Browsing by Author "Divinski, Sergiy V."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access A combined experimental and first-principles based assessment of finite-temperature thermodynamic properties of intermetallic Al3Sc(2021) Gupta, Ankit; Tas, Bengü; Korbmacher, Dominique; Dutta, Biswanath; Neitzel, Yulia; Grabowski, Blazej; Hickel, Tilmann; Esin, Vladimir; Divinski, Sergiy V.; Wilde, Gerhard; Neugebauer, JörgWe present a first-principles assessment of the finite-temperature thermodynamic properties of the intermetallic Al3Sc phase including the complete spectrum of excitations and compare the theoretical findings with our dilatometric and calorimetric measurements. While significant electronic contributions to the heat capacity and thermal expansion are observed near the melting temperature, anharmonic contributions, and electron–phonon coupling effects are found to be relatively small. On the one hand, these accurate methods are used to demonstrate shortcomings of empirical predictions of phase stabilities such as the Neumann–Kopp rule. On the other hand, their combination with elasticity theory was found to provide an upper limit for the size of Al3Sc nanoprecipitates needed to maintain coherency with the host matrix. The chemo-mechanical coupling being responsible for the coherency loss of strengthening precipitates is revealed by a combination of state-of-the-art simulations and dedicated experiments. These findings can be exploited to fine-tune the microstructure of Al-Sc-based alloys to approach optimum mechanical propertiesItem Open Access Interstitials in compositionally complex alloys(2023) Baker, Ian; Grabowski, Blazej; Divinski, Sergiy V.; Zhang, Xi; Ikeda, YujiThe effects of interstitial alloying on the mechanical and diffusive properties of compositionally complex alloys (CCAs), including high-entropy alloys (HEAs), are reviewed. The solubility of interstitial elements in CCAs can be extraordinarily high, a feature corroborated by ab initio density functional theory simulations. The yield stresses, work-hardening rates, and Hall-Petch slopes of CCAs are normally reported to increase due to interstitial alloying. In some CCAs, interstitial alloying has been found to enhance both strength and ductility, thus circumventing the traditional tradeoff between these properties. Self-diffusivities of the HEA CoCrFeMnNi are found to show complex dependences on interstitial C concentration as well as on temperature. Some CCAs with Laves phase or body-centered cubic crystal structures show potential as hydrogen-storage materials, with both experimental and computational research in this area steadily increasing. Based on the insights obtained, possible directions for further studies on the impacts of interstitial alloying in CCAs are suggested.