Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Burbulla, Samuel"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Mixed-dimensional modeling of flow in porous media
    (2023) Burbulla, Samuel; Rohde, Christian (Prof. Dr.)
    Modeling flow in dynamically fracturing porous media is of high interest for a wide range of natural and technical applications, for instance, geothermal energy production or carbon capture and storage. In this work, we present new mixed-dimensional models for flow in porous media including fractures with time- and space-dependent geometries. The models are implemented using our new grid implementation Dune-MMesh which is tailored for the discretization of mixed-dimensional partial differential equations with fully conforming interface of codimension one. First, we propose a mixed-dimensional model for capillarity-free two-phase flow in dynamically fracturing porous media. The model is discretized by a fully conforming finite-volume moving-mesh algorithm that explicitly tracks the fracture geometry. Further, generalizing an earlier model for single-phase flow in fractured porous media, we derive a dimensionally reduced model including spatially varying apertures. In several numerical examples, using a mixed-dimensional discontinuous Galerkin discretization, the model demonstrates significant improvements for curvilinear fracture geometries. Finally, we propose a mixed-dimensional phase-field model for fracture propagation in poro-elastic media combining discrete fracture and phase-field modeling approaches. The corresponding discontinuous Galerkin discretization tracks the fracture geometry by adding facets to the fracture triangulation according to the phase-field indicator and is validated with results known from literature.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart