Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Burghartz, Joachim"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Adaptive triple-fed antenna and thinned RF-chip integration into ultra thin flexible polymer foil
    (2023) Fischer-Kennedy, Serafin B.; Özbek, Sefa; Wang, Shuo; Grözing, Markus; Hesselbarth, Jan; Berroth, Manfred; Burghartz, Joachim
  • Thumbnail Image
    ItemOpen Access
    Integrated optoelectronic devices using lab‐on‐fiber technology
    (2022) Ricciardi, Armando; Zimmer, Michael; Witz, Norbert; Micco, Alberto; Piccirillo, Federica; Giaquinto, Martino; Kaschel, Mathias; Burghartz, Joachim; Jetter, Michael; Michler, Peter; Cusano, Andrea; Portalupi, Simone Luca
    Silica fibers are nowadays cornerstones in several technological implementations from long‐distance communication, to sensing applications in many scenarios. To further enlarge the functionalities, the compactness, and the performances of fiber‐based devices, one needs to reliably integrate small‐footprint components such as sensors, light sources, and detectors onto single optical fiber substrates. Here, a novel proof of concept is presented to deterministically integrate optoelectronic chips onto the facet of an optical fiber, further implementing the electrical contacting between the chip and fiber itself. The CMOS‐compatible procedure is based on a suitable combination of metal deposition, laser machining, and micromanipulation, directly applied onto the fiber tip. The proposed method is validated by transferring, aligning, and bonding a quantum‐well based laser on the core of a multimode optical fiber. The successful monolithic device integration on fiber shows simultaneously electrical contacting between the laser and the ferrule, and 20% light in‐coupling in the fiber. These results pave new ways to develop the next generation of optoelectronic systems on fiber. The technological approach will set a new relevant milestone along the lab‐on‐fiber roadmap, opening new avenues for a novel class of integrated optoelectronic fiber platforms, featuring unrivaled miniaturization, compactness, and performances levels, designed for specific applications.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart