Browsing by Author "Comella, Laura"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Position sensor and control system for micro hydraulic drives in surgical instruments(Stuttgart : Fraunhofer Verlag, 2019) Comella, Laura; Bauernhansl, Thomas (Univ.-Prof. Dr.-Ing.)This work is focused on the research and development of a sensor that permits the control of the movement of a hydraulically driven laparoscopic instrument tip and opens the way towards a new interpretation of surgical instruments. In the new vision the instrument is able to execute automatically preprogrammed tasks, without the constant involvement of the surgeon in the instrument control. After an analysis on the state of the art for laparoscopic instruments and a revision of the relevant literature on sensors for displacement measurement, the coaxial cylindrical capacitive method was identified as the most suitable solution for the application analyzed. This sensor configuration can be integrated directly into the hydraulic cylinder without the need of additional parts. The feasibility of the coaxial cylindrical capacitive sensor is theoretically analyzed, validated with FEA simulation and then characterized experimentally. Relevant is the fact that the tests are run with two different hydraulic cylinders, a mini hydraulic and a micro hydraulic cylinder, to demonstrate the scalability of the sensor and its adaptability to instruments of different size. The experimental results match the simulations and confirm the sensor´s behavior also on experimental level. The sensor is than integrated in a closed loop system to test its suitability for controlling the position of the instrument tip in a scenario as close as possible to the real one. For this reason, a hydraulic drive, which permits the movement of the instrument tip, is designed. The full hydraulic drive system is modeled and this model is used to design a feedback control. The designed controller is initially proven through simulation. Afterwards it is tested with experiments proving the correspondence between simulated and real world behavior of the system.