditions(2023) Araz, Matthew; Weidner, Sven; Izzi, Fabio; Badri-Spröwitz, Alexander; Siebert, Tobias; Häufle, Daniel F. B.Neuromuscular control loops feature substantial communication delays, but mammals run robustly even in the most adverse conditions. In vivo experiments and computer simulation results suggest that muscles’ preflex - an immediate mechanical response to a perturbation - could be the critical contributor. Muscle preflexes act within a few milliseconds, an order of magnitude faster than neural reflexes. Their short-lasting action makes mechanical preflexes hard to quantify in vivo. Muscle models, on the other hand, require further improvement of their prediction accuracy during the non-standard conditions of perturbed locomotion. Our study aims to quantify the mechanical work done by muscles during the preflex phase (preflex work) and test their mechanical force modulation. We performed in vitro experiments with biological muscle fibers under physiological boundary conditions, which we determined in computer simulations of perturbed hopping. Our findings show that muscles initially resist impacts with a stereotypical stiffness response - identified as short-range stiffness - regardless of the exact perturbation condition. We then observe a velocity adaptation to the force related to the amount of perturbation similar to a damping response. The main contributor to the preflex work modulation is not the change in force due to a change in fiber stretch velocity (fiber damping characteristics) but the change in magnitude of the stretch due to the leg dynamics in the perturbed conditions. Our results confirm previous findings that muscle stiffness is activity-dependent and show that also damping characteristics are activity-dependent. These results indicate that neural control could tune the preflex properties of muscles in expectation of ground conditions leading to previously inexplicable neuromuscular adaptation speeds.Item Open Access Muscle prestimulation tunes velocity preflex in simulated perturbed hopping(2023) Izzi, Fabio; Mo, An; Schmitt, Syn; Badri-Spröwitz, Alexander; Häufle, Daniel F. B.Muscle fibres possess unique visco-elastic properties, which generate a stabilising zero-delay response to unexpected perturbations. This instantaneous response - termed “preflex” - mitigates neuro-transmission delays, which are hazardous during fast locomotion due to the short stance duration. While the elastic contribution to preflexes has been studied extensively, the function of fibre viscosity due to the force-velocity relation remains unknown. In this study, we present a novel approach to isolate and quantify the preflex force produced by the force-velocity relation in musculo-skeletal computer simulations. We used our approach to analyse the muscle response to ground-level perturbations in simulated vertical hopping. Our analysis focused on the preflex-phase - the first 30 ms after impact - where neuronal delays render a controlled response impossible. We found that muscle force at impact and dissipated energy increase with perturbation height, helping reject the perturbations. However, the muscle fibres reject only 15% of step-down perturbation energy with constant stimulation. An open-loop rising stimulation, observed in locomotion experiments, amplified the regulatory effects of the muscle fibre’s force–velocity relation, resulting in 68% perturbation energy rejection. We conclude that open-loop neuronal tuning of muscle activity around impact allows for adequate feed-forward tuning of muscle fibre viscous capacity, facilitating energy adjustment to unexpected ground-level perturbations.Item Open Access Slack-based tunable damping leads to a trade-off between robustness and efficiency in legged locomotion(2023) Mo, An; Izzi, Fabio; Gönen, Emre Cemal; Häufle, Daniel F. B.; Badri-Spröwitz, AlexanderAnimals run robustly in diverse terrain. This locomotion robustness is puzzling because axon conduction velocity is limited to a few tens of meters per second. If reflex loops deliver sensory information with significant delays, one would expect a destabilizing effect on sensorimotor control. Hence, an alternative explanation describes a hierarchical structure of low-level adaptive mechanics and high-level sensorimotor control to help mitigate the effects of transmission delays. Motivated by the concept of an adaptive mechanism triggering an immediate response, we developed a tunable physical damper system. Our mechanism combines a tendon with adjustable slackness connected to a physical damper. The slack damper allows adjustment of damping force, onset timing, effective stroke, and energy dissipation. We characterize the slack damper mechanism mounted to a legged robot controlled in open-loop mode. The robot hops vertically and planarly over varying terrains and perturbations. During forward hopping, slack-based damping improves faster perturbation recovery (up to 170%) at higher energetic cost (27%). The tunable slack mechanism auto-engages the damper during perturbations, leading to a perturbation-trigger damping, improving robustness at a minimum energetic cost. With the results from the slack damper mechanism, we propose a new functional interpretation of animals’ redundant muscle tendons as tunable dampers.