Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Bruder, Ingmar"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Organic solar cells : correlation between molecular structure, morphology and device performance
    (2010) Bruder, Ingmar; Weis, Jürgen (Prof. Dr.)
    The development of efficient organic solar cells could be one approach to provide mankind with cheap, sustainable and ecofriendly energy. The introduction of bulk heterojunction and tandem device architectures led recently to devices with power conversion efficiencies close or even higher than n = 6%, showing the potential of organic photovoltaics. Nevertheless, to compete for the foreseeable future to inorganic solar cell technologies, the power conversion efficiencies of organic solar cells have to rise further in the range of 10 % into 15 %. Since the functioning of organic photovoltaics is based on a complex interplay of the electronic properties of its molecular components, it is desirable for an efficient evolution, to identify structural and energetical key characteristics of the molecular components that can lead to efficiency gains. Furthermore, there are virtually no limits for the synthesis of new photoactive materials for the use in organic photovoltaics. Therefore, it is crucial for the device fabrication as well as under a chemical point of view, to narrow potentially promissing classes of molecules and their derivatives under certain physical criteria. One aim of this study was to find and identify so far unknown design criteria for molecules providing high efficiencies in organic solar cells. Thus, the question was raised: What is the physical cause for the differing performance of various metal-phthalocyanines (MPc's with M = Zn, Cu, Ni, Fe) in organic solar cells. Therefore, MPc/C60 based bilayer heterojunction solar cells were fabricated showing a clear dependence of the optimal layer thickness and overall performance on the employed MPc material. Initially, the origin of these differences were explored through structural analysises by AFM and high resolution XRPD measurements on powder and evaporated thin films. The optical properties of the metal phthalocyanines were investigated by solidstate fluorescence and absorption measurements. The lowest excited states of the MPc series were explored by correlated multi-reference ab inito calculations. A high open circuit voltage Voc of a solar cell is a prerequisite for high efficiencies. Unfortunately, the Voc of small molecule based organic solar cells is usually considerably lower than the HOMO-LUMO offset of the device, which determines the theoretical maximum of the Voc in a first approximation. Thus, the question was investigated: What causes the difference between the possible open-circuit voltage and the actual measured voltage and how can this difference be reduced? To answer this question, heterojunction solar cells were produced containing ZnPc or one of the novel synthesized Phenyl-ZnPc, Naphtyl-ZnPc or Anthracenyl-ZnPc as p-conducting and C60 as n-conducting organic layers. By adding the respective aryl substituents to the ZnPc core, the polarizability of the molecules was successively increased. Concurrently, an increase of the Voc from 550 mV to 790 mV by using the highly polarizable Anthracenyl-ZnPc instead of ZnPc was achieved. Quantum mechanical calculations, simulating the charge separation mechanism at the DA-interface of Phenyl-ZnPc/C60 and Naphtyl-ZnPc/C60 showed, that the interplay between characteristic packing and polarization effects could lead to considerably different Coulomb interactions of the electron-hole pairs at the DA-interface. The control of the conduction type and Fermi-level of semiconductors is crucial for the realization of all optoelectronic devices. In inorganic as well as in organic devices this can be achieved by defined doping of appropriate areas within the device. Thus, it has been investigated, how the molecular structure of a dopant should be in order to reduce its diffusivity and increase the evaporation temperature to allow a more efficient processing of the compound. As a result, the novel p-dopant 2,3-di(N-phthalimido)-5,6-dicyano-1,4-benzoquinone (BAPD) was synthesized and compared to the state-of-the-art dopant F4TCNQ. In addition to basic and applied physical questions, I worked on the development of new, efficient solar cell architectures during my PhD thesis. In the course of this work it could be shown, that an efficient organic tandem cell can be prepared from a solid state dye-sensitized solar cell combined with a vacuum-deposited bulk heterojunction solar cell. The complementary absorption of the dyes, as well as an adequate serial connection of both subcells, leads to a high power conversion efficiency of n = (6.0±0.1)% under simulated 100 mW/cm2 AM 1.5 illumination.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart