Repository logoOPUS - Online Publications of University Stuttgart
de / en
Log In
New user? Click here to register.Have you forgotten your password?
Communities & Collections
All of DSpace
  1. Home
  2. Browse by Author

Browsing by Author "Damakoudi, Vassiliki"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Thumbnail Image
    ItemOpen Access
    Hybridization networks of mRNA and branched RNA hybrids
    (2020) Damakoudi, Vassiliki; Feldner, Tobias; Dilji, Edina; Belkin, Andrey; Richert, Clemens
    Messenger RNA (mRNA) is emerging as an attractive biopolymer for therapy and vaccination. To become suitable for vaccination, mRNA is usually converted to a biomaterial, using cationic peptides, polymers or lipids. An alternative form of converting mRNA into a material is demonstrated that uses branched oligoribonucleotide hybrids with the ability to hybridize with one or more regions of the mRNA sequence. Two such hybrids with hexamer arms and adamantane tetraol as branching element were prepared by solution‐phase synthesis. When a rabies mRNA was treated with the branched hybrids at 1 M NaCl concentration, biomaterials formed that contained both of the nucleic acids. These results show that branched oligoribonucleotides are an alternative to the often toxic reagents commonly used to formulate mRNA for medical applications.
  • Thumbnail Image
    ItemOpen Access
    Non-porous organic crystals and their interaction with guest molecules from the gas phase
    (2020) Casco, Mirian Elizabeth; Krupp, Felix; Grätz, Sven; Schwenger, Alexander; Damakoudi, Vassiliki; Richert, Clemens; Frey, Wolfgang; Borchardt, Lars
    Some organic molecules encapsulate solvents upon crystallization. One class of compounds that shows a high propensity to form such crystalline solvates are tetraaryladamantanes (TAAs). Recently, tetrakis(dialkoxyphenyl)-adamantanes have been shown to encapsulate a wide range of guest molecules in their crystals, and to stabilize the guest molecules against undesired reactions. The term ‘encapsulating organic crystals’ (EnOCs) has been coined for these species. In this work, we studied the behavior of three TAAs upon exposition to different guest molecules by means of sorption technique. We firstly measured the vapor adsorption/desorption isotherms with water, tetrahydrofuran and toluene, and secondly, we studied the uptake of methane on dry and wet TAAs. Uptake of methane beyond one molar equivalent was detected for wet crystals, even though the materials showed a lack of porosity. Thus far, such behavior, which we ascribe to methane hydrate formation, had been described for porous non-crystalline materials or crystals with detectable porosity, not for non-porous organic crystals. Our results show that TAA crystals have interesting properties beyond the formation of conventional solvates. Gas-containing organic crystals may find application as reservoirs for gases that are difficult to encapsulate or are slow to form crystalline hydrates in the absence of a host compound. Wet tetraaryladamantane crystals take up methane in form of methane hydrate structure I, even though they appear non-porous to argon.
OPUS
  • About OPUS
  • Publish with OPUS
  • Legal information
DSpace
  • Cookie settings
  • Privacy policy
  • Send Feedback
University Stuttgart
  • University Stuttgart
  • University Library Stuttgart