Browsing by Author "Digel, Johannes"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Open Access Leistungseffiziente Analog-Digital-Umsetzer mit sukzessivem Approximationsregister(2015) Digel, Johannes; Berroth, Manfred (Prof. Dr.-Ing.)In der Signalverarbeitung und Kommunikation zeichnet sich ein Trend weg vom Analogen hin zum Digitalen ab. Vorteile von digitalen Daten sind, dass ihre physikalische Darstellung losgelöst davon ist, was sie physikalisch repräsentieren, dass zu ihrer Verarbeitung standardisierte Schaltungskomponenten angewendet und spezialisierte Komponenten synthetisiert werden können, sowie dass sie verlustfrei übertragen und gespeichert werden können. Dafür müssen analoge Signale, die beispielsweise von einem Sensor generiert oder von einer Antenne empfangen werden, verstärkt und anschließend in digitale Daten umgesetzt werden. Für die Analog-Digital-Umsetzung sind unterschiedliche Konzepte bekannt, von denen sich manche besonders gut für bestimmte Technologien eignen. Die Konzepte unterscheiden sich durch die Kennzahlen und Parameter, die mit ihnen erreicht werden können. Eines der Konzepte, um ein analoges in ein digitales Signal umzusetzen, nennt sich „Sukzessive Approximation“. Dieses Konzept verwendet ein schrittweises, binär abgestuftes Wägeverfahren, um die digitale Repräsentation einer analogen Spannung zu bestimmen. Wegen seines schrittweisen Fortschritts erlaubt es grundsätzlich eine Analog-Digital-Umsetzung mit mittlerer Geschwindigkeit. Die Abtastrate kann jedoch erhöht werden, indem einige Umsetzer mit Zeitverschachtelung arbeiten. Der Analog-Digital-Umsetzer mit sukzessiver Approximation erreicht mittlere Auflösungen im Bereich von 10 bit, ohne dass er eine Kalibrierung oder Kompensation von Fehlern benötigt. Jede weitere Erhöhung der Auflösung um ein Bit fügt dem Umsetzungszyklus einen Schritt hinzu, alle Komponenten müssen jedoch die Anforderungen in Bezug auf Rauschen, Linearität und Genauigkeit für die geforderte Auflösung erfüllen. Der Analog-Digital-Umsetzer mit sukzessiver Approximation beinhaltet ein sukzessives Approximationsregister, das mit statischer CMOS-Logik arbeitet. Es speichert das digitale Ausgangscodewort des Umsetzers und steuert den Umsetzungszyklus. Eine weitere Komponente ist durch einen Digital-Analog-Umsetzer gegeben, der für gewöhnlich als passive Schaltung mit einem kapazitiven Spannungsteiler mit binär gewichteten Kondensatoren realisiert wird. Die einzige aktive, analoge Komponente dieses Umsetzers ist ein Komparator, der entscheidet, ob ein Binärwert „0“ oder „1“ ist. Wegen der geringen Anzahl an aktiven, analogen Komponenten eignen sich moderne CMOS-Technologien besonders für Analog-Digital-Umsetzer mit sukzessiver Approximation und ermöglichen sehr leistungseffiziente Entwürfe. Veröffentlichte Entwürfe von Analog-Digital-Umsetzern mit sukzessiver Approximation mit Abtastraten im Bereich von einigen Kilosamples bis zu dutzenden Gigasamples pro Sekunde zeigen eine sehr gute Leistungseffizienz. Sie eignen sich für ein großes Anwendungsfeld wie für biomedizinische Beobachtung, Sensorsysteme, die Beobachtung analoger Spannungen innerhalb einer Schaltung oder drahtlose oder -gebundene Kommunikation. Wegen ihrer Kompatibilität mit skalierten CMOS-Technologien können sie zusammen mit digitalen Schaltungen zur Signalverarbeitung in einem Mikrochip integriert werden. Diese Arbeit behandelt den Entwurf von Analog-Digital-Umsetzern mit sukzessiver Approximation, die Abtastraten im Bereich von Megasamples pro Sekunde haben. Die vorgestellten Komponenten sollen den Entwurf von Umsetzern mit gegebenen Anforderungen in einer gebräuchlichen Technologie ermöglichen. Dabei soll eine dem Stand der Technik entsprechende Leistungseffizienz erreichbar sein, ohne dass die Schaltung eine komplexe Kalibrierung oder Fehlerkorrektur benötigt. Die vorgestellten Entwürfe beschränken sich auf Umsetzer mit einem Kern, die ohne Zeitverschachtelung arbeiten. Alle enthaltenen Umsetzer beinhalten genau einen Komparator, der einen Binärwert pro Vergleich bestimmt. Damit wird in jedem Schritt des Umsetzungszyklus genau ein Bit bestimmt. Nach der Einführung grundlegender Eigenschaften und Parameter von Analog-Digital-Umsetzern werden einige Konzepte und Algorithmen für die sukzessive Approximation angegeben. Es werden alle Schaltungsblöcke vorgestellt, die zur Realisierung der aufgeführten Algorithmen notwendig sind. Besondere Beachtung finden die begrenzenden Eigenschaften eines jeden Blocks wie die Linearität des Eingangskreises, die Empfindlichkeit des Entscheiders oder der Einfluss von Prozessschwankungen. Für alle gezeigten Schaltungsvarianten werden gefertigte Analog-Digital-Umsetzer zusammen mit den zugehörigen Messergebnissen gezeigt. Das Abschlusskapitel ordnet die in dieser Arbeit entworfenen Schaltungen in den Stand der Technik ein.