Browsing by Author "Brühne, Kai"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Hot-Wire Gasphasenabscheidung von nanokristallinem Silicium und Silicium-Germanium(2003) Brühne, Kai; Werner, Jürgen H. (Prof. Dr.)Die vorliegende Arbeit beschäftigt sich mit der Abscheidung von nanokristallinem Silicium (nc-Si) und nanokristallinem Silicium-Germanium (nc-SiGe) mit Hilfe der Hot-Wire Gasphasenabscheidung (HW-CVD). Das Ziel ist ein besseres Verständnis der physikalischen Schichteigenschaften. Im Gegensatz zur Abscheidung von amorphem Silicium (a-Si:H) durch HW-CVD ist die An-wendung von HW-CVD bei der Herstellung der oben genannten Materialien nur wenig (nc-Si) bzw. bisher noch gar nicht (nc-SiGe) untersucht worden. Die Herstellung von nanokristallinem Silicium-Germanium erfolgt gewöhnlich durch eine Plasma-unterstützter Gasphasenabscheidung einer amorphen SiGe-Dünnschicht und anschließende Kris-tallisation. Diese Arbeit stellt erstmalig die direkte Abscheidung von nc-SiGe mittels HW-CVD vor. Die direkte Abscheidung spart den Hochtemperaturschritt der Kristallisation ein und erweitert dadurch das Spektrum der einsetzbaren Substratmaterialien hin-sichtlich ihrer Temperaturstabilität. Thermokraftmessungen zeigen, dass der Seebeck-Koeffizient der dotierten nc-SiGe-Schichten mit Größen zwischen 200 und 250 µV/K den Literaturwerten entspricht und damit für thermoelektrische Anwendungen geeignet ist. Nanokristalline Siliciumproben zeigen gewöhnlich eine breite Photolumineszenz-Emis-sionslinie in der Region zwischen 0.9 und 1.0 eV. Die Ursache dieses Peaks ist in der Li-teratur bisher noch nicht geklärt. Die vorliegende Arbeit zeigt, dass diese Photolumineszenz analog zu der von a-Si:H zwischen 1.2 und 1.4 eV durch Rekombination zwischen den Bandausläuferzuständen entsteht. Sauerstoff ist in kristallinen Siliciumschichten eine gefürchtete Verunreinigung, da dieser Korngrenzen elektrisch aktiviert und dadurch den elektrischen Ladungsträgertransport verschlechtert. In der Literatur beschriebene mit Hot-Wire CVD hergestellte, na-nokristalline Siliciumschichten weisen hohe Sauerstoffkonzentrationen von 10^20 cm-3 auf, deren Ursache bislang nicht geklärt ist. Mit Hilfe von Deckschichtexperimenten gelingt in dieser Arbeit der Nachweis, dass der Sauerstoff erst nach der Deposition in die Schicht eindiffundiert. Eine Abschätzung der Größenordnung der Diffusionskonstante zeigt, dass die Eindiffusion nur durch schnelle Diffusion in porösen Hohlräumen erfolgen kann. Die Textur nanokristalliner Dünnschichten bestimmt die Schichtqualität. So weisen Solarzellen mit einer <110>-Textur die höchsten Wirkungsgrade auf. In dieser Arbeit konnten erstmals unter Verwendung neuartiger Graphit-Drähte anstelle der sonst verwen-deten Tantal- oder Wolfram-Drähte Dünnschichten mit einer reinen <110>-Orientierung abgeschieden werden. Diese Schichten zeichnen sich durch eine Schichtstruk-tur aus, die die Eindiffusion von Sauerstoff nach der Deposition verhindert und daher, verglichen mit anderen nc-Si Schichten, zu geringen Sauerstoffkonzentrationen von 3x10^18 cm-3 führt.