Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Czichos, Ruben"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Experimental and numerical studies of process variabilities in biaxial carbon fiber braids
    (2020) Czichos, Ruben; Bareiro, Oscar; Pickett, Anthony K.; Middendorf, Peter; Gries, Thomas
    This paper investigates the manufacture of biaxial carbon fiber braids and the influence that different machine settings have on variability of the textile architecture produced. In parallel, numerical simulations of the braiding process with these different machine settings have been conducted. For these studies yarn tension and process speed are varied to generate cylindrical biaxial braids with an average braid angle of±45°. The overall preform quality is characterized by means of variability in braid angle, yarn width, cover factor and fiber damage, using a variety of experimental techniques. Furthermore, from the final infused composite variations in yarn cross-section dimensions have been measured. A method is presented to transfer braid process simulation results to a detailed three dimensional finite element model of the architecture using a technique based on thermal expansion and compaction simulation. This method also allows the possibility to introduce experimentally observed variability in yarn cross-section dimensions. Such a model provides a valuable starting point for mesoscopic infusion or mechanical analysis of the textile composite. A comparison between experimental and numerical results shows that the process simulation can well reproduce the real braid angles in terms of mean value and scatter under different machine configurations and that the meso-scale textile model gives a good reproduction of the true textile architecture.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart